TCP服务器实现—多进程版,多线程版,线程池版

news2025/1/21 0:58:42

目录

前言

1.存在的问题

2.多进程版

3.多线程版

4.线程池版

总结


前言

        在上一篇文章中使用TCP协议实现了一个简单的服务器,可以用来服务端和客户端通信,但是之前的服务器存在一个问题,就是当有多个客户端连接服务器的时候,服务器只能和一个客户端通信,其它的客户端是无法通信的,这是为什么呢?有该如何解决呢?将在这篇文章中为大家介绍

1.存在的问题

如图所示:

 为什么会存在这样的问题呢?

如上图所示,之前我们实现的服务器是单进程版的,所以当第一次和客户端建立连接完成之后,就死循环处理读取信息的逻辑了,所以就无法再和新的客户端建立连接了 。找到问题之后,很明显解决方式就是将建立连接和通信分开执行,此时我们就可以使用多进程和多线程来解决了,下面我们就具体来实现以下如何使用多进程和多线程。

2.多进程版

实现思路:与客户端建立连接完成,fork创建子进程,让父进程继续建立连接,让子进程实现后续的数据通信。

这样实现存在的问题:当父进程创建完子进程之后,需要使用waitpid回收子进程的资源,否则子进程就会变为僵尸进程,导致资源泄漏,但是使用waitpid回收子进程资源,程序变为串行化执行了,就无法实现之前的需求,让父进程负责建立连接,子进程负责数据通信了。

解决方式有两种:

1.fork创建子进程,在子进程内部再fork创建子进程,然后让父进程直接退出,此时之前的子进程作为父进程退出,新创建的子进程就变为孤儿进程被操作系统领养,并不会造成资源泄漏,并且让该子进程负责通信

2.因为子进程退出之后操作系统会发送一个SIGCHLD信号,所以可以使用signal函数捕捉SIGCHLD信号,将默认处理动作设置为SIG_IGN,在这个默认动作里会回收子进程的资源,并不会造成资源泄漏,并且让该子进程负责通信

思路1代码:

pid_t id = fork();
if(id == 0)//child
{
    close(_sock);
    if(fork() > 0)
        exit(0);
    serviceIO(sock);
    close(sock);
    exit(0);
}
close(sock);
waitpid(id,nullptr,0);

思路2代码:

signal(SIGCHLD,SIG_IGN);
if(id == 0)//child
{
    // 子进程会继承父进程的文件描述符表,当子进程不需要时进行关闭,
    // 防止子进程文件描述符资源泄露
    close(_sock);
    serviceIO(sock);
    close(sock);
    exit(0);
}

运行截图:

[myl@VM-8-12-centos tcp]$ ./tcpServer 8080
create socket success
bind socket success
listen socket success
accept a new link success
sock: 4
accept a new link success
sock: 4
recvice message: 你好,我是客户端1
recvice message: 你好,我是客户端2

此时就实现了一个客户端可以被多个服务端连接并且实现通信。

3.多线程版

说明:相比于多进程,多线程的创建和销毁对操作系统是更轻量的,消耗的资源也是更少的,所以实现数据通信可以采用多线程的方式,让主线程负责建立,让从线程负责数据通信

代码实现:

class TcpServerData
{
public:
    TcpServerData(TcpServer* self,int sock)
    :_self(self),_sock(sock) {}
public:
    TcpServer* _self;
    int _sock;
};
cout << "我是主线程" << endl;
pthread_t tid;
TcpServerData* tsd = new TcpServerData(this,sock);
pthread_create(&tid,nullptr,start_routine,tsd);

//因为是类内成员函数,必须包含this指针,但是start_routine作为参数是没有this指针的
//所以start_routine函数必须加上static,静态成员方法是不能访问类内成员的,所以参数传递this
//调用serviceIO,但是serviceIO函数需要传递参数sock,所以可以封装一个结构体,在结构体中包含成员
//属性sock和this
static void* start_routine(void* args) {
//设置与主线程分离,此时主线程不需要等待从线程退出了,而是继续建立连接
cout << "我是从线程" << endl;
pthread_detach(pthread_self());
TcpServerData* t = static_cast<TcpServerData*>(args);
t->_self->serviceIO(t->_sock);
close(t->_sock);
delete t;
return nullptr;

运行截图:

[myl@VM-8-12-centos tcp]$ ./tcpServer 8080
create socket success
bind socket success
listen socket success
accept a new link success
sock: 4
我是主线程
我是从线程
recvice message: 你好,我是客户端1
accept a new link success
sock: 5
我是主线程
我是从线程
recvice message: 你好,我是客户端2

4.线程池版

说明:线程池版的实现思路是基于多线程,虽然多线程创建和销毁的消耗比多进程的低,但是为了更进一步提升效率,可以预先创建好一批线程,主线程负责建立连接获取任务,然后将任务加入到队列中,让预先创建好的线程从队列中获取任务,然后处理获取到的任务。

代码实现:

void start()
{
    //线程池初始化:预先创建好一批线程:
    ThreadPool<Task>::getInstance()->run();
    for (;;)
    {
        // 建立连接:
        struct sockaddr_in peer;
        socklen_t len = sizeof(peer);
        int sock = accept(_sock, (struct sockaddr *)&peer, &len); 
        if (sock < 0)
        {
            logMessage(ERROR, "accept error, next");
            continue;
        }
        logMessage(NORMAL, "accept a new link success");
        std::cout << "sock: " << sock << std::endl;
        //未来通信全部用sock,面向字节流的,后续全部都是文件操作:
        ThreadPool<Task>::getInstance()->push(Task(sock,serviceIO));
    }
}

运行截图:

[myl@VM-8-12-centos tcp]$ ./tcpServer 8080
create socket success
bind socket success
listen socket success
thread-1 start ...
thread-2 start ...
thread-3 start ...
thread-4 start ...
thread-5 start ...
thread-6 start ...
thread-7 start ...
thread-8 start ...
thread-9 start ...
thread-10 start ...
accept a new link success
sock: 4
accept a new link success
sock: 5
recv message: 你好,我是客户端1
recv message: 你好,我是客户端2
注:关于线程池详细的设计与实现可以观看线程池这篇文章,里面有相信的代码实现

总结

        以上就是关于TCP服务器实现多进程版,多线程版,线程池版的详细介绍,可以通过这篇文章发现之前在系统中学习的知识在网络中全部结合起来了,今天的介绍就到这里了,感谢大家的阅读,我们下次再见!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/895565.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LeGO-Loam代码解析(二)--- Lego-LOAM的地面点分离、聚类、两步优化方法

1 地面点分离剔除方法 1.1 数学推导 LeGO-LOAM 中前端改进中很重要的一点就是充分利用了地面点,那首先自然是提取 对地面点的提取。 如上图,相邻的两个扫描线束的同一列打在地面上如 点所示,他们的垂直高度差 &#xff0c;水平距离差 &#xff0c;计算垂直高度差和水平高度差…

Windows 10搭建 OpenGL 环境(C++)

1、创建 sdk 目录 IDE使用 Visual Studio 2022&#xff0c;在电脑上创建一个目录&#xff0c;用来存放要使用的 OpenGL 库&#xff0c;后面步骤中生成的各种库文件&#xff0c;都会放到这个目录&#xff0c;用于配置 VS 项目模板&#xff0c;本文将使用这个目录&#xff1a;F:…

【快应用】如何避免通知栏提示快应用一直获取地理位置

【关键词】 地理位置、subscribe、unsubscribe 【问题背景】 快应用中调用geolocation.subscribe接口获取地理位置&#xff0c;即使在定位完成后&#xff0c;会在通知栏一直显示某某快应用在获取地理位置&#xff0c;为了避免用户认为一直在获取他的位置&#xff0c;导致用户…

原码、补码、反码

一、前置概念 计算机底层存储数据时使用的是二进制数字&#xff0c;但是计算机在存储一个数字时并不是直接存储该数字对应的二进制数字&#xff0c;而是存储该数字对应二进制数字的补码。所以接下来我们需要来了解一下原码、反码和补码。 那么再了解原码、反码、补码之前&…

自动执行探索性数据分析 (EDA),更快、更轻松地理解数据

一、说明 EDA是 exploratory data analysis (探索性数据分析 )的缩写。所谓EDA就是在数据分析之前需要对数据进行以此系统性研判&#xff0c;在这个研判后&#xff0c;得到基本的数据先验知识&#xff0c;在这个基础上进行数据分析。本文将在R语言和python语言的探索性处理。 摄…

Hadoop学习:深入解析MapReduce的大数据魔力之数据压缩(四)

Hadoop学习&#xff1a;深入解析MapReduce的大数据魔力之数据压缩&#xff08;四&#xff09; 4.1 概述1&#xff09;压缩的好处和坏处2&#xff09;压缩原则 4.2 MR 支持的压缩编码4.3 压缩方式选择4.3.1 Gzip 压缩4.3.2 Bzip2 压缩4.3.3 Lzo 压缩4.3.4 Snappy 压缩4.3.5 压缩…

蔡司关注全民运动眼健康:与蔡司智锐镜片KEEP住视力健康

众所周知&#xff0c;运动是对我们身体最大的投资&#xff0c;但是对于视力有问题的消费者来说&#xff0c;不合适的眼镜无疑是运动路上的绊脚石&#xff0c;跑步运动时眼镜总是往下掉&#xff0c;不仅没有相对稳定的视野&#xff0c;还特别没安全感&#xff0c;由此可见一副优…

1.物联网LWIP网络,TCP/IP协议簇

一。TCP/IP协议簇 1.应用层&#xff1a;FTP&#xff0c;HTTP&#xff0c;Telent&#xff0c;DNS&#xff0c;RIP 2.传输层&#xff1a;TCP&#xff0c;UDP 3.网络层&#xff1a;IPV4&#xff0c;IPV6&#xff0c;OSPF&#xff0c;EIGRP 4.数据链路层&#xff1a;Ethernet&#…

售后工单管理系统是什么?售后服务管理系统对企业有什么作用?

售后服务管理系统可以提高客户满意度、提升售后服务效率、实现客户关系管理、支持知识库和员工培训、以及数据分析和改进等多种作用&#xff0c;从而帮助企业提高售后服务质量和效率&#xff0c;增强客户忠诚度&#xff0c;提高整体运营效率。 1、集成化信息平台   系统可以实…

基于迁移学习的基础设施成本优化框架,火山引擎数智平台与北京大学联合论文被KDD收录

更多技术交流、求职机会&#xff0c;欢迎关注字节跳动数据平台微信公众号&#xff0c;回复【1】进入官方交流群 基于迁移学习的基础设施成本优化框架&#xff0c;火山引擎数智平台与北京大学联合论文被KDD收录 近期&#xff0c;第29届国际知识发现与数据挖掘大会&#xff08;A…

android cocoscreator 检测模拟器还是真机

转载至 一行代码帮你检测Android模拟器 具体原理看原博主文章&#xff0c;这里只讲cocoscreator3.6的安卓工程怎么使用 1.新建一个com.lahm.library包&#xff0c;和com.cocos.game同目录&#xff0c;如图示 那四个文件的代码如下&#xff1a; EmulatorCheckUtil类&#…

国产化系统中遇到的视频花屏、卡顿以及延迟问题的记录与总结

目录 1、国产化系统概述 1.1、国产化操作系统与国产化CPU 1.2、国产化服务器操作系统 1.3、当前国产化系统的主流配置 2、视频解码花屏与卡顿问题 2.1、视频解码花屏 2.2、视频解码卡顿 2.3、关于I帧和P帧的说明 3、国产显卡处理速度慢导致图像卡顿问题 3.1、视频延…

【Git】Git中用到的一些命令

Git文件有四种状态&#xff1a; 未跟踪未修改&#xff08;已跟踪&#xff09;已修改&#xff08;已跟踪&#xff09;已暂存&#xff08;已跟踪&#xff09; 通常我们将项目clone下来就会处于已跟踪状态 1、git diff命令 git diff&#xff1a;查看没有暂存的文件更新哪些部分…

Linux安装Solr-8.9.0

Solr的工作原理可以简单地概括为以下几个步骤&#xff1a; 1. 索引创建&#xff1a;首先&#xff0c;Solr需要创建一个索引&#xff0c;用于存储要搜索的数据。索引是基于Apache Lucene构建的&#xff0c;它将文档拆分为字段&#xff0c;并对字段进行分析和标记化&#xff0c;以…

Nature | 人工智能模型越大就越好吗?

随着生成式人工智能模型&#xff08;AI&#xff09;变得越来越大、越来越强大&#xff0c;一些AI科学家开始提倡更精简、更节能的系统。针对这个趋势&#xff0c;著名科技杂志《Nature》最近发表Anil Ananthaswamy博士的专题文章“人工智能模型总是越大型越好吗&#xff1f;”&…

vue3 + antv/x6 实现拖拽侧边栏节点到画布

前篇&#xff1a;vue3ts使用antv/x6 自定义节点 前篇&#xff1a;vue3antv x6自定义节点样式 1、创建侧边栏 用antd的menu来做侧边栏 npm i --save ant-design-vue4.x//入口文件main.js内 import Antd from ant-design-vue; import App from ./App; import ant-design-vue/…

redis 发布和订阅

目录 一、简介 二、常用命令 三、示例 一、简介 Redis 发布订阅 (pub/sub) 是一种消息通信模式&#xff1a;发送者 (pub) 发送消息&#xff0c;订阅者 (sub) 接收消息。Redis 客户端可以订阅任意数量的频道。下图展示了频道 channel1 &#xff0c;以及订阅这个频道的三个客户…

编程语言学习笔记-架构师和工程师的区别,PHP架构师之路

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;全栈领域新星创作者✌&#xff0c;CSDN博客专家&#xff0c;阿里云社区专家博主&#xff0c;2023年6月CSDN上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责…

ROS机器人启动move base时代价地图概率性无法加载的原因及解决方法

最近&#xff0c;使用ROS机器人&#xff0c;在启动move_base 节点时&#xff0c;概率性会出现全局和局部代价地图不加载的问题&#xff0c;此时&#xff0c;发布目标点也无法启动路径规划。而且该问题有时候出现概率很低&#xff0c;比如启动10次&#xff0c;会有1次发送该情况…

ASEMI逆变器专用整流桥GBU812参数,GBU812规格

编辑-Z GBU812参数描述&#xff1a; 型号&#xff1a;GBU812 最大峰值反向电压(VRRM)&#xff1a;1200V 平均整流正向电流(IF)&#xff1a;8A 正向浪涌电流(IFSM)&#xff1a;200A 工作接点温度和储存温度(TJ, Tstg)&#xff1a;-55 to 150℃ 最大热阻(RθJC)&#xff1…