FPGA GTP全网最细讲解,aurora 8b/10b协议,HDMI板对板视频传输,提供2组4套工程源码和技术支持

news2024/10/5 12:43:17

目录

  • 1、前言
    • 免责声明
  • 2、我这里已有的 GT 高速接口解决方案
  • 3、GTP 全网最细解读
    • GTP 基本结构
    • GTP 发送和接收处理流程
    • GTP 的参考时钟
    • GTP 发送接口
    • GTP 接收接口
    • GTP IP核调用和使用
  • 4、设计思路框架
    • HDMI输入视频配置及采集
    • 视频数据组包
    • GTP aurora 8b/10b
    • 数据对齐
    • 视频数据解包
    • 图像缓存
    • 视频输出
  • 5、第1组vivado工程详解
    • 开发板1的HDMI视频GTP发送工程
    • 开发板2的GTP接收HDMI显示工程
  • 6、第2组vivado工程详解
    • 开发板2的HDMI视频GTP发送工程
    • 开发板1的GTP接收HDMI显示工程
  • 7、上板调试验证
    • 光纤连接
    • 静态演示
    • 动态演示
  • 8、福利:工程代码的获取

1、前言

没玩过GT资源都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。
GT资源是Xilinx系列FPGA的重要卖点,也是做高速接口的基础,不管是PCIE、SATA、MAC等,都需要用到GT资源来做数据高速串化和解串处理,Xilinx不同的FPGA系列拥有不同的GT资源类型,低端的A7由GTP,K7有GTX,V7有GTH,更高端的U+系列还有GTY等,他们的速度越来越高,应用场景也越来越高端。。。

本文使用Xilinx的Artix7 FPGA的GTP资源做板对板的视频传输实验,视频源使用笔记本电脑输出模拟HDMI视频输入,调用GTP IP核,用verilog编写视频数据的编解码模块和数据对齐模块,使用开发板硬件上的2个SFP光口实现数据的收发;本博客提供2组vivado工程源码,2组工程的不同点在于使用两个FPGA开发板分别做接收和发送;本博客详细描述了FPGA GTP 视频传输的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、我这里已有的 GT 高速接口解决方案

我的主页有FPGA GT 高速接口专栏,该专栏有 GTP 、 GTX 、 GTH 、 GTY 等GT 资源的视频传输例程和PCIE传输例程,其中 GTP基于A7系列FPGA开发板搭建,GTX基于K7或者ZYNQ系列FPGA开发板搭建,GTH基于KU或者V7系列FPGA开发板搭建,GTY基于KU+系列FPGA开发板搭建;以下是专栏地址:
点击直接前往

3、GTP 全网最细解读

关于GTP介绍最详细的肯定是Xilinx官方的《ug482_7Series_GTP_Transceivers》,我们以此来解读:
《ug482_7Series_GTP_Transceivers》的PDF文档我已放在了资料包里,文章末尾有获取方式;
我用到的开发板FPGA型号为Xilinx Artix7 xc7a35tfgg484-2;带有4路GTP资源,每通道的收发速度为 500 Mb/s 到 6.6 Gb/s 之间。GTP 收发器支持不同的串行传输接口或协议,比如 PCIE 1.1/2.0 接口、万兆网 XUAI 接口、OC-48、串行 RapidIO 接口、 SATA(Serial ATA) 接口、数字分量串行接口(SDI)等等;

GTP 基本结构

Xilinx 以 Quad 来对串行高速收发器进行分组,四个串行高速收发器和一个 COMMOM(QPLL)组成一个 Quad,每一个串行高速收发器称为一个 Channel(通道),下图为四路 GTP 收发器在Artix-7 FPGA 芯片中的示意图:《ug482_7Series_GTP_Transceivers》第13页;
在这里插入图片描述
GTP 的具体内部逻辑框图如下所示,它由四个收发器通道 GTPE2_CHANNEL原语 和一个GTPE2_COMMON 原语 组成。每路 GTPE2_CHANNEL 包含发送电路 TX 和接收电路 RX;《ug482_7Series_GTP_Transceivers》第14页;
在这里插入图片描述
每个 GTPE2_CHANNEL 的逻辑电路如下图所示:《ug482_7Series_GTP_Transceivers》第15页;
在这里插入图片描述
GTPE2_CHANNEL 的发送端和接收端功能是独立的,均由 PMA(Physical Media Attachment,物理媒介适配层)和 PCS(Physical Coding Sublayer,物理编码子层)两个子层组成。其中 PMA 子层包含高速串并转换(Serdes)、预/后加重、接收均衡、时钟发生器及时钟恢复等电路。PCS 子层包含8B/10B 编解码、缓冲区、通道绑定和时钟修正等电路。
这里说多了意义不大,因为没有做过几个大的项目是不会理解这里面的东西的,对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用,后面我也会重点将到IP核的调用和使用;

GTP 发送和接收处理流程

首先用户逻辑数据经过 8B/10B 编码后,进入一个发送缓存区(Phase Adjust FIFO),该缓冲区主要是 PMA 子层和 PCS 子层两个时钟域的时钟隔离,解决两者时钟速率匹配和相位差异的问题,最后经过高速 Serdes 进行并串转换(PISO),有必要的话,可以进行预加重(TX Pre-emphasis)、后加重。值得一提的是,如果在 PCB 设计时不慎将 TXP 和 TXN 差分引脚交叉连接,则可以通过极性控制(Polarity)来弥补这个设计错误。接收端和发送端过程相反,相似点较多,这里就不赘述了,需要注意的是 RX 接收端的弹性缓冲区,其具有时钟纠正和通道绑定功能。这里的每一个功能点都可以写一篇论文甚至是一本书,所以这里只需要知道个概念即可,在具体的项目中回具体用到,还是那句话:对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用。

GTP 的参考时钟

GTP 模块有两个差分参考时钟输入管脚(MGTREFCLK0P/N 和 MGTREFCLK1P/N),作为 GTP模块的参考时钟源,用户可以自行选择。一般的A7系列开发板上,都有一路 125Mhz 的 GTP 参考时钟连接到 MGTREFCLK0/1上,作为 GTP 的参考时钟。差分参考时钟通过IBUFDS 模块转换成单端时钟信号进入到 GTPE2_COMMOM 的 PLL0 和 PLL1 中,产生 TX 和 RX 电路中所需的时钟频率。TX 和 RX 收发器速度相同的话,TX 电路和 RX 电路可以使用同一个 PLL 产生的时钟,如果 TX 和 RX收发器速度不相同的话,需要使用不同的 PLL 时钟产生的时钟。参考时钟这里Xilinx给出的GT参考例程已经做得很好了,我们调用时其实不用修改;GTP 的参考时钟结构图如下:《ug482_7Series_GTP_Transceivers》第21页;
在这里插入图片描述

GTP 发送接口

《ug482_7Series_GTP_Transceivers》的第75到123页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTP例化时留给用户的发送部分需要用到的接口;
在这里插入图片描述
用户只需要关心发送接口的时钟和数据即可,GTP例化模块的这部分接口如下:
在这里插入图片描述
在这里插入图片描述
在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:
在这里插入图片描述

GTP 接收接口

《ug482_7Series_GTP_Transceivers》的第125到213页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTP例化时留给用户的发送部分需要用到的接口;
在这里插入图片描述
用户只需要关心接收接口的时钟和数据即可,GTP例化模块的这部分接口如下:
在这里插入图片描述
在这里插入图片描述
在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:
在这里插入图片描述

GTP IP核调用和使用

在这里插入图片描述
有别于网上其他博主的教程,我个人喜欢用如下图的共享逻辑:
在这里插入图片描述
这样选择的好处有两个,一是方便DRP变速,二是便于IP核的修改,修改完IP核后直接编译即可,不再需要打开example工程,再复制下面的一堆文件放到自己的工程什么的,玩儿个GTP需要那么复杂么?
在这里插入图片描述
这里对上图的标号做解释:
1:线速率,根据自己的项目需求来,GTP的范围是0.5到6.25G,由于我的项目是视频传输,所以在GTP的速率范围内均可,为了通用性,我在vivado工程中例化了5个GTP,速率分别为1G、2G、4G、5G;
2:参考时钟,这个得根据你的原理图来,可以是80M、125M、148.5M、156.25M等等,我的开发板是125M;
4:GTP组的绑定,这个很重要,他的绑定参考依据有两个,已是你的开发板原理图,而是官方的参考资料《ug482_7Series_GTP_Transceivers》,官方将GTP资源分成了4组,名字分别为X0Y0、X0Y1、X0Y2、X0Y3,由于GT资源是Xilinx系列FPGA的专用资源,占用专用的Bnak,所以引脚也是专用的,那么这些GTP组和引脚是怎么对应的呢?《ug482_7Series_GTP_Transceivers》的说明如下:红框内为的我的开发板原理图对应的FPGA引脚;在这里插入图片描述
我的板子原理图如下:
在这里插入图片描述
在这里插入图片描述
选择外部数据位宽32bit的8b/10b编解码,如下:
在这里插入图片描述
下面这里讲的是K码检测:
在这里插入图片描述
这里选择K28.5,也就是所谓的COM码,十六进制为bc,他的作用很多,可以表示空闲乱序符号,也可以表示数据错位标志,这里用来标志数据错位,8b/10b协议对K码的定义如下:
在这里插入图片描述
下面讲的是时钟矫正,也就是对应GTP内部接收部分的弹性buffer;
在这里插入图片描述
这里有一个时钟频偏的概念,特别是收发双方时钟不同源时,这里设置的频偏为100ppm,规定每隔5000个数据包发送方发送一个4字节的序列,接收方的弹性buffer会根据这4字节的序列,以及数据在buffer中的位置来决定删除或者插入一个4字节的序列中的一个字节,目的是确保数据从发送端到接收端的稳定性,消除时钟频偏的影响;

4、设计思路框架

本博客提供2组vivado工程源码,2组工程的不同点在于使用两个FPGA开发板分别做接收和发送;我这里有2个FPGA开发板,记作开发板1和开发板2,两个开发板上均有HDMI输入和输出接口,2组vivado工程源码如下:
第1组vivado工程源码:笔记本电脑模拟视频源输入开发板1的HDMI输入接口,经过本板子的GTP编码,经过本板子的SFP光口的TX接口发出去;开发板2的SFP光口的RX接口接收数据,经过本板子的GTP解码,然后将图像做三帧缓存后经过HDMI发送模块发送HDMI视频给显示器;框图如下:
在这里插入图片描述
第2组vivado工程源码:笔记本电脑模拟视频源输入开发板2的HDMI输入接口,经过本板子的GTP编码,经过本板子的SFP光口的TX接口发出去;开发板1的SFP光口的RX接口接收数据,经过本板子的GTP解码,然后将图像做三帧缓存后经过silcom9134芯片发送HDMI视频给显示器;框图如下:
在这里插入图片描述

HDMI输入视频配置及采集

第1组vivado工程源码的HDMI输入解码采用silcom9011芯片完成;第2组vivado工程源码的HDMI输入解码采用ADV7611芯片完成;二者都需要i2c配置才能使用,二者均由纯verilog代码实现的i2c配置模块完成;
关于silicon9011芯片的配置,请参考我之前的博客,博客地址:点击直接前往

视频数据组包

由于视频需要在GTP中通过aurora 8b/10b协议收发,所以数据必须进行组包,以适应aurora 8b/10b协议标准;视频数据组包模块代码位置如下:
在这里插入图片描述
首先,我们将16bit的视频存入FIFO中,存满一行时就从FIFO读出送入GTP发送;在此之前,需要对一帧视频进行编号,也叫作指令,GTP组包时根据固定的指令进行数据发送,GTP解包时根据固定的指令恢复视频的场同步信号和视频有效信号;当一帧视频的场同步信号上升沿到来时,发送一帧视频开始指令 0,当一帧视频的场同步信号下降沿到来时,发送一帧视频开始指令 1,视频消隐期间发送无效数据 0 和无效数据 1,当视频有效信号到来时将每一行视频进行编号,先发送一行视频开始指令,在发送当前的视频行号,当一行视频发送完成后再发送一行视频结束指令,一帧视频发送完成后,先发送一帧视频结束指令 0,再发送一帧视频结束指令 1;至此,一帧视频则发送完成,这个模块不太好理解,所以我在代码里进行了详细的中文注释,需要注意的是,为了防止中文注释的乱序显示,请用notepad++编辑器打开代码;指令定义如下:
在这里插入图片描述
指令可以任意更改,但最低字节必须为bc;

GTP aurora 8b/10b

这个就是调用GTP做aurora 8b/10b协议的数据编解码,前面已经对GTP做了详细概述,这里不讲;代码位置如下:
在这里插入图片描述
需要注意的是,我一共调用了5个GTP,速率分别为1G、2G、4G、5G;代码中用一个参数选择速率,如下:
在这里插入图片描述
GTP_RATE=8’d1,GTP以1G线速率运行;
GTP_RATE=8’d2,GTP以2G线速率运行;
GTP_RATE=8’d4,GTP以4G线速率运行;
GTP_RATE=8’d5,GTP以5G线速率运行;
以我的测试来看,GTP以4G线速率运行时视频传输效果最佳;

数据对齐

由于GT资源的aurora 8b/10b数据收发天然有着数据错位的情况,所以需要对接受到的解码数据进行数据对齐处理,数据对齐模块代码位置如下:
在这里插入图片描述
我定义的 K 码控制字符格式为:XX_XX_XX_BC,所以用一个rx_ctrl 指示数据是否为 K 码 的 COM 符号;
rx_ctrl = 4’b0000 表示 4 字节的数据没有 COM 码;
rx_ctrl = 4’b0001 表示 4 字节的数据中[ 7: 0] 为 COM 码;
rx_ctrl = 4’b0010 表示 4 字节的数据中[15: 8] 为 COM 码;
rx_ctrl = 4’b0100 表示 4 字节的数据中[23:16] 为 COM 码;
rx_ctrl = 4’b1000 表示 4 字节的数据中[31:24] 为 COM 码;
基于此,当接收到有K码时就对数据进行对齐处理,也就是将数据打一拍,和新进来的数据进行错位组合,这是FPGA的基础操作,这里不再赘述;

视频数据解包

数据解包是数据组包的逆过程,代码位置如下:
在这里插入图片描述
GTP解包时根据固定的指令恢复视频的场同步信号和视频有效信号;这些信号是作为后面图像缓存的重要信号;
至此,数据进出GTP部分就已经讲完了,整个过程的框图我在代码中描述了,如下:
在这里插入图片描述

图像缓存

经常看我博客的老粉应该都知道,我做图像缓存的套路是FDMA,他的作用是将图像送入DDR中做3帧缓存再读出显示,目的是匹配输入输出的时钟差和提高输出视频质量,关于FDMA,请参考我之前的博客,博客地址:点击直接前往

视频输出

第1组vivado工程源码的HDMI输出采用verilog代码手写的HDMI发送模块完成,可以用于FPGA的HDMI发送应用,关于这个模块,请参考我之前的博客,博客地址:点击直接前往
第2组vivado工程源码的HDMI输出采用silcom9134完成,silcom9134需要i2c配置才能使用,由纯verilog代码实现的i2c配置模块完成;
关于silcom9134芯片的配置,请参考我之前的博客,博客地址:点击直接前往

5、第1组vivado工程详解

开发板1的HDMI视频GTP发送工程

开发板FPGA型号:Xilinx–Artix7–xc7a35tfgg484-2;
开发环境:Vivado2019.1;
输入:开发板1的HDMI视频,分辨率1920x1080@60Hz;
输出:开发板1的SFP光口的TX接口;
应用:HDMI板对板视频传输;
工程代码架构如下:
在这里插入图片描述
综合编译完成后的FPGA资源消耗和功耗预估如下:
在这里插入图片描述

开发板2的GTP接收HDMI显示工程

开发板FPGA型号:Xilinx–Artix7–xc7a35tfgg484-2;
开发环境:Vivado2019.1;
输入:开发板2的SFP光口的RX接口
输出:开发板2的HDMI发送接口送显示器显示;
应用:HDMI板对板视频传输;
工程Block Design如下:
在这里插入图片描述
工程代码架构如下:
在这里插入图片描述
综合编译完成后的FPGA资源消耗和功耗预估如下:
在这里插入图片描述

6、第2组vivado工程详解

开发板2的HDMI视频GTP发送工程

开发板FPGA型号:Xilinx–Artix7–xc7a35tfgg484-2;
开发环境:Vivado2019.1;
输入:开发板1的HDMI视频,分辨率1920x1080@60Hz;
输出:开发板2的SFP光口的TX接口;
应用:HDMI板对板视频传输;
工程代码架构如下:
在这里插入图片描述
综合编译完成后的FPGA资源消耗和功耗预估如下:
在这里插入图片描述

开发板1的GTP接收HDMI显示工程

开发板FPGA型号:Xilinx–Artix7–xc7a35tfgg484-2;
开发环境:Vivado2019.1;
输入:开发板1的SFP光口的RX接口
输出:开发板1的HDMI发送接口送显示器显示;
应用:HDMI板对板视频传输;
工程Block Design如下:
在这里插入图片描述
工程代码架构如下:
在这里插入图片描述
综合编译完成后的FPGA资源消耗和功耗预估如下:
在这里插入图片描述

7、上板调试验证

光纤连接

第1组vivado工程的两块板子的光纤接法如下:
在这里插入图片描述

静态演示

下面以第1组vivado工程的两块板子为例展示输出效果:
当GTP运行4G线速率时输出如下:
在这里插入图片描述

动态演示

第1组vivado工程的两块板子时的短视频如下;

GTP-HDMI板对板视频传输1

8、福利:工程代码的获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/893967.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

四层和七层负载均衡的区别

一、四层负载均衡 四层就是ISO参考模型中的第四层。四层负载均衡器也称为四层交换机,它主要时通过分析IP层和TCP/UDP层的流量实现的基于“IP端口”的负载均衡。常见的基于四层的负载均衡器有LVS、F5等。 以常见的TCP应用为例,负载均衡器在接收到第一个来…

《HeadFirst设计模式(第二版)》第九章代码——组合模式

上一章链接: 《HeadFirst设计模式(第二版)》第九章代码——迭代器模式_轩下小酌的博客-CSDN博客 前面说到,当一个菜单里面出现了子菜单的时候,前面的迭代器模式得换成组合模式。 组合模式: 允许将对象组合成树形结构来表现部分-整…

PyTorch训练深度卷积生成对抗网络DCGAN

文章目录 DCGAN介绍代码结果参考 DCGAN介绍 将CNN和GAN结合起来,把监督学习和无监督学习结合起来。具体解释可以参见 深度卷积对抗生成网络(DCGAN) DCGAN的生成器结构: 图片来源:https://arxiv.org/abs/1511.06434 代码 model.py impor…

跨境电商平台风控揭秘:如何应对刷单风险?

跨境电商平台内部对比被举报的买家信息时,会进行一系列分析来确认是否存在刷评行为。系统会追溯买家的购买记录和留评记录,根据留评率等信息来判断是否存在刷评的行为。如果系统确认买家存在刷评行为,那么该买家曾经留下的所有评价都有可能被…

我国出租车行业的发展伪历史(依赖倒置)

一、前言 既然是“伪历史”,大家就暂且不要纠结故事的真实性了,因为我们今天主要讲的并非是中国出租车的发展史,而是希望通过这个伪历史的例子来用日常生活中的例子,来深入理解一下什么叫依赖倒置。 还是按照惯例,我…

【从零开始学习Linux】常用命令及操作

哈喽,哈喽,大家好~ 我是你们的老朋友:保护小周ღ 本期给大家带来的是 Linux 常用命令及操作,主要有三个分类:文件操作,目录操作,网络操作,创建文件 touch , 创建目录 mkdir , 删除…

【了解一下常见的设计模式】

文章目录 了解一下常用的设计模式(工厂、包装、关系)导语设计模式辨析系列 工厂篇工厂什么是工厂简单工厂「模式」(Simple Factory「Pattern」)简单工厂代码示例:简单计算器优点:缺点: 静态工厂模式特点: 工…

基于Spring Boot的社区诊所就医管理系统的设计与实现(Java+spring boot+MySQL)

获取源码或者论文请私信博主 演示视频: 基于Spring Boot的社区诊所就医管理系统的设计与实现(Javaspring bootMySQL) 使用技术: 前端:html css javascript jQuery ajax thymeleaf 微信小程序 后端:Java …

改进YOLO系列:2.添加ShuffleAttention注意力机制

添加ShuffleAttention注意力机制 1. ShuffleAttention注意力机制论文2. ShuffleAttention注意力机制原理3. ShuffleAttention注意力机制的配置3.1common.py配置3.2yolo.py配置3.3yaml文件配置1. ShuffleAttention注意力机制论文 论文题目:SA-NET: SHUFFLE ATTENTION …

教育行业选择CRM的四大要求

随着互联网教育的发展和变迁,越来越多的教育机构开始意识到管理客户关系的重要性。然而,对于教育行业来说,选择一款适合自己的CRM系统也不轻松。下面就来说说,教育行业crm要如何来选择? 一、明确使用需求 在进行CRM选…

如何使用 ChatGPT 将文本转换为 PowerPoint 演示文稿

推荐:使用 NSDT场景编辑器 助你快速搭建可二次编辑的3D应用场景 步骤 1:将文本转换为幻灯片演示文稿 第一步涉及指示 ChatGPT 根据给定的文本生成具有特定数量幻灯片的演示文稿。首先,您必须向 ChatGPT 提供要转换的文本。 使用以下提示指示…

Gitlab服务部署及应用

目录 Gitlab简介 Gitlab工作原理 Gitlab服务构成 Gitlab环境部署 安装依赖包 启动postfix,并设置开机自启 设置防火墙 下载安装gitlab rpm包 修改配置文件/etc/gitlab/gitlab.rb,生产环境下可以根据需求修改 重新加载配置文件 浏览器登录Gitlab输…

Azure CLI 进行磁盘加密

什么是磁盘加密 磁盘加密是指在Azure中对虚拟机的磁盘进行加密保护的一种机制。它使用Azure Key Vault来保护磁盘上的数据,以防止未经授权的访问和数据泄露。使用磁盘加密,可以保护磁盘上的数据以满足安全和合规性要求。 参考文档:https://l…

职场修炼:性格内向的程序员如何突破自己

性格内向,不是缺点 社会常识中的看法:性格内心,是成功的障碍。 实际情况:内向和外向各有优缺点 忌讳: 强行改变自己的性格。内心不接受自己的性格。 内向者的优点 善于研究,能够较长时间研究技术问题…

仿写一个tomcat(含线程池配置)超详细!!

目录 工作原理 整体项目结构 自定义注解 创建servlet类 创建启动类 线程池配置 测试阶段 工作原理 首先看流程图,搞清楚tomcat的工作原理 工作原理如下: Tomcat使用一个叫作Catalina的核心组件来处理HTTP请求和响应。Catalina包含了一个HTTP连接…

匈牙利算法相关介绍

重要说明:本文从网上资料整理而来,仅记录博主学习相关知识点的过程,侵删。 一、参考资料 匈牙利算法匹配问题? Exactly how the Hungarian Algorithm works 多目标跟踪数据关联之匈牙利算法 五分钟小知识:什么是匈牙利算法 论文…

改进YOLO系列:3.添加SOCA注意力机制

添加SOCA注意力机制 1. SOCA注意力机制论文2. SOCA注意力机制原理3. SOCA注意力机制的配置3.1common.py配置3.2yolo.py配置3.3yaml文件配置1. SOCA注意力机制论文 暂未找到 2. SOCA注意力机制原理 3. SOCA注意力机制的配置 3.1common.py配置 ./models/common.p…

SpringBoot部署到腾讯云

SpringBoot部署到腾讯云 此处默认已经申请到腾讯云服务器,因为本人还没有申请域名,所以就直接使用的ip地址 XShell连接到腾讯云 主机中填写腾讯云的公网ip地址 公网ip地址在下图中找到 接下来填写服务器的用户名与密码 一般centOS用户名为root&#xff…

ZLMediakit-method ANNOUNCE failed: 401 Unauthorized

使用ffmpeg推流: nohup ffmpeg -stream_loop -1 -re -i "/usr/local/mp4/test.mp4" -vcodec h264 -acodec aac -f rtsp -rtsp_transport tcp rtsp://10.55.134.12/live/test &[rootlocalhost ~]# ffmpeg -stream_loop -1 -re -i "/usr/local/mp…

HCIP的交换机实验

题目 拓扑图 PC1/3接口用access 创建WLAN LSW1 创建WLAN [lsw1]vlan batch 2 to 6[lsw1-Ethernet0/0/1]p [lsw1-Ethernet0/0/1]port l [lsw1-Ethernet0/0/1]port link- [lsw1-Ethernet0/0/1]port link-flap [lsw1-Ethernet0/0/1]port link-type acc [lsw1-Ethernet0/0…