Java进阶篇--迭代器模式

news2025/1/23 7:05:10

目录

同步迭代器(Synchronous Iterator):

Iterator 接口

常用方法:

注意:

扩展小知识:

异步迭代器(Asynchronous Iterator):

常用的方法

注意:

总结:

代码示例

示例一:

示例二:

示例三:


在Java中,可以根据迭代器的行为模式将其分为同步迭代器(Synchronous Iterator)和异步迭代器(Asynchronous Iterator)。它们是两种不同的迭代器模式,用于在遍历集合或序列时提供不同的行为方式。

同步迭代器(Synchronous Iterator):

同步迭代器是一种阻塞式的迭代器,它在处理当前元素时会等待操作完成后再返回下一个元素。在使用同步迭代器进行遍历时,每次调用next()方法,迭代器会检查当前元素是否已完成处理。如果当前元素仍在处理中,迭代器将阻塞等待,直到操作完成并返回下一个元素。

同步迭代器的优点是可以保证遍历顺序的正确性,因为每次只返回一个元素,并且等待前一个元素处理完成后才返回下一个元素。这在单线程环境或需要确保遍历顺序的场景中非常有用。Java标准库中的 Iterator 接口就是一种同步迭代器。

Iterator 接口

在程序开发中,经常需要遍历集合中的所有元素。针对这种需求,Java专门提供了一个接口Iterator。Iterator接口也是集合中的一员,但它与Collection、Map接口有所不同。Collection接口与Map接口主要用于存储元素,而Iterator主要用于迭代访问(即遍历)Collection中的元素,因此Iterator对象也被称为迭代器。

Iterator迭代器对象在遍历集合时,内部采用指针的方式来跟踪集合中的元素,为了让初学者能更好地理解迭代器的工作原理,接下来通过一个图例演示Iterator对象迭代元素的过程。

上图中,在调用Iterator的next()方法之前,迭代器的索引位于第一个元素之前,不指向任何元素,当第一次调用迭代器的next()方法后,迭代器的索引会向后移动一位,指向第一个元素并将该元素返回,当再次调用next()方法时,迭代器的索引会指向第二个元素并将该元素返回,以此类推,直到hasNext()方法返回false,表示到达了集合的末尾,终止对元素的遍历。

常用方法:

  1. boolean hasNext(): 判断集合中是否还有下一个元素,如果有则返回true,否则返回false。
  2. E next(): 返回迭代器中的下一个元素,并将迭代器的指针向后移动一位。如果没有下一个元素,则抛出NoSuchElementException异常。
  3. void remove(): 从集合中删除迭代器最后一次返回的元素。注意,该方法只能在调用next方法之后且尚未再次调用remove方法时才能调用。如果在调用remove方法之前没有调用过next方法,或者在上一次调用next方法之后又调用了remove方法,则会抛出IllegalStateException异常。

Iterator接口提供了基本的遍历功能,可以通过循环结构配合使用hasNext和next方法来遍历集合中的元素。同时,可以使用remove方法在遍历过程中删除特定元素。

注意:

  1. 通过迭代器获取ArrayList集合中的元素时,这些元素的类型都是Object类型,如果想获取到特定类型的元素,则需要进行对数据类型强制转换。
  2. 在使用Iterator迭代集合时,避免直接在迭代期间修改集合结构,以免触发ConcurrentModificationException异常。

扩展小知识:

ConcurrentModificationException异常表示在迭代器运行期间,通过集合对象对集合进行了结构性修改(如添加或删除元素),导致迭代器的预期迭代次数与实际迭代次数不一致,从而抛出异常。

这个异常通常发生在使用普通的Iterator进行迭代时,而不是使用并发安全的迭代器(如ConcurrentHashMap的迭代器)。当你使用普通的Iterator进行迭代时,是不能在迭代过程中直接对集合进行结构性修改的,否则就会触发ConcurrentModificationException异常。

解决此异常的方法有两种:

  1. 使用Iterator的remove()方法:可以在迭代过程中调用Iterator的remove()方法来删除元素,它是唯一能够在迭代期间安全删除元素的方法。示例代码如下:
    Iterator<String> iterator = list.iterator();
    while (iterator.hasNext()) {
        String element = iterator.next();
        if (condition to remove element) {
            iterator.remove(); // 删除当前元素,不会抛出异常
        }
    }
    
  2. 使用并发安全的集合类:如果需要在迭代期间对集合进行修改操作,可以考虑使用并发安全的集合类,如CopyOnWriteArrayList、ConcurrentHashMap等。这些集合类提供了迭代器的安全性,并且允许在迭代期间进行修改操作。

所以,在使用Iterator迭代集合时,避免直接在迭代期间修改集合结构,以免触发ConcurrentModificationException异常。如果需要修改集合,请使用Iterator的remove()方法或并发安全的集合类来确保迭代器的正确性。

异步迭代器(Asynchronous Iterator):

异步迭代器是一种非阻塞式的迭代器,它在处理当前元素时不会等待操作完成而立即返回下一个元素。异步迭代器通常采用回调函数、事件通知或其他机制来进行处理结果的通知。

在使用异步迭代器进行遍历时,调用next()方法会立即返回下一个元素,并且可能会触发异步处理操作。迭代器会在后台或其他线程中进行元素的处理,当处理完成时,通过回调函数或事件通知机制将结果通知给使用者。

异步迭代器的优点是可以提高遍历效率和并发性能,因为它不需要等待当前元素的处理完成。这在多线程环境、异步编程或需要处理耗时操作的场景中非常有用。

常用的方法

  1. next(): 获取异步迭代器的下一个元素。此方法会返回一个CompletableFuture对象,我们可以通过该对象来获取异步操作的结果。
  2. hasNext(): 判断异步迭代器是否还有下一个元素。返回一个CompletableFuture<Boolean>对象,用于表示是否存在下一个元素。
  3. forEachRemaining(action): 对剩余的元素执行给定的操作,直到所有元素都已处理完毕或遇到异常。
  4. tryAdvance(action): 尝试对下一个元素执行给定的操作。如果存在下一个元素,则对其执行操作并返回true,否则返回false。
  5. close(): 关闭异步迭代器,释放相关资源。在使用完异步迭代器后,应该及时调用该方法以避免资源泄露。

注意:

同步迭代器和异步迭代器的选择要根据具体的需求和场景来决定。同步迭代器适合保证遍历顺序和单线程环境,而异步迭代器适合提高遍历效率和并发性能,但可能需要额外的异步处理机制。

总结:

同步迭代器是阻塞式的,等待当前元素处理完成后再返回下一个元素;异步迭代器是非阻塞式的,在处理当前元素时不等待操作完成而立即返回下一个元素,并通过回调或事件通知机制进行结果通知。在Java中,常见的迭代器是同步迭代器,但可以根据需要自定义或使用第三方库实现异步迭代器的功能。

代码示例

示例一:

同步迭代器代码示例(使用Iterator接口):

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

public class Main {
    public static void main(String[] args) {
        // 创建一个空的列表
        List<String> list = new ArrayList<>();
        // 添加元素到列表
        list.add("Apple");
        list.add("Banana");
        list.add("Orange");
        // 获取集合的迭代器
        Iterator<String> iterator = list.iterator();

        // 循环遍历集合中的元素
        while (iterator.hasNext()) {
            // 获取下一个元素并移动迭代器指针
            String element = iterator.next();
            System.out.println(element);
        }
    }
}

示例二:

异步迭代器代码示例:

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.Executor;
import java.util.concurrent.Executors;

// 自定义异步迭代器接口
interface AsyncIterator<T> {
    CompletableFuture<Boolean> hasNext(); // 异步判断是否存在下一个元素
    CompletableFuture<T> next(); // 异步获取下一个元素
    void close(); // 关闭迭代器,释放资源
}

// 异步迭代器实现类
class SimpleAsyncIterator<T> implements AsyncIterator<T> {
    private final T[] elements; // 数据序列
    private int currentIndex; // 当前索引

    public SimpleAsyncIterator(T[] elements) {
        this.elements = elements;
        this.currentIndex = 0;
    }

    @Override
    public CompletableFuture<Boolean> hasNext() {
        return CompletableFuture.completedFuture(currentIndex < elements.length); // 完成时返回是否还有下一个元素的结果
    }

    @Override
    public CompletableFuture<T> next() {
        T element = elements[currentIndex]; // 获取当前元素
        currentIndex++; // 索引自增
        return CompletableFuture.completedFuture(element); // 完成时返回当前元素
    }

    @Override
    public void close() {
        // 可以在此释放相关资源
    }
}

public class Main {
    public static void main(String[] args) {
        // 创建数据序列
        Integer[] numbers = {1, 2, 3, 4, 5};

        // 创建异步迭代器
        AsyncIterator<Integer> iterator = new SimpleAsyncIterator<>(numbers);

        // 创建线程池
        Executor executor = Executors.newFixedThreadPool(2);

        // 异步遍历和处理数据序列
        CompletableFuture.runAsync(() -> {
            while (true) {
                CompletableFuture<Boolean> hasNextFuture = iterator.hasNext();

                // 异步获取是否存在下一个元素
                hasNextFuture.thenCompose(hasNext -> {
                    if (hasNext) {
                        // 异步获取下一个元素并处理
                        CompletableFuture<Integer> nextFuture = iterator.next();
                        nextFuture.thenAcceptAsync(Main::processData, executor);
                    } else {
                        // 处理完所有元素后关闭迭代器
                        iterator.close();
                    }
                    return CompletableFuture.completedFuture(null);
                }).join(); // 阻塞等待完成
            }
        }, executor);
    }

    // 数据处理方法示例
    private static void processData(Integer data) {
        System.out.println("正在处理数据: " + data);
        // 具体的数据处理逻辑
    }
}

示例三:

综合同步迭代器和异步迭代器代码示例:

import java.util.Iterator;
import java.util.NoSuchElementException;

// 同步迭代器
class SynchronousIterator implements Iterator<Integer> {
    private int[] array;    // 存储数据的数组
    private int index;      // 当前迭代位置

    public SynchronousIterator(int[] array) {
        this.array = array;
        this.index = 0;
    }

    // 检查是否还有下一个元素
    @Override
    public boolean hasNext() {
        return index < array.length;    // 当前位置是否小于数组长度
    }

    // 返回下一个元素,并将迭代器指针向后移动一位
    @Override
    public Integer next() {
        if (hasNext()) {                // 如果还有下一个元素
            int element = array[index]; // 获取当前位置的元素
            index++;                    // 将迭代器指针向后移动一位
            return element;             // 返回当前元素
        }
        throw new NoSuchElementException();   // 抛出异常表示没有下一个元素
    }
}

// 异步迭代器
class AsynchronousIterator implements Iterator<Integer> {
    private int[] array;    // 存储数据的数组
    private int index;      // 当前迭代位置

    public AsynchronousIterator(int[] array) {
        this.array = array;
        this.index = 0;
    }

    // 检查是否还有下一个元素
    @Override
    public boolean hasNext() {
        // 在此处可以进行异步操作,例如请求远程数据或执行耗时任务
        // 返回 true 表示还有元素,返回 false 表示迭代结束
        return index < array.length;    // 当前位置是否小于数组长度
    }

    // 返回下一个元素,并将迭代器指针向后移动一位
    @Override
    public Integer next() {
        if (hasNext()) {                // 如果还有下一个元素
            int element = array[index]; // 获取当前位置的元素
            index++;                    // 将迭代器指针向后移动一位
            return element;             // 返回当前元素
        }
        throw new NoSuchElementException();   // 抛出异常表示没有下一个元素
    }
}

// 示例用法
public class Main {
    public static void main(String[] args) {
        int[] numbers = { 1, 2, 3, 4, 5 };   // 定义一个整数数组作为数据源

        // 同步迭代器示例
        Iterator<Integer> syncIterator = new SynchronousIterator(numbers);
        while (syncIterator.hasNext()) {         // 遍历迭代器中的元素
            Integer number = syncIterator.next(); // 获取当前元素
            System.out.println(number);           // 输出当前元素
        }

        // 异步迭代器示例
        Iterator<Integer> asyncIterator = new AsynchronousIterator(numbers);
        while (asyncIterator.hasNext()) {         // 遍历迭代器中的元素
            Integer number = asyncIterator.next(); // 获取当前元素
            System.out.println(number);            // 输出当前元素
        }
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/895024.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【S32K 进阶之旅】S32K 芯片的解锁

在使用 S32K1xx MCU 的过程中&#xff0c;因为某些不当操作导致芯片被锁、加密的情况偶有发生&#xff0c;在此总结一篇如何解锁芯片的文档&#xff0c;希望能够帮到有需要的人。 1. S32K 芯片被锁的现象及原因分析1&#xff09;在S32K 系列 MCU 开发和生产过程中&#xff…

【Unity细节】Unity中的层级LayerMask

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 秩沅 原创 &#x1f636;‍&#x1f32b;️收录于专栏&#xff1a;unity细节和bug &#x1f636;‍&#x1f32b;️优质专栏 ⭐【…

元宇宙是什么?有哪些应用方向?一文了解元宇宙虚拟展厅

引言&#xff1a; 在当今数字科技飞速发展的时代&#xff0c;元宇宙作为一个令人向往的概念正逐渐进入大众的视野。那么&#xff0c;什么是元宇宙&#xff1f;元宇宙又有哪些应用方向呢&#xff1f;元宇宙虚拟展厅又有哪些优势呢&#xff1f; 一&#xff0e;元宇宙是什么 元宇…

eNSP 打开警告:请将eNSP相关应用程序添加到windows firewall的允许程序列表,并允许其在公用网络上运行!

文章目录 1 警告截图2 解决办法 1 警告截图 2 解决办法 思路&#xff1a;按照警告的提示信息&#xff0c;将 eNSP 相关应用添加到 windows firewall&#xff08;防火墙&#xff09;的允许程序列表&#xff0c;并允许其在公用网络上运行&#xff01;此处以 Win 10 为例

怎么把人物抠到一个视频里?这个视频抠像方法一看就会

在视频中&#xff0c;人物抠像可以用于创建有趣的视觉效果&#xff0c;例如将人物放置在不同的场景中&#xff0c;或者创建动画效果。此外&#xff0c;它还可以用于制作特效&#xff0c;例如将人物的外观更改为其他形象&#xff0c;或者在人物移动时添加轨迹效果。那么怎么把人…

Eclipse常见的使用技巧(快捷键)大全

常用设置&#xff0c;非常建议 1.代码提示设置 2.快捷键设置 代码编写技巧 注意&#xff1a; 如果你设置了代码提示&#xff0c;那么下面操作快捷方式回车即可生成&#xff0c;不必alt/ 换行 ShiftEnter回车&#xff0c;不管光标在哪里都会换行&#xff01;非常好用&…

向日葵如何截图

场景 向日葵远程时&#xff0c;有时需要截图&#xff0c;但是客户电脑上没有qq、微信等软件提供快捷截图。 怎么办呢? 解决方案 其实向日葵肯定支持这些功能的。 设置 | 热键设置 | 勾选 远控其他设备时&#xff0c;可输入热键进行以下操作。 如果&#xff1a; altq 切换…

性能测试-并发用户数估算(超细整理)

前言 并发用户数&#xff1a;是指现实系统中操作业务的用户&#xff0c;在性能测试工具中&#xff0c;一般称为虚拟用户数(Virutal User)。 并发用户数和注册用户数、在线用户数的概念不同。 并发用户数一定会对服务器产生压力的&#xff1b; 而在线用户数只是 ”挂” 在系统…

一万字关于java数据结构堆的讲解,让你从入门到精通

目录 java类和接口总览 队列(Queue) 1. 概念 2. 队列的使用 以下是一些常用的队列操作&#xff1a; 1.入队操作 2.出队操作 3.判断队列是否为空 4.获取队列大小 5.其它 优先级队列(堆) 1. 优先级队列概念 Java中的PriorityQueue具有以下特点 2.常用的PriorityQue…

Doris的执行计划生成、分发与执行

目录 一、执行计划的生成 二、执行计划的分发 三、执行计划的执行 一、执行计划的生成 在Doris的FE端&#xff0c;与大多数数据库系统一样&#xff0c;要从SQL或某种http请求&#xff0c;生成执行计划&#xff0c;从SQL生成&#xff0c;一开始是“抽象语法树”&#xff08;…

FreeRTOS 从入门到精通-任务调度

初写FreeRTOS 从入门到精通系列文章之初&#xff0c;笔者只是当作可以随时回顾的学习笔记来写&#xff0c;并没有想到这些偏技术的文章收获了意料之外的阅读量和关注。首先当然很欣喜自己的文章能够得到了读者们的认可&#xff0c;但同时也有种使命感&#xff0c;既期望启迪并与…

模型评估的常用指标

模型评估的指标 模型是在大量的数据集上训练而来的,无论一个模型是从零训练的还是基于某一个模型,通过微调方法得到的,靠人工评价模型的效果都是异常困难的。那么要想客观的、自动化的评价一个LLM模型,就需要能够选择正确评估模型效果的指标或者基准测试,来客观和自动化的…

C语言刷题指南(二)

&#x1f4d9;作者简介&#xff1a; 清水加冰&#xff0c;目前大二在读&#xff0c;正在学习C/C、Python、操作系统、数据库等。 &#x1f4d8;相关专栏&#xff1a;C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 &#x1f44d…

腾讯开启2024校招,主要招聘5大类岗位

近日&#xff0c;腾讯的大动作一个接一个&#xff0c;前脚刚公布2023上半年财报&#xff0c;后脚就开启了2024校招&#xff0c;不得不让人感叹腾讯真速度&#xff01; 此次招聘对象为毕业时间在2023年9月至2024年8月期间的2024届应届毕业生&#xff0c;覆盖北上广深等多个城市…

Python中定时任务APScheduler库用法详解

在日常工作中&#xff0c;常常会用到需要周期性执行的任务&#xff0c;一种方式是采用 Linux 系统自带的 crond 结合命令行实现。另外一种方式是直接使用Python。 当每隔一段时间就要执行一段程序&#xff0c;或者往复循环执行某一个任务&#xff0c;这就需要使用定时任务来执…

如何搭建游戏服务器?有哪些操作步骤

​  选择游戏服务器提供商 为确保游戏服务器的稳定运行和及时响应问题&#xff0c;选择一个正规、靠谱的游戏服务器提供商非常重要。 选择服务器操作系统 根据不同游戏的需求&#xff0c;选择适合的操作系统&#xff0c;通常可选择Linux或WindowsServer操作系统。 上传、安装…

智安网络|零信任安全框架:保障数字化时代网络安全的最佳实践

随着数字化时代的快速发展&#xff0c;网络安全问题变得越来越突出。传统的安全防御模式已经不再适用于现代复杂的网络环境中。为了应对日益增长的网络威胁&#xff0c;零信任安全模式应运而生。 一、什么是零信任&#xff1f; 零信任是一种安全框架和哲学&#xff0c;它基于…

【使用教程】在Ubuntu下运行CANopen通信PMM伺服电机使用教程(NimServoSDK_V2.0.0)

本教程将指导您在Ubuntu操作系统下使用NimServoSDK_V2.0.0来运行CANopen通信的PMM系列一体化伺服电机。我们将介绍必要的步骤和命令&#xff0c;以确保您能够成功地配置和控制PMM系列一体化伺服电机。 NimServoSDK_V2.0.0是一款用于PMM一体化伺服电机的软件开发工具包。它提供了…

第八章LVS中的DR模式详解

1&#xff0c;LVS-DR数据包的流向分析 总结&#xff1a; &#xff08;1&#xff09;客户端发送请求到 Director Server&#xff08;负载均衡器&#xff09;&#xff0c;请求的数据报文&#xff08;源 IP 是 CIP,目标 IP 是 VIP&#xff09;到达内核空间。 &#xff08;2&#…

机器学习基础之《分类算法(3)—模型选择与调优》

作用是如何选择出最好的K值 一、什么是交叉验证&#xff08;cross validation&#xff09; 1、定义 交叉验证&#xff1a;将拿到的训练数据&#xff0c;分为训练和验证集。以下图为例&#xff1a;将数据分成5份&#xff0c;其中一份作为验证集。然后经过5次(组)的测试&#x…