java-垃圾回收与算法

news2024/11/23 15:52:20

垃圾回收与算法

1. 如何确定垃圾

1. 引用计数法

  在 Java 中,引用和对象是有关联的。如果要操作对象则必须用引用进行。因此,很显然一个简单的办法是通过引用计数来判断一个对象是否可以回收。简单说,即一个对象如果没有任何与之关联的引用,即他们的引用计数都不为 0,则说明对象不太可能再被用到,那么这个对象就是可回收对象。

2. 可达性分析

 为了解决引用计数法的循环引用问题,Java 使用了可达性分析的方法。通过一系列的“GC roots”对象作为起点搜索。如果在“GC roots”和一个对象之间没有可达路径,则称该对象是不可达的。

  要注意的是,不可达对象不等价于可回收对象,不可达对象变为可回收对象至少要经过两次标记过程。两次标记后仍然是可回收对象,则将面临回收。

2. 标记清除算法( Mark-Sweep)

  最基础的垃圾回收算法,分为两个阶段,标注和清除。标记阶段标记出所有需要回收的对象,清除阶段回收被标记的对象所占用的空间。
在这里插入图片描述

  从图中我们就可以发现,该算法最大的问题是内存碎片化严重,后续可能发生大对象不能找到可利用空间的问题。

3. 复制算法(copying)

  为了解决 Mark-Sweep 算法内存碎片化的缺陷而被提出的算法。按内存容量将内存划分为等大小的两块。每次只使用其中一块,当这一块内存满后将尚存活的对象复制到另一块上去,把已使用的内存清掉,
在这里插入图片描述

  这种算法虽然实现简单,内存效率高,不易产生碎片,但是最大的问题是可用内存被压缩到了原本的一半。且存活对象增多的话,Copying 算法的效率会大大降低。

4. 标记整理算法(Mark-Compact)

  结合了以上两个算法,为了避免缺陷而提出。标记阶段和 Mark-Sweep 算法相同,标记后不是清理对象,而是将存活对象移向内存的一端。然后清除端边界外的对象。
在这里插入图片描述

5. 分代收集算法

  分代收集法是目前大部分 JVM 所采用的方法,其核心思想是根据对象存活的不同生命周期将内存划分为不同的域,一般情况下将 GC 堆划分为老生代(Tenured/Old Generation)和新生代(YoungGeneration)。老生代的特点是每次垃圾回收时只有少量对象需要被回收,新生代的特点是每次垃圾回收时都有大量垃圾需要被回收,因此可以根据不同区域选择不同的算法。

5.1. 新生代与复制算法

  目前大部分 JVM 的 GC 对于新生代都采取 Copying 算法,因为新生代中每次垃圾回收都要回收大部分对象,即要复制的操作比较少,但通常并不是按照 1:1 来划分新生代。一般将新生代划分为一块较大的 Eden 空间和两个较小的 Survivor 空间(From Space, To Space),每次使用Eden 空间和其中的一块 Survivor 空间,当进行回收时,将该两块空间中还存活的对象复制到另一块 Survivor 空间中。
在这里插入图片描述

5.2. 老年代与标记复制算法

  而老年代因为每次只回收少量对象,因而采用 Mark-Compact 算法。

  1. JAVA 虚拟机提到过的处于方法区的永生代(Permanet Generation),它用来存储 class 类,常量,方法描述等。对永生代的回收主要包括废弃常量和无用的类。
  2. 对象的内存分配主要在新生代的 Eden Space 和 Survivor Space 的 From Space(Survivor 目前存放对象的那一块),少数情况会直接分配到老生代。
  3. 当新生代的 Eden Space 和 From Space 空间不足时就会发生一次 GC,进行 GC 后,EdenSpace 和 From Space 区的存活对象会被挪到 To Space,然后将 Eden Space 和 FromSpace 进行清理。
  4. 如果 To Space 无法足够存储某个对象,则将这个对象存储到老生代。
  5. 在进行 GC 后,使用的便是 Eden Space 和 To Space 了,如此反复循环。
  6. 当对象在 Survivor 区躲过一次 GC 后,其年龄就会+1。默认情况下年龄到达 15 的对象会被移到老生代中。

GC 分代收集算法 VS 分区收集算法

1. 分代收集算法

  当前主流 VM 垃圾收集都采用”分代收集”(Generational Collection)算法, 这种算法会根据对象存活周期的不同将内存划分为几块, 如 JVM 中的 新生代、老年代、永久代,这样就可以根据各年代特点分别采用最适当的 GC 算法

1.1. 在新生代-复制算法

  每次垃圾收集都能发现大批对象已死, 只有少量存活. 因此选用复制算法, 只需要付出少量存活对象的复制成本就可以完成收集.

1.2. 在老年代-标记整理算法

  因为对象存活率高、没有额外空间对它进行分配担保, 就必须采用“标记—清理”或“标记—整理”算法来进行回收, 不必进行内存复制, 且直接腾出空闲内存.

2. 分区收集算法

  分区算法则将整个堆空间划分为连续的不同小区间, 每个小区间独立使用, 独立回收. 这样做的好处是可以控制一次回收多少个小区间 , 根据目标停顿时间, 每次合理地回收若干个小区间(而不是整个堆), 从而减少一次 GC 所产生的停顿。

GC 垃圾收集器

  Java 堆内存被划分为新生代和年老代两部分,新生代主要使用复制和标记-清除垃圾回收 算法 ;年老代主要使用标记-整理垃圾回收算法,因此 java 虚拟中针对新生代和年老代分别提供了多种不同的垃圾收集器,JDK1.6 中 Sun HotSpot 虚拟机的垃圾收集器如下:

1. Serial 垃圾收集器(单线程、复制算法)

  Serial(英文连续)是最基本垃圾收集器,使用复制算法,曾经是 JDK1.3.1 之前新生代唯一的垃圾收集器。Serial 是一个单线程的收集器,它不但只会使用一个 CPU 或一条线程去完成垃圾收集工作,并且在进行垃圾收集的同时,必须暂停其他所有的工作线程,直到垃圾收集结束。Serial 垃圾收集器虽然在收集垃圾过程中需要暂停所有其他的工作线程,但是它简单高效,对于限定单个 CPU 环境来说,没有线程交互的开销,可以获得最高的单线程垃圾收集效率,因此 Serial垃圾收集器依然是 java 虚拟机运行在 Client 模式下默认的新生代垃圾收集器。

2. ParNew 垃圾收集器(Serial+多线程)

  ParNew 垃圾收集器其实是 Serial 收集器的多线程版本,也使用复制算法,除了使用多线程进行垃圾收集之外,其余的行为和 Serial 收集器完全一样,ParNew 垃圾收集器在垃圾收集过程中同样也要暂停所有其他的工作线程。

  ParNew 收集器默认开启和 CPU 数目相同的线程数,可以通过-XX:ParallelGCThreads 参数来限制垃圾收集器的线程数。【Parallel:平行的】
  ParNew 虽然是除了多线程外和 Serial 收集器几乎完全一样,但是 ParNew 垃圾收集器是很多 java
虚拟机运行在 Server 模式下新生代的默认垃圾收集器。

3. Parallel Scavenge 收集器(多线程复制算法、高效)

  Parallel Scavenge 收集器也是一个新生代垃圾收集器,同样使用复制算法,也是一个多线程的垃圾收集器,它重点关注的是程序达到一个可控制的吞吐量(Thoughput,CPU 用于运行用户代码的时间/CPU 总消耗时间,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间)),高吞吐量可以最高效率地利用 CPU 时间,尽快地完成程序的运算任务,主要适用于在后台运算而不需要太多交互的任务。自适应调节策略也是 ParallelScavenge 收集器与 ParNew 收集器的一个重要区别。

4. Serial Old 收集器(单线程标记整理算法 )

  Serial Old 是 Serial 垃圾收集器年老代版本,它同样是个单线程的收集器,使用标记-整理算法,这个收集器也主要是运行在 Client 默认的 java 虚拟机默认的年老代垃圾收集器。
在 Server 模式下,主要有两个用途:

  1. 在 JDK1.5 之前版本中与新生代的 Parallel Scavenge 收集器搭配使用。
  2. 作为年老代中使用 CMS 收集器的后备垃圾收集方案。

  新生代 Parallel Scavenge 收集器与 ParNew 收集器工作原理类似,都是多线程的收集器,都使用的是复制算法,在垃圾收集过程中都需要暂停所有的工作线程。

5. Parallel Old 收集器(多线程标记整理算法)

  Parallel Old 收集器是 Parallel Scavenge 的年老代版本,使用多线程的标记-整理算法,在 JDK1.6才开始提供。
  在 JDK1.6 之前,新生代使用 ParallelScavenge 收集器只能搭配年老代的 Serial Old 收集器,只能保证新生代的吞吐量优先,无法保证整体的吞吐量,Parallel Old 正是为了在年老代同样提供吞吐量优先的垃圾收集器,如果系统对吞吐量要求比较高,可以优先考虑新生代 Parallel Scavenge和年老代 Parallel Old 收集器的搭配策略。

6. CMS 收集器(多线程标记清除算法)

  Concurrent mark sweep(CMS)收集器是一种年老代垃圾收集器,其最主要目标是获取最短垃圾回收停顿时间,和其他年老代使用标记-整理算法不同,它使用多线程的标记-清除算法。
最短的垃圾收集停顿时间可以为交互比较高的程序提高用户体验。
CMS 工作机制相比其他的垃圾收集器来说更复杂,整个过程分为以下 4 个阶段:

6.1. 初始标记

  只是标记一下 GC Roots 能直接关联的对象,速度很快,仍然需要暂停所有的工作线程。

6.2. 并发标记

  进行 GC Roots 跟踪的过程,和用户线程一起工作,不需要暂停工作线程。

6.3. 重新标记

  为了修正在并发标记期间,因用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,仍然需要暂停所有的工作线程。

6.4. 并发清除

  清除 GC Roots 不可达对象,和用户线程一起工作,不需要暂停工作线程。由于耗时最长的并发标记和并发清除过程中,垃圾收集线程可以和用户现在一起并发工作,所以总体上来看CMS 收集器的内存回收和用户线程是一起并发地执行。

7. G1 收集器

Garbage first 垃圾收集器是目前垃圾收集器理论发展的最前沿成果,相比与 CMS 收集器,G1 收集器两个最突出的改进是:

  1. 基于标记-整理算法,不产生内存碎片。
  2. 可以非常精确控制停顿时间,在不牺牲吞吐量前提下,实现低停顿垃圾回收。

   G1 收集器避免全区域垃圾收集,它把堆内存划分为大小固定的几个独立区域,并且跟踪这些区域
的垃圾收集进度,同时在后台维护一个优先级列表,每次根据所允许的收集时间,优先回收垃圾
最多的区域。区域划分和优先级区域回收机制,确保 G1 收集器可以在有限时间获得最高的垃圾收
集效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/892733.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Freertos基础入门】任务调度

文章目录 前言对于前面博客的总结一、任务调度算法是什么?1.调度算法是什么以及freertos的调度算法2.抢占式优先级调度3.时间片轮转调度 二、配置调度算法总结 前言 本系列基于stm32系列单片机来使用freerots 任务管理是实时操作系统(RTOS)…

VS2015+mysql5.7升级到VS2019+mysql-8.0.34

本来一开始是安装的vs2022社区版,结果没找到mysql-for-visualstudio对应的2022的版本。 原来:VS2015mysql5.7 安装的插件: mysql-for-visualstudio-2.0.5.msi mysql-connector-net-6.10.8.msi 升级后:VS2019mysql-8.0.34 安…

深入理解linux内核--块设备驱动程序

块设备的处理 块设备驱动程序上的每个操作都涉及很多内核组件;其中最重要的一些如图14-1所示。 例如,我们假设一个进程在某个磁盘文件上发出一个read()系统调用 ——我们将会看到处理write请求本质上采用同样的方式。 下面是内核对进程请求给予回应的一…

FPGA芯片IO口上下拉电阻的使用

FPGA芯片IO口上下拉电阻的使用 为什么要设置上下拉电阻一、如何设置下拉电阻二、如何设置上拉电阻为什么要设置上下拉电阻 这里以高云FPGA的GW1N-UV2QN48C6/I5来举例,这个芯片的上电默认初始化阶段,引脚是弱上来模式,且模式固定不能通过软件的配置来改变。如下图所示: 上…

Openwrt指定延迟脚本

在某些情况下,我们需要对指定网络接口指定延迟,以达到我们想要实验的效果延迟。 脚本如下: #!/bin/bash # #初始化 tc qdisc del dev br-lan root echo "1. 添加延迟规则 2. 删除延迟规则" read -p "请选择操作:&q…

素数线性筛法 → 欧拉筛

【题目来源】https://www.acwing.com/problem/content/870/【题目描述】 给定一个正整数 n,请你求出 1∼n 中质数的个数。【输入格式】 共一行,包含整数 n。【输出格式】 共一行,包含一个整数,表示 1∼n 中质数的个数。【数据范围…

【数字实验室】时钟切换

大部分开发者使用 BUFGCTRL 或 BUFGMUX进行时钟切换,它们在时钟切换上可以提供无毛刺输出。然而,了解所涉及的原理是有好处的。 当然,无论我们在同步逻辑中使用哪种技术,重要的是要确保在进行时钟切换时输出上没有毛刺。任何故障都…

无涯教程-Perl - times函数

描述 此函数返回一个四元素列表,为当前进程及其子进程提供用户,系统,子进程和子系统时间。 语法 以下是此函数的简单语法- times返回值 此函数返回ARRAY,($usertime,$systemtime,$childsystem,$childuser) 例 以下是显示其基本用法的示例代码- #!/usr/bin/perl -w($use…

一、ls 标准输出时出现乱码符号及解决办法

问题描述:采用 QSSh 登录远程主机时,执行 ls 指令,标准输出中出现乱码符号 如下,在成功 SSH 到远程主机后,执行 ls 指令,标准输出中出现一堆不认识的符号。 从标准输出来看,英文和中文并没有乱…

安科瑞无线测温产品在浙江某半导体项目的应用-安科瑞黄安南

摘 要:半导体被誉为“制造业的大脑”,在关系国家安全和国民经济命脉的主要行业和关键领域占据支配地位,是国民经济的重要支柱。随着数字技术的发展和数字经济在国民经济中所占比重越来越高,半导体产业的重要性还会进一步提升。安全…

文心一言 VS 讯飞星火 VS chatgpt (77)-- 算法导论7.3 2题

二、如果用go语言,在 RANDOMIZED-QUICKSORT 的运行过程中,在最坏情况下,随机数生成器 RANDOM 被调用了多少次?在最好情况下呢?以θ符号的形式给出你的答案? 文心一言: 在 RANDOMIZED-QUICKSORT 的运行过程中,最坏…

使用贝塞尔曲线算法制作曲线

一阶贝塞尔曲线 使用两个点绘制线段 p3p1(p2-p1)*t p1:起点;p2:终点;t:0-1;p3:线段L12上的点 两个点和t的变化(0-1)可得到一条线段 二阶贝塞尔曲线 使用三个点绘制曲线 p12p1(p2-p1)*t p23p2(p3-p2)*t p123p12(p23-p12)*t p12是线段L12上的点, p23是线段L23上的…

android:绘图 (android.graphics包)

android:绘图 View:组件,理解为画布 Drawable:所有可见对象的描述,理解为:素材类 Bitmap:图片类 Canvas:画笔 Paint:画笔样式与颜色、特效的集合 近期很多网友对Android用户界面的设计表示很感…

Lnton羚通关于如何解决nanoPC-T4 upgrade报错问题?

nanoPC-T4 在 ​​# sudo apt update 和 sudo apt upgrade​​升级或安装软件 ​​sudo apt install xxx​​时遇到以下问题:​​Failed to set up interface with /etc/hostapd/​ Setting up hostapd (2:2.6-15ubuntu2.8) ... Job for hostapd.service failed be…

学习 Linux 系统路线图

在计算机科学领域,Linux 操作系统以其稳定性、灵活性和卓越性能而受到广泛欢迎。要真正掌握 Linux 系统,我们需要深入了解其关键组成部分,包括系统、内存、进程、网络和存储等模块。让我们深入探索这些模块,以建立起对 Linux 系统…

【轻量级神经网络】ShuffleNetv1-2详解

文章目录 1、ShuffleNetV11.1、分组卷积1.2、channel shuffle1.3、ShuffleNet基本单元1.4、整体结构 2、ShuffleNetV22.1、基本单元2.2、整体结构 1、ShuffleNetV1 1.1、分组卷积 Group convolution是将输入层的不同特征图进行分组,然后采用不同的卷积核再对各个组…

KVM配置使用ovs网桥

KVM配置使用ovs网桥 1、安装openvswitch 2、启动服务 3、配置ovs 重启网络服务 systemctl restart network 4、 KVM配置使用ovs网桥 配置生效:virsh net-define br0.xml virsh net-start bro virsh net-autostart br0 5、虚…

怎么实现技术评卷时间0投入的?(上)

01 痛苦的技术问答题评审 指针走到了九点,凝视着时钟的技术招聘官Jasmine从昏沉中回到现实,她将咖啡连同叹息一口抿了下去,并端正坐在电脑前。又是一天的评卷日…… 技术招聘已持续数周,公司筛选出了100位嵌入式工程师候选人的技…

ATA-2000系列高压放大器——应用场景介绍

ATA-2000系列高压放大器——应用场景介绍 ATA-2000系列是一款理想的可放大交、直流信号的高压放大器。最大差分输出1600Vp-p (800Vp)高压,可以驱动高压型负载。电压增益数控可调,一键保存常用设置,为您提供了方便简洁的操作选择,同…

【03 英语语法:从句(名词从句、定语从句/形容词从句、状语从句/副词从句)】

从句 从句:名词从句、定语从句、状语从句(名定状名形副)1. 名词从句(名词):主语、宾语、表语、同位语、宾补▲名词从句的种类(按引导词): that、whether、疑问词 句子⑴…