【Diffusion】李宏毅2023机器学习Diffusion笔记

news2024/12/24 2:22:01

文章目录

  • 1 想法概述
  • 2 实际过程
    • 阶段1 Add Noise
    • 阶段2 Denoise
  • 3 数学原理
  • 4 为什么推理时要额外加入noise
  • 5 一些不知道对不对的Summary

1 想法概述

从一张充满噪声的图中不断denoise,最终得到一张clear的图片。为了确定当前图片中噪声占比的大小,同时输入原图片和参数 t t t,参数 t t t用于标识一张图片中的噪声占比含量。

显然迭代第1次时图片的噪声含量和迭代第999次是不同的,因此需要输入这种信息t来进行标识。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7CjpzYoX-1692290104065)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230814190229199.png)]

2 实际过程

阶段1 Add Noise

首先,准备好一组确定的参数 α 1 ˉ , α 2 ˉ , … , α T ˉ \bar{\alpha_1},\bar{\alpha_2},\dots,\bar{\alpha_T} α1ˉ,α2ˉ,,αTˉ,用以表示时间步 t t t下样本和噪声的混合情况, t t t越大,噪声占比越高。然后重复以下过程直至收敛:

  1. 采样

    1. 从真实样本集中取出一个样本 x 0 x_0 x0

    2. [ 1 , T ] [1,T] [1,T]的整数中采样出 t t t来表示时间步

    3. 从标准正态分布中采样出噪声 ϵ \epsilon ϵ

  2. 构造带噪声样本 x = α t ˉ x 0 + 1 − α t ˉ ϵ x=\sqrt{\bar{\alpha_t}}x_0+ \sqrt{1-\bar{\alpha_t}} \epsilon x=αtˉ x0+1αtˉ ϵ

  3. 将构造样本 x x x和时间步 t t t一同输入噪声预测器 ϵ θ ( ) \epsilon_\theta() ϵθ(),得到预测噪声 ϵ θ ( x , t ) \epsilon_\theta(x,t) ϵθ(x,t)

  4. 目标函数为 ϵ θ ( x , t ) \epsilon_\theta(x,t) ϵθ(x,t)和采样出的真实噪声 ϵ \epsilon ϵ M S E MSE MSE

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-D7mqKw6q-1692290104066)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230814194524251.png)]

阶段2 Denoise

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-21zUXHgj-1692290104066)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230814201251917.png)]

3 数学原理

  1. 极大似然估计近似等价于最小化KL散度(表示两个分布的相似性):

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-S3lKC0VE-1692290104066)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817221857642.png)]

  1. 对任何分布 q ( z ∣ x ) q(z|x) q(zx),有:

log ⁡ P θ ( x ) ≥ ∫ z q ( z ∣ x ) log ⁡ P ( z , x ) q ( z ∣ x ) d z = E q ( z ∣ x ) [ log ⁡ P ( z , x ) q ( z ∣ x ) ] \log P_\theta(x) \ge \int_{z}q(z|x)\log \frac{P(z,x)}{q(z|x)}dz = E_{q(z|x)}[\log \frac{P(z,x)}{q(z|x)}] logPθ(x)zq(zx)logq(zx)P(z,x)dz=Eq(zx)[logq(zx)P(z,x)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EMBIDtfT-1692290104067)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817222057765.png)]

  1. 所以对DDPM来说:

log ⁡ P θ ( x ) ≥ E q ( x 1 : x T ∣ x 0 ) [ log ⁡ P ( x 0 : x T ) q ( x 1 : x T ∣ x 0 ) ] \log P_\theta(x) \ge E_{q(x_1:x_T|x_0)}[\log \frac{P(x_0:x_T)}{q(x_1:x_T|x_0)}] logPθ(x)Eq(x1:xTx0)[logq(x1:xTx0)P(x0:xT)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FqgMWPQQ-1692290104067)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817222642961.png)]

  1. 结合正态分布的可加性:做N次独立的正态sampling,可能通过一次的sampling就能解决。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oyzChf3t-1692290104067)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817225900399.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-w4gtTsG6-1692290104067)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817231727538.png)]

  1. 对式3不断变换,最后可得(这个式子的过程可以不用看,也并不复杂,但是麻烦,理解结论就好):

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SY9fKeIh-1692290104068)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817232929967.png)]

然后再经过一系列的运算求出来 q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1|x_t,x_0}) q(xt1∣xt,x0)依然是高斯分布,表示首尾 x 0 , x T x_0,x_T x0,xT固定住,产生 x t − 1 x_{t-1} xt1的概率,是一个和network无关的分布。而 P ( x t − 1 ∣ x t ) P(x_{t-1}|x_t) P(xt1xt)是由网络决定的,我们不考虑它的variance,只考虑mean。如果我们希望这两个分布越接近越好,那就想办法让两个分布的mean越接近越好。
在这里插入图片描述

化简:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-B0OFKfc5-1692290104068)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817233152037.png)]

实际需要预测出的部分:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OpE6Y02O-1692290104069)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817234731710.png)]

4 为什么推理时要额外加入noise

李宏毅老师的一点Guess,生成式任务,概率最大的结果,未必就是最好的结果。人写的文章用词可能更suprising。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BxAIdBaQ-1692290104069)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817235534101.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-w8wYcaVO-1692290104069)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817235706919.png)][外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vmK39t6D-1692290104069)(【Diffusion】李宏毅2023机器学习Diffusion笔记/ab7e3c6482dc90f4bfc5857991f4375.jpg)]

5 一些不知道对不对的Summary

  • 希望近似 P d a t a ( x ) P_{data}(x) Pdata(x) P θ ( x ) P_\theta(x) Pθ(x)的分布,而对给定的 x x x,使 P θ ( x ) P_\theta(x) Pθ(x)最大化可以转换为使其下界最大化,从而转换为使 E q ( x 1 : x T ∣ x 0 ) [ log ⁡ P ( x 0 : x T ) q ( x 1 : x T ∣ x 0 ) ] E_{q(x_1:x_T|x_0)}[\log \frac{P(x_0:x_T)}{q(x_1:x_T|x_0)}] Eq(x1:xTx0)[logq(x1:xTx0)P(x0:xT)]最大化。

  • 在假设 x t = β t x t − 1 + 1 − β t z t − 1 x_t=\sqrt{\beta_t}x_{t-1}+\sqrt{1-\beta_t}z_{t-1} xt=βt xt1+1βt zt1的前提下,可以推出 x t = α t ˉ x 0 + 1 − α t ˉ z x_t=\sqrt{\bar{\alpha_t}}x_{0}+\sqrt{1-\bar{\alpha_t}}z xt=αtˉ x0+1αtˉ z

  • 从而可以进一步化简 E q ( x 1 : x T ∣ x 0 ) [ log ⁡ P ( x 0 : x T ) q ( x 1 : x T ∣ x 0 ) ] E_{q(x_1:x_T|x_0)}[\log \frac{P(x_0:x_T)}{q(x_1:x_T|x_0)}] Eq(x1:xTx0)[logq(x1:xTx0)P(x0:xT)]为三项,其余两项与Network无关,可只考虑中间一项,该项由 q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1|x_t,x_0}) q(xt1∣xt,x0) P ( x t − 1 ∣ x t ) P(x_{t-1}|x_t) P(xt1xt)的KL散度之和组成,

  • q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1}|x_t,x_0) q(xt1xt,x0)表示首尾 x 0 , x T x_0,x_T x0,xT固定住产生 x t − 1 x_{t-1} xt1的概率,可求得是一个和network无关的高斯分布,均值可以表示为:

  • P ( x t − 1 ∣ x t ) P(x_{t-1}|x_t) P(xt1xt)是由网络决定的,我们不考虑它的variance,只考虑mean。

  • 如果我们希望这两个分布越接近越好,那就想办法让两个分布的mean越接近越好。而上式中,仅有 ϵ \epsilon ϵ需要确定,因此我们希望网络能够预测这个值,从而完成推理。预测出这一项 ϵ \epsilon ϵ的过程,可以看作为从 x 0 x_0 x0 x t x_t xt预测出 x t − 1 x_{t-1} xt1的过程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/892223.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【福建事业单位-公共基础-哲学】01哲学基本概述、唯物论和唯物辩证法(发展联系)

【福建事业单位-公共基础-】01哲学基本概述和唯物论 一、哲学1.1 哲学的概念1.2 哲学的基本问题—思维和存在的关系问题/意识和物质1.3哲学的基本派别:唯物主义与唯心主义古代朴素唯物主义近代形而上学唯物主义辩证唯物主义和历史唯物主义主观和客观唯心主义 1.4辩证法与形而上…

LVS负载均衡集群-NAT模式部署

集群 集群:将多台主机作为一个整体,然后对外提供相同的服务 集群使用场景:高并发的场景 集群的分类 1.负载均衡器集群 减少响应延迟,提高并发处理的能力 2,高可用集群 增强系统的稳定性可靠性&…

C++ 网络编程项目fastDFS分布式文件系统(三)-Nginx部分

目录 1. 一些基本概念 1.1 Nginx初步认识 1.2 正向/反向代理 1.3 域名和IP 2. Nginx 安装和配置 2.1 安装 2.2 配置 3. Nginx的使用 3.1 部署静态网页 3.2 反向代理和负载均衡 4 课外知识导读 1. URL和URI ​编辑 2. DNS解析过程 1. 一些基本概念 1.1 Nginx初步认…

如何在控制台查看excel内容

背景 最近发现打开电脑的excel很慢,而且使用到的场景很少,也因为mac自带了预览的功能。但是shigen就是闲不住,想自己搞一个excel预览软件,于是在一番技术选型之后,我决定使用python在控制台显示excel的内容。 具体的需…

Java进阶篇--数据结构

目录 一.数组(Array): 1.1 特点: 1.2 基本操作: 1.3 使用数组的好处包括: 1.4 数组也有一些限制: 二.集合框架(Collections Framework): 2.1 列表…

wsl安装Linux kali

目录 1.启用“Hyper-V”和“~子系统” 2.启用虚拟化 3.安装发行版 4.升级原有系统到WSL2 5.kali换源与更新升级并安装工具集 6.kali安装图形界面~GUI 7.kali安装中文界面与中文输入法 8.wsl~kali位置迁移 1.启用“Hyper-V”和“~子系统” 打开控制面板---->>程序…

JupyterHub实战应用

一、JupyerHub jupyter notebook 是一个非常有用的工具,我们可以在浏览器中任意编辑调试我们的python代码,并且支持markdown 语法,可以说是科研利器。但是这种情况适合个人使用,也就是jupyter notebook以我们自己的主机作为服务器…

SpringBoot-lombok

为什么要使用lombok? Lombok是一个通过注解以达到减少代码的Java库,如通过注解的方式减少getter,setter方法,构造方法等。通过注解的形式自动生成构造器、getter/setter、equals、hashcode、toString等方法,并可以自动化生成日志变量,简化java开发、提高…

spring boot 整合mongodb

1、安装依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-mongodb</artifactId></dependency>2、配置数据库连接 spring:data:mongodb:host: localhostport: 27017username: xxxxxxp…

vue:this和that的理解

当我们进入公司的时候会发现一个很常见的情况&#xff0c;就是你的前开发者会常用这么一个变量&#xff1a;that、self… 为什么会用到that、self呢&#xff0c;小编是这么理解的&#xff0c;this指向的是当前的对象&#xff0c;而that、self是临时的变量&#xff0c;为了临时存…

【STM32+ESP8266上云连载①】给ESP8266烧录AT固件

文章目录 一、给NodeMCU烧录固件1.1硬件准备1.2软件准备1.3AT固件下载1.4配置设置1.5开始烧录 二、给ESP8266-01S烧录固件2.1硬件准备2.2AT固件下载2.3连线2.4烧录配置 三、给ESP-12E/F/S单片烧录固件四、指令测试4.1HTTP测试4.2MQTT测试 我在使用ESP8266的时候遇到了一些问题&…

leetcode中常用的 C++函数和 STL容器

C函数和 STL容器 C排序sortC翻转字符串reverseC截取字符串strsub哈希表的使用定义查询哈希表里是否有该key在哈希表里存放键值链式哈希 哈希集合定义一个哈希集合查找一个字符是否在set里面删除和添加 优先队列 最大堆优先队列的大顶堆定义方式插入存储数组对定义插入 双端队列…

收集的一些比较好的git网址

1、民间故事 https://github.com/folkstory/lingqiu/blob/master/%E4%BC%A0%E8%AF%B4%E9%83%A8%E5%88%86/%E4%BA%BA%E7%89%A9%E4%BC%A0%E8%AF%B4/%E2%80%9C%E6%B5%B7%E5%BA%95%E6%8D%9E%E6%9C%88%E2%80%9D%E7%9A%84%E6%AD%A6%E4%B8%BE.md 2、童话故事 https://gutenberg.org/c…

微信支付报非法的密钥大小: Caused by: java.security.InvalidKeyException: Illegal key size

在Linux环境中出现 java.security.InvalidKeyException: Illegal key size 异常通常是由于Java默认的加密限制引起的。Java默认的加密强度限制了加密算法密钥的最大长度 方式一 1. 找到该目录 /usr/java/jdk1.8.0_121/jre/lib/security 2. 替换local_policy.jar 和 US_export_…

kafka安装说明以及在项目中使用

一、window 安装 1.1、下载安装包 下载kafka 地址&#xff0c;其中官方版内置zk&#xff0c; kafka_2.12-3.4.0.tgz其中这个名称的意思是 kafka3.4.0 版本 &#xff0c;所用语言 scala 版本为 2.12 1.2、安装配置 1、解压刚刚下载的配置文件&#xff0c;解压后如下&#x…

Nginx负载均衡下的webshell连接与过滤绕过以及LD_PROLOAD利用

目录 一、Nginx负载均衡下的webshell连接 1.环境搭建以及webshell连接 2.出现的问题 3.解决方案 二、Webshell的过滤绕过 1.异或操作绕过 ​2.取反操作绕过 3.PHP语法绕过 三、LD_PRELOAD的利用 1.初识LD_PRELOAD 2.利用LD_PRELOAD 2.1.制作linux后门 2.2.绕过PHP…

Python“牵手”京东商品评论数据采集方法,京东API申请指南

京东平台API接口是为开发电商类应用程序而设计的一套完整的、跨浏览器、跨平台的接口规范&#xff0c;京东API接口是指通过编程的方式&#xff0c;让开发者能够通过HTTP协议直接访问京东平台的数据&#xff0c;包括商品信息、店铺信息、物流信息等&#xff0c;从而实现京东平台…

Redis消息传递:发布订阅模式详解

目录 1.Redis发布订阅简介 2.发布/订阅使用 2.1 基于频道(Channel)的发布/订阅 2.2 基于模式(pattern)的发布/订阅 3.深入理解Redis的订阅发布机制 3.1 基于频道(Channel)的发布/订阅如何实现的&#xff1f; 3.2 基于模式(Pattern)的发布/订阅如何实现的&#xff1f; 3.3 Sp…

Maven官网下载配置新仓库

1.Maven的下载 Maven的官网地址&#xff1a;Maven – Download Apache Maven 点击Download&#xff0c;查找 Files下的版本并下载如下图&#xff1a; 2.Maven的配置 自己在D盘或者E盘创建一个文件夹&#xff0c;作为本地仓库&#xff0c;存放项目依赖。 将下载好的zip文件进行解…

模型预测笔记(一):数据清洗及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)

模型预测 一、导入关键包二、如何载入、分析和保存文件三、修改缺失值3.1 众数3.2 平均值3.3 中位数3.4 0填充 四、修改异常值4.1 删除4.2 替换 五、数据绘图分析5.1 饼状图5.1.1 绘制某一特征的数值情况&#xff08;二分类&#xff09; 5.2 柱状图5.2.1 单特征与目标特征之间的…