接口优化技巧

news2025/1/28 1:13:08

1. 批量思想:批量操作数据库

优化前:

//for循环单笔入库
for(TransDetail detail:transDetailList){
  insert(detail);  
}

优化后:

batchInsert(transDetailList);

打个比喻:

打个比喻:假如你需要搬一万块砖到楼顶,你有一个电梯,电梯一次可以放适量的砖(最多放500), 你可以选择一次运送一块砖,也可以一次运送500,你觉得哪种方式更方便,时间消耗更少?

2. 异步思想:耗时操作,考虑放到异步执行

耗时操作,考虑用异步处理,这样可以降低接口耗时。

假设一个转账接口,匹配联行号,是同步执行的,但是它的操作耗时有点长,优化前的流程:

为了降低接口耗时,更快返回,你可以把匹配联行号移到异步处理,优化后:

  • 除了转账这个例子,日常工作中还有很多这种例子。比如:用户注册成功后,短信邮件通知,也是可以异步处理的~
  • 至于异步的实现方式,你可以用线程池,也可以用消息队列实现

3. 空间换时间思想:恰当使用缓存。

在适当的业务场景,恰当地使用缓存,是可以大大提高接口性能的。缓存其实就是一种空间换时间的思想,就是你把要查的数据,提前放好到缓存里面,需要时,直接查缓存,而避免去查数据库或者计算的过程

这里的缓存包括:Redis缓存,JVM本地缓存,memcached,或者Map等等。我举个我工作中,一次使用缓存优化的设计吧,比较简单,但是思路很有借鉴的意义。

那是一次转账接口的优化,老代码,每次转账,都会根据客户账号,查询数据库,计算匹配联行号。

 

因为每次都查数据库,都计算匹配,比较耗时,所以使用缓存,优化后流程如下:

 

4. 预取思想:提前初始化到缓存

预取思想很容易理解,就是提前把要计算查询的数据,初始化到缓存。如果你在未来某个时间需要用到某个经过复杂计算的数据,才实时去计算的话,可能耗时比较大。这时候,我们可以采取预取思想,提前把将来可能需要的数据计算好,放到缓存中,等需要的时候,去缓存取就行。这将大幅度提高接口性能。

我记得以前在第一个公司做视频直播的时候,看到我们的直播列表就是用到这种优化方案。就是启动个任务,提前把直播用户、积分等相关信息,初始化到缓存

5. 池化思想:预分配与循环使用

大家应该都记得,我们为什么需要使用线程池

线程池可以帮我们管理线程,避免增加创建线程和销毁线程的资源损耗。

如果你每次需要用到线程,都去创建,就会有增加一定的耗时,而线程池可以重复利用线程,避免不必要的耗时。 池化技术不仅仅指线程池,很多场景都有池化思想的体现,它的本质就是预分配与循环使用

比如TCP三次握手,大家都很熟悉吧,它为了减少性能损耗,引入了Keep-Alive长连接,避免频繁的创建和销毁连接。当然,类似的例子还有很多,如数据库连接池、HttpClient连接池。

我们写代码的过程中,学会池化思想,最直接相关的就是使用线程池而不是去new一个线程。

6. 事件回调思想:拒绝阻塞等待。

如果你调用一个系统B的接口,但是它处理业务逻辑,耗时需要10s甚至更多。然后你是一直阻塞等待,直到系统B的下游接口返回,再继续你的下一步操作吗?这样显然不合理

我们参考IO多路复用模型。即我们不用阻塞等待系统B的接口,而是先去做别的操作。等系统B的接口处理完,通过事件回调通知,我们接口收到通知再进行对应的业务操作即可。

7. 远程调用由串行改为并行

假设我们设计一个APP首页的接口,它需要查用户信息、需要查banner信息、需要查弹窗信息等等。如果是串行一个一个查,比如查用户信息200ms,查banner信息100ms、查弹窗信息50ms,那一共就耗时350ms了,如果还查其他信息,那耗时就更大了。

 

 

其实我们可以改为并行调用,即查用户信息、查banner信息、查弹窗信息,可以同时并行发起

 

最后接口耗时将大大降低。有些小伙伴说,不知道如何使用并行优化接口?

8. 锁粒度避免过粗

在高并发场景,为了防止超卖等情况,我们经常需要加锁来保护共享资源。但是,如果加锁的粒度过粗,是很影响接口性能的。

什么是加锁粒度呢?

其实就是就是你要锁住的范围是多大。比如你在家上卫生间,你只要锁住卫生间就可以了吧,不需要将整个家都锁起来不让家人进门吧,卫生间就是你的加锁粒度。

不管你是synchronized加锁还是redis分布式锁,只需要在共享临界资源加锁即可,不涉及共享资源的,就不必要加锁。这就好像你上卫生间,不用把整个家都锁住,锁住卫生间门就可以了。

比如,在业务代码中,有一个ArrayList因为涉及到多线程操作,所以需要加锁操作,假设刚好又有一段比较耗时的操作(代码中的slowNotShare方法)不涉及线程安全问题。反例加锁,就是一锅端,全锁住:

//不涉及共享资源的慢方法
private void slowNotShare() {
    try {
        TimeUnit.MILLISECONDS.sleep(100);
    } catch (InterruptedException e) {
    }
}

//错误的加锁方法
public int wrong() {
    long beginTime = System.currentTimeMillis();
    IntStream.rangeClosed(1, 10000).parallel().forEach(i -> {
        //加锁粒度太粗了,slowNotShare其实不涉及共享资源
        synchronized (this) {
            slowNotShare();
            data.add(i);
        }
    });
    log.info("cosume time:{}", System.currentTimeMillis() - beginTime);
    return data.size();
}

正例:

public int right() {
    long beginTime = System.currentTimeMillis();
    IntStream.rangeClosed(1, 10000).parallel().forEach(i -> {
        slowNotShare();//可以不加锁
        //只对List这部分加锁
        synchronized (data) {
            data.add(i);
        }
    });
    log.info("cosume time:{}", System.currentTimeMillis() - beginTime);
    return data.size();
}

9. 切换存储方式:文件中转暂存数据

如果数据太大,落地数据库实在是慢的话,就可以考虑先用文件的方式暂存。先保存文件,再异步下载文件,慢慢保存到数据库

这里可能会有点抽象,给大家分享一个,我之前的一个真实的优化案例吧。

之前开发了一个转账接口。如果是并发开启,10个并发度,每个批次1000笔转账明细数据,数据库插入会特别耗时,大概6秒左右;这个跟我们公司的数据库同步机制有关,并发情况下,因为优先保证同步,所以并行的插入变成串行啦,就很耗时。

优化前,1000笔明细转账数据,先落地DB数据库,返回处理中给用户,再异步转账。如图:

 

记得当时压测的时候,高并发情况,这1000笔明细入库,耗时都比较大。所以我转换了一下思路,把批量的明细转账记录保存的文件服务器,然后记录一笔转账总记录到数据库即可。接着异步再把明细下载下来,进行转账和明细入库。最后优化后,性能提升了十几倍

优化后,流程图如下:

 

如果你的接口耗时瓶颈就在数据库插入操作这里,用来批量操作等,还是效果还不理想,就可以考虑用文件或者MQ等暂存。有时候批量数据放到文件,会比插入数据库效率更高。

10. 索引

提到接口优化,很多小伙伴都会想到添加索引。没错,添加索引是成本最小的优化,而且一般优化效果都很不错。

索引优化这块的话,一般从这几个维度去思考:

  • 你的SQL加索引了没?
  • 你的索引是否真的生效?
  • 你的索引建立是否合理?

10.1 SQL没加索引

我们开发的时候,容易疏忽而忘记给SQL添加索引。所以我们在写完SQL的时候,就顺手查看一下 explain执行计划。

explain select * from user_info where userId like '%123';

你也可以通过命令show create table ,整张表的索引情况。

show create table user_info;

如果某个表忘记添加某个索引,可以通过alter table add index命令添加索引

alter table user_info add index idx_name (name);

一般就是:SQL的where条件的字段,或者是order by 、group by后面的字段需需要添加索引。

10.2 索引不生效

有时候,即使你添加了索引,但是索引会失效的。田螺哥整理了索引失效的常见原因

10.3 索引设计不合理

我们的索引不是越多越好,需要合理设计。比如:

  • 删除冗余和重复索引。
  • 索引一般不能超过5个
  • 索引不适合建在有大量重复数据的字段上、如性别字段
  • 适当使用覆盖索引
  • 如果需要使用force index强制走某个索引,那就需要思考你的索引设计是否真的合理了

11. 优化SQL

处了索引优化,其实SQL还有很多其他有优化的空间。比如这些:

12.避免大事务问题

为了保证数据库数据的一致性,在涉及到多个数据库修改操作时,我们经常需要用到事务。而使用spring声明式事务,又非常简单,只需要用一个注解就行@Transactional,如下面的例子:

@Transactional
public int createUser(User user){
    //保存用户信息
    userDao.save(user);
    passCertDao.updateFlag(user.getPassId());
    return user.getUserId();
}

这块代码主要逻辑就是创建个用户,然后更新一个通行证pass的标记。如果现在新增一个需求,创建完用户,调用远程接口发送一个email消息通知,很多小伙伴会这么写:

@Transactional
public int createUser(User user){
    //保存用户信息
    userDao.save(user);
    passCertDao.updateFlag(user.getPassId());
    sendEmailRpc(user.getEmail());
    return user.getUserId();
}

这样实现可能会有坑,事务中嵌套RPC远程调用,即事务嵌套了一些非DB操作。如果这些非DB操作耗时比较大的话,可能会出现大事务问题

所谓大事务问题就是,就是运行时间长的事务。由于事务一致不提交,就会导致数据库连接被占用,即并发场景下,数据库连接池被占满,影响到别的请求访问数据库,影响别的接口性能

大事务引发的问题主要有:接口超时、死锁、主从延迟等等。因此,为了优化接口,我们要规避大事务问题。我们可以通过这些方案来规避大事务:

  • RPC远程调用不要放到事务里面
  • 一些查询相关的操作,尽量放到事务之外
  • 事务中避免处理太多数据

13. 深分页问题

在以前公司分析过几个接口耗时长的问题,最终结论都是因为深分页问题

深分页问题,为什么会慢?我们看下这个SQL

select id,name,balance from account where create_time> '2020-09-19' limit 100000,10;

limit 100000,10意味着会扫描100010行,丢弃掉前100000行,最后返回10行。即使create_time,也会回表很多次。

我们可以通过标签记录法和延迟关联法来优化深分页问题。

13.1 标签记录法

就是标记一下上次查询到哪一条了,下次再来查的时候,从该条开始往下扫描。就好像看书一样,上次看到哪里了,你就折叠一下或者夹个书签,下次来看的时候,直接就翻到啦。

假设上一次记录到100000,则SQL可以修改为:

select  id,name,balance FROM account where id > 100000 limit 10;

这样的话,后面无论翻多少页,性能都会不错的,因为命中了id主键索引。但是这种方式有局限性:需要一种类似连续自增的字段。

13.2 延迟关联法

延迟关联法,就是把条件转移到主键索引树,然后减少回表。优化后的SQL如下:

select  acct1.id,acct1.name,acct1.balance FROM account acct1 INNER JOIN (SELECT a.id FROM account a WHERE a.create_time > '2020-09-19' limit 100000, 10) AS acct2 on acct1.id= acct2.id;

优化思路就是,先通过idx_create_time二级索引树查询到满足条件的主键ID,再与原表通过主键ID内连接,这样后面直接走了主键索引了,同时也减少了回表。

14. 优化程序结构

优化程序逻辑、程序代码,是可以节省耗时的。比如,你的程序创建多不必要的对象、或者程序逻辑混乱,多次重复查数据库、又或者你的实现逻辑算法不是最高效的,等等。

我举个简单的例子:复杂的逻辑条件,有时候调整一下顺序,就能让你的程序更加高效。

假设业务需求是这样:如果用户是会员,第一次登陆时,需要发一条感谢短信。如果没有经过思考,代码直接这样写了

if(isUserVip && isFirstLogin){
    sendSmsMsg();
}

假设有5个请求过来,isUserVip判断通过的有3个请求,isFirstLogin通过的只有1个请求。那么以上代码,isUserVip执行的次数为5次,isFirstLogin执行的次数也是3次,如下:

如果调整一下isUserVip和isFirstLogin的顺序:

if(isFirstLogin && isUserVip ){
    sendMsg();
}

isFirstLogin执行的次数是5次,isUserVip执行的次数是1次:

酱紫程序是不是变得更高效了呢?

15. 压缩传输内容

压缩传输内容,传输报文变得更小,因此传输会更快啦。10M带宽,传输10k的报文,一般比传输1M的会快呀。

打个比喻,一匹千里马,它驮着100斤的货跑得快,还是驮着10斤的货物跑得快呢?

再举个视频网站的例子:

如果不对视频做任何压缩编码,因为带宽又是有限的。巨大的数据量在网络传输的耗时会比编码压缩后,慢好多倍

16. 海量数据处理,考虑NoSQL

之前看过几个慢SQL,都是跟深分页问题有关的。发现用来标签记录法和延迟关联法,效果不是很明显,原因是要统计和模糊搜索,并且统计的数据是真的大。最后跟组长对齐方案,就把数据同步到Elasticsearch,然后这些模糊搜索需求,都走Elasticsearch去查询了。

我想表达的就是,如果数据量过大,一定要用关系型数据库存储的话,就可以分库分表。但是有时候,我们也可以使用NoSQL,如Elasticsearch、Hbase等。

17. 线程池设计要合理

我们使用线程池,就是让任务并行处理,更高效地完成任务。但是有时候,如果线程池设计不合理,接口执行效率则不太理想。

一般我们需要关注线程池的这几个参数:核心线程、最大线程数量、阻塞队列

  • 如果核心线程过小,则达不到很好的并行效果。
  • 如果阻塞队列不合理,不仅仅是阻塞的问题,甚至可能会OOM
  • 如果线程池不区分业务隔离,有可能核心业务被边缘业务拖垮

18.机器问题 (fullGC、线程打满、太多IO资源没关闭等等)。

有时候,我们的接口慢,就是机器处理问题。主要有fullGC、线程打满、太多IO资源没关闭等等。

  • 之前排查过一个fullGC问题:运营小姐姐导出60多万的excel的时候,说卡死了,接着我们就收到监控告警。后面排查得出,我们老代码是Apache POI生成的excel,导出excel数据量很大时,当时JVM内存吃紧会直接Full GC了。
  • 如果线程打满了,也会导致接口都在等待了。所以。如果是高并发场景,我们需要接入限流,把多余的请求拒绝掉
  • 如果IO资源没关闭,也会导致耗时增加。这个大家可以看下,平时你的电脑一直打开很多很多文件,是不是会觉得很卡。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/89248.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

怎么进行多人配音?建议收藏这些方法

相信不少小伙伴平时在网上冲浪的时候,经常会刷到一些搞笑视频吧。这些搞笑视频的配音,通常都是以一人分饰多角或者是多人互动对话的形式进行配音的。那有没有小伙伴有着不错的搞笑创意点子,但是苦于没有人配音呢?其实我们可以使用…

电脑之间通信的大致过程

本文来自对网络工程师之路内容的个人总结,仅供个人复习参考。 1.电脑之间通信就需要有线路,但是如果多台电脑互相之间需要通信,那么就需要有很多根线,每台电脑需要有多网卡,为了解决这个问题,(集线器)Hub就…

360度内环镜、内螺纹检测镜头、瓶盖检测镜头以及超中心镜头

用于孔洞状物体的360内部成像 提示: 内孔检测光学镜头 从外部检查腔内;无需在孔洞内放置光学探头;带孔对象的360度对焦;腔体内壁和底部都可以实现高分辨率成像;景深可使同一个镜头拍摄具有不同形状和尺寸的物体&…

Bidirectional Recurrent Neural Networks

摘要 a regular recurrent neural network (RNN) →\rightarrow→ a bidirectional recurrent neural network (BRNN)a preset future frame: 预设的未来架构。. Structure and training procedure: 架构和训练程序。TIMIT datab…

Java多线程之:详解ThreadPoolExecutor执行源码分析

文章目录线程池的实现原理详解ThreadPoolExecutor核心数据结构核心配置参数解释线程池的优雅关闭线程池的生命周期正确关闭线程池的步骤shutdown()与shutdownNow()的区别任务的提交过程分析任务的执行过程分析shutdown()与任务执行过程综合分析shutdownNow() 与任务执行过程综合…

【大一大二必看】计算机专业的同学应该参加哪些比赛?

文章目录1. 前言2. ICPC3. CCPC4. 蓝桥杯5. 天梯赛6. CCF CSP7. PAT8. 全国高校计算机能力挑战赛9. 其他🍑 天池大赛🍑 华为软件精英挑战赛🍑 LeetCode 周赛 / 双周赛🍑 CSDN 编程竞赛总结1. 前言 2022 年已经过半,对…

java版商城 b2b2c o2o 多商家入驻商城 直播带货商城 电子商务

一个好的SpringCloudSpringBoot b2b2c 电子商务平台涉及哪些技术、运营方案?以下是我结合公司的产品做的总结,希望可以帮助到大家! 搜索体验小程序:海哇 1. 涉及平台 平台管理、商家端(PC端、手机端)、买…

巡检过程中有哪些注意事项?智能巡检了解一下

智能巡检系统是现场过程管理的生产力革命,由人工记录蝶化为掌上电脑运作,适用于设备运行值班记录、仓库/资产管理、设备巡检保养、安全巡更、机房值守、基站维护等一切重复性的工作管理。 安全巡检的目的在于识别信息系统存在的安全脆弱性、分析信息系统…

2022-12-14 移植Qt Creator helloworld 应用到ARM平台运行过程,我这里用buildroot里面的编译器。

一、在ubuntu上运行可执行文件。 1、ubuntu里面安装qt creator 建立helloworld 工程,点击run就可以运行,运行如下。 2、在ubuntu上运行方法二:同级目录下有build-helloworld-Desktop_Qt_5_12_12_GCC_64bit-Debug,用file hellowor…

VS使用技巧汇总

总目录 文章目录总目录前言一、快捷技巧1.代码片段快捷方式2.选择性粘贴3.快速停靠窗口4.多行同步快速编辑5.引用命名空间6.整行上下移动7.规整代码格式二、其他技巧1.其他总结前言 本文会持续收录一些VS的使用技巧,掌握VS一些常用的使用技巧对于提高我们编程效率很…

MA-Net:用于肝脏和肿瘤分割的多尺度注意力网络

摘要 近年来为了提高医学图像分割的性能,提出了大量基于多尺度特征融合的UNet变体。与以往通过多尺度特征融合提取医学图像上下文信息的方法不同,本文提出了一种新的多尺度注意力网格(MA-Net)在这个网络方法中引入了自注意力机制…

Netty使用篇:自定义编解码器

我们今天还是继续Netty,Netty的编码器和解码器就是Netty对Handler这个组件的一种使用场景而已,SpringWebFlex就是基于这个Netty来做的,在往上引深一层GateWay服务网关就是SpringWebFlex的实现,所以SpringCloud当中明确说明了&…

DPDK源码分析之DPDK基础概览

本文主要介绍一下DPDK这项技术的基础概览,包括什么是DPDK,为什么有它存在的必要,它的框架是怎样的,使用了哪些技术实现,DPDK的应用场景有哪些,最后在centos7服务器上实装一个dpdk环境做一个简单的数据包收发…

C++ VTK鼠标网格表面绘制曲线

程序示例精选 C VTK鼠标表面绘制曲线 如需安装运行环境或远程调试,见文章底部微信名片,由专业技术人员远程协助! 前言 C VTK鼠标表面绘制曲线,功能完善,代码整洁,规则,易读。 文章目录 一、所需…

基于Android的招聘求职网站的设计与实现

毕业设计 基于Android的招聘求职网站的设计与实现 1.课题意义及目标 在二十一世纪求职方式跟以前是不同的,与在各个用人单位和招聘会上寻找理想的工作,基于安卓的招聘系统能够提供最好的最丰富及时的招聘信息。。 通过对该系统的研究设计…

【人工智能与机器学习】——决策树与集成学习(学习笔记)

📖 前言:决策树(Decision Tree)是一种通过对历史数据进行测算,实现对新数据进行分类和预测的算法。机器学习中,决策树是一个预测模型,代表的是对象属性与对象值之间的一种映射关系。该算法由于逻…

django计算机毕业设计基于安卓Android的移动电商平台系统APP-商品购物商城app

项目介绍 网络的广泛应用给生活带来了十分的便利。所以把移动电商平台与现在网络相结合,利用python技术建设移动电商平台APP,实现移动电商平台的信息化。则对于进一步提高移动电商平台发展,丰富移动电商平台经验能起到不少的促进作用。 移动电商平台APP能够通过互联网得到广泛的…

如何向gitlab发布的附件里上传文件

gitlab 发布后在附件里会有打包好的源码,类似下图 笔者想把构建好的文件也打包放在这个附件里,经过研究可行,步骤分享如下 注:笔者用的gitlab版本为12.10.3 创建Access Token 登录gitlab,点击右上角图像,点击Settin…

Linux基本命令(3)

Linux基本命令(3) 📟作者主页:慢热的陕西人 🌴专栏链接:Linux 📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言 本博客主要讲解了最后一部分常用的Linux指令和一些热…

1年时间,从小公司到美团测试开发,我做对了这些事情....

📌 博客主页: 程序员二黑 📌 专注于软件测试领域相关技术实践和思考,持续分享自动化软件测试开发干货知识! 📌 公号同名,欢迎加入我的测试交流群,我们一起交流学习! 我的…