Spring Clould 搜索技术 - elasticsearch

news2024/12/27 11:50:53

  视频地址:微服务(SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式) 

 初识ES-什么是elasticsearch(P77,P78)

1.elasticsearch的作用

elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

例如:

  • 在GitHub搜索代码

  • 在电商网站搜索商品

  • 在百度搜索答案

  • 在打车软件搜索附近的车

2.ELK技术栈

elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:

而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

3.elasticsearch和lucene

elasticsearch底层是基于lucene来实现的。

Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:Apache Lucene - Welcome to Apache Lucene 。

elasticsearch的发展历史:

  • 2004年Shay Banon基于Lucene开发了Compass

  • 2010年Shay Banon 重写了Compass,取名为Elasticsearch。

4.为什么不是其他搜索技术?

目前比较知名的搜索引擎技术排名:

虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:

5.总结

什么是elasticsearch?

  • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能

什么是elastic stack(ELK)?

  • 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch

什么是Lucene?

  • 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API

结论:

初识ES-倒排索引(P79)

倒排索引的概念是基于MySQL这样的正向索引而言的。

1.正向索引

那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:

如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是title符合"%手机%"

2)逐行获取数据,比如id为1的数据

3)判断数据中的title是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤1

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

2.倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息

  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条

  • 创建表,每行数据包括词条、词条所在文档id、位置等信息

  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:

倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

4)拿着文档id到正向索引中查找具体文档。

如图:

虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

3.正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

是不是恰好反过来了?

那么两者方式的优缺点是什么呢?

正向索引

  • 优点:

    • 可以给多个字段创建索引

    • 根据索引字段搜索、排序速度非常快

  • 缺点:

    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:

    • 根据词条搜索、模糊搜索时,速度非常快

  • 缺点:

    • 只能给词条创建索引,而不是字段

    • 无法根据字段做排序

初识ES-es与mysql的概念对比(P80)

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

1.文档和字段

elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

2.索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;

  • 所有商品的文档,可以组织在一起,称为商品的索引;

  • 所有订单的文档,可以组织在一起,称为订单的索引;

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

3.mysql与elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

是不是说,我们学习了elasticsearch就不再需要mysql了呢?

并不是如此,两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现

  • 对查询性能要求较高的搜索需求,使用elasticsearch实现

  • 两者再基于某种方式,实现数据的同步,保证一致性

初识ES-安装es(P81)

链接:安装es 

初识ES-安装kibana(P82)

链接:安装kibana 

初识ES-安装IK分词器(P83)

链接:安装IK分词器 

初识ES-IK分词器的拓展和停用词典(P84)

  

 

 总结:

操作索引库-mapping属性(P85)

索引库就类似数据库表,mapping映射就类似表的结构。

我们要向es中存储数据,必须先创建“库”和“表”。

mapping映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:

    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)

    • 数值:long、integer、short、byte、double、float、(允许某个字段有多个值)例:score字段多个值但是只有一种数据类型

    • 布尔:boolean

    • 日期:date

    • 对象:object

  • index:是否创建索引,默认为true

  • analyzer:使用哪种分词器

  • properties:该字段的子字段

对应的每个字段映射(mapping):

  • age:类型为 integer;参与搜索,因此需要index为true;无需分词器

  • weight:类型为float;参与搜索,因此需要index为true;无需分词器

  • isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器

  • info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart

  • email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器

  • score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器

  • name:类型为object,需要定义多个子属性

    • name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

    • name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

操作索引库-创建索引库(P86)

这里我们统一使用Kibana编写DSL的方式来演示。

创建索引库和映射

基本语法:

  • 请求方式:PUT

  • 请求路径:/索引库名,可以自定义

  • 请求参数:mapping映射

格式:

PUT /索引库名称
{
  "mappings": {
    "properties": {
      "字段名":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "字段名2":{
        "type": "keyword",
        "index": "false"
      },
      "字段名3":{
        "properties": {
          "子字段": {
            "type": "keyword"
          }
        }
      },
      // ...略
    }
  }
}

示例:

PUT /heima
{
  "mappings": {
    "properties": {
      "info":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "email":{
        "type": "keyword",
        "index": "falsae"
      },
      "name":{
        "properties": {
          "firstName": {
            "type": "keyword"
          }
        }
      },
      // ... 略
    }
  }
}

 properties:包含的子字段

操作索引库-查询、删除、修改索引库(P87)

1.查询索引库

基本语法

  • 请求方式:GET

  • 请求路径:/索引库名

  • 请求参数:无

格式

GET /索引库名

示例

2.修改索引库

倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping

虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。

语法说明

PUT /索引库名/_mapping
{
  "properties": {
    "新字段名":{
      "type": "integer"
    }
  }
}

示例

3.删除索引库

语法:

  • 请求方式:DELETE

  • 请求路径:/索引库名

  • 请求参数:无

格式:

DELETE /索引库名

在kibana中测试:

总结

索引库操作有哪些?

  • 创建索引库:PUT /索引库名

  • 查询索引库:GET /索引库名

  • 删除索引库:DELETE /索引库名

  • 添加字段:PUT /索引库名/_mapping

文档操作-新增、查询、删除文档(P88)

1.新增文档

语法:

POST /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
    // ...
}

示例:

POST /heima/_doc/1
{
    "info": "黑马程序员Java讲师",
    "email": "zy@itcast.cn",
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

响应:

2.查询文档

根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

语法:

GET /{索引库名称}/_doc/{id}

通过kibana查看数据:

GET /heima/_doc/1

查看结果:

3.删除文档

删除使用DELETE请求,同样,需要根据id进行删除:

语法:

DELETE /{索引库名}/_doc/id值

示例:

# 根据id删除数据
DELETE /heima/_doc/1

结果:

文档操作-修改文档(P89)

4.修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档

  • 增量修改:修改文档中的部分字段

1.全量修改

全量修改是覆盖原来的文档,其本质是:

  • 根据指定的id删除文档

  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

语法:

PUT /{索引库名}/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    // ... 略
}

示例:

PUT /heima/_doc/1
{
    "info": "黑马程序员高级Java讲师",
    "email": "zy@itcast.cn",
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

2.增量修改

增量修改是只修改指定id匹配的文档中的部分字段。

语法:

POST /{索引库名}/_update/文档id
{
    "doc": {
         "字段名": "新的值",
    }
}

示例:

POST /heima/_update/1
{
  "doc": {
    "email": "ZhaoYun@itcast.cn"
  }
}

5.总结

文档操作有哪些?

  • 创建文档:POST /{索引库名}/_doc/文档id { json文档 }

  • 查询文档:GET /{索引库名}/_doc/文档id

  • 删除文档:DELETE /{索引库名}/_doc/文档id

  • 修改文档:

    • 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }

    • 增量修改:POST /{索引库名}/_update/文档id { "doc": {字段}}

RestClient操作索引库-导入demo(P90)

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:Elasticsearch Clients | Elastic

其中的Java Rest Client又包括两种:

  • Java Low Level Rest Client

  • Java High Level Rest Client

 我们学习的是Java HighLevel Rest Client客户端API

4.0.导入Demo工程

1.导入数据

首先导入课前资料提供的数据库数据:

数据结构如下:

CREATE TABLE `tb_hotel` (
  `id` bigint(20) NOT NULL COMMENT '酒店id',
  `name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店',
  `address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路',
  `price` int(10) NOT NULL COMMENT '酒店价格;例:329',
  `score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分',
  `brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家',
  `city` varchar(32) NOT NULL COMMENT '所在城市;例:上海',
  `star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻',
  `business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥',
  `latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497',
  `longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925',
  `pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

2.导入项目

然后导入课前资料提供的项目:

项目结构如图:

RestClient操作索引库-hotel数据结构分析(P91)

3.mapping映射分析

创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:

  • 字段名

  • 字段数据类型

  • 是否参与搜索

  • 是否需要分词

  • 如果分词,分词器是什么?

其中:

  • 字段名、字段数据类型,可以参考数据表结构的名称和类型

  • 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索

  • 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词

  • 分词器,我们可以统一使用ik_max_word

来看下酒店数据的索引库结构:

PUT /hotel   --新建索引
{
  "mappings": {
    "properties": {
      "id": {   --id在es中就是字符串类型,且整体不可分割,不分词
        "type": "keyword"   --文本类型,与text区别,text可分词。keyword是精确值,可以直接做索引查询
      },
      "name":{
        "type": "text",
        "analyzer": "ik_max_word",  --分词器
        "copy_to": "all"  --将字段copy进all中(基于all创建索引)
      },
      "address":{
        "type": "keyword",
        "index": false  --不搜索
      },
      "price":{  
        "type": "integer"  --不写index:false表示参与搜索
      },
      "score":{
        "type": "integer"
      },
      "brand":{
        "type": "keyword",
        "copy_to": "all"  
      },
      "city":{
        "type": "keyword",
        "copy_to": "all"
      },
      "starName":{
        "type": "keyword"
      },
      "business":{
        "type": "keyword"
      },
      "location":{
        "type": "geo_point"  --坐标点,下面有讲解
      },
      "pic":{
        "type": "keyword",
        "index": false
      },
      "all":{  --copy进的all
        "type": "text",
        "analyzer": "ik_max_word"  --分词器
      }
    }
  }
}

几个特殊字段说明:

  • location:地理坐标,里面包含精度、纬度

  • all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索

地理坐标说明:

copy_to说明:

RestClient操作索引库-初始化RestClient(P92)

4.初始化RestClient

在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。

分为三步:

1)引入es的RestHighLevelClient依赖:

<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>

2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:

<properties>
    <java.version>1.8</java.version>
    <elasticsearch.version>7.12.1</elasticsearch.version>
</properties>

3)初始化RestHighLevelClient:

初始化的代码如下:

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(
        HttpHost.create("http://192.168.150.101:9200")
));

这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:

package cn.itcast.hotel;
​
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestHighLevelClient;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
​
import java.io.IOException;
​
public class HotelIndexTest {
    private RestHighLevelClient client;
​
    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.150.101:9200")
        ));
    }
​
    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

RestClient操作索引库-创建索引库(P93)

1.代码解读

代码分为三步:

  • 1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。

  • 2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。

  • 3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。

 创建索引库的API如下:

2.完整示例

在hotel-demo的cn.itcast.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:

package cn.itcast.hotel.constants;
​
public class HotelConstants {
    public static final String MAPPING_TEMPLATE = "{\n" +
            "  \"mappings\": {\n" +
            "    \"properties\": {\n" +
            "      \"id\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"name\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"address\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"price\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"score\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"brand\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"city\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"starName\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"business\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"location\":{\n" +
            "        \"type\": \"geo_point\"\n" +
            "      },\n" +
            "      \"pic\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"all\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\"\n" +
            "      }\n" +
            "    }\n" +
            "  }\n" +
            "}";
}
 

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现创建索引:

@Test
void createHotelIndex() throws IOException {
    // 1.创建Request对象
    CreateIndexRequest request = new CreateIndexRequest("hotel");
    // 2.准备请求的参数:DSL语句
    request.source(MAPPING_TEMPLATE, XContentType.JSON);
    // 3.发送请求
    client.indices().create(request, RequestOptions.DEFAULT);
}

RestClient操作索引库-删除和判断索引库(P94)

1.删除索引库

删除索引库的DSL语句非常简单:

DELETE /hotel

与创建索引库相比:

  • 请求方式从PUT变为DELTE

  • 请求路径不变

  • 无请求参数

所以代码的差异,注意体现在Request对象上。依然是三步走:

  • 1)创建Request对象。这次是DeleteIndexRequest对象

  • 2)准备参数。这里是无参

  • 3)发送请求。改用delete方法

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:

@Test
void testDeleteHotelIndex() throws IOException {
    // 1.创建Request对象
    DeleteIndexRequest request = new DeleteIndexRequest("hotel");
    // 2.发送请求
    client.indices().delete(request, RequestOptions.DEFAULT);
}

2.判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的DSL是:

GET /hotel

因此与删除的Java代码流程是类似的。依然是三步走:

  • 1)创建Request对象。这次是GetIndexRequest对象

  • 2)准备参数。这里是无参

  • 3)发送请求。改用exists方法

@Test
void testExistsHotelIndex() throws IOException {
    // 1.创建Request对象
    GetIndexRequest request = new GetIndexRequest("hotel");
    // 2.发送请求
    boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
    // 3.输出
    System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}

总结:

JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。

索引库操作的基本步骤:

  • 初始化RestHighLevelClient

  • 创建XxxIndexRequest。XXX是Create、Get、Delete

  • 准备DSL( Create时需要,其它是无参)

  • 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete

RestClient操作文档-新增文档(P95)

RestClient操作文档

为了与索引库操作分离,我们再次参加一个测试类,做两件事情:

  • 初始化RestHighLevelClient

  • 我们的酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口

package cn.itcast.hotel;
​
import cn.itcast.hotel.pojo.Hotel;
import cn.itcast.hotel.service.IHotelService;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
​
import java.io.IOException;
import java.util.List;
​
@SpringBootTest
public class HotelDocumentTest {
    @Autowired
    private IHotelService hotelService;
​
    private RestHighLevelClient client;
​
    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.150.101:9200")
        ));
    }
​
    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

 

我们要将数据库的酒店数据查询出来,写入elasticsearch中。上述图片的步骤二

1.索引库实体类

数据库查询后的结果是一个Hotel类型的对象。结构如下:

@Data
@TableName("tb_hotel")
public class Hotel {
    @TableId(type = IdType.INPUT)
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String longitude;
    private String latitude;
    private String pic;
}

与我们的索引库结构存在差异:

  • longitude和latitude需要合并为location

因此,我们需要定义一个新的类型,与索引库结构吻合:

package cn.itcast.hotel.pojo;
​
import lombok.Data;
import lombok.NoArgsConstructor;
​
@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;
​
    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
    }
}
​

2.语法说明

新增文档的DSL语句如下:

POST /{索引库名}/_doc/1
{
    "name": "Jack",
    "age": 21
}

对应的java代码如图:

可以看到与创建索引库类似,同样是三步走:

  • 1)创建Request对象

  • 2)准备请求参数,也就是DSL中的JSON文档

  • 3)发送请求

变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。

3.完整代码

我们导入酒店数据,基本流程一致,但是需要考虑几点变化:

  • 酒店数据来自于数据库,我们需要先查询出来,得到hotel对象

  • hotel对象需要转为HotelDoc对象

  • HotelDoc需要序列化为json格式

因此,代码整体步骤如下:

  • 1)根据id查询酒店数据Hotel

  • 2)将Hotel封装为HotelDoc

  • 3)将HotelDoc序列化为JSON

  • 4)创建IndexRequest,指定索引库名和id

  • 5)准备请求参数,也就是JSON文档

  • 6)发送请求

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testAddDocument() throws IOException {
    // 1.根据id查询酒店数据
    Hotel hotel = hotelService.getById(61083L);
    // 2.转换为文档类型
    HotelDoc hotelDoc = new HotelDoc(hotel);
    // 3.将HotelDoc转json
    String json = JSON.toJSONString(hotelDoc);
​
    // 1.准备Request对象
    IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());
    // 2.准备Json文档
    request.source(json, XContentType.JSON);
    // 3.发送请求
    client.index(request, RequestOptions.DEFAULT);
}

RestClient操作文档-查询文档(P96)

1.语法说明

查询的DSL语句如下:

GET /hotel/_doc/{id}

非常简单,因此代码大概分两步:

  • 准备Request对象

  • 发送请求

不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:

 

可以看到,结果是一个JSON,其中文档放在一个_source属性中,因此解析就是拿到_source,反序列化为Java对象即可。

与之前类似,也是三步走:

  • 1)准备Request对象。这次是查询,所以是GetRequest

  • 2)发送请求,得到结果。因为是查询,这里调用client.get()方法

  • 3)解析结果,就是对JSON做反序列化

2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testGetDocumentById() throws IOException {
    // 1.准备Request
    GetRequest request = new GetRequest("hotel", "61082");
    // 2.发送请求,得到响应
    GetResponse response = client.get(request, RequestOptions.DEFAULT);
    // 3.解析响应结果
    String json = response.getSourceAsString();
​
    HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
    System.out.println(hotelDoc);
}

RestClient操作文档-更新文档(P97)

1.语法说明

修改我们讲过两种方式:

  • 全量修改:本质是先根据id删除,再新增

  • 增量修改:修改文档中的指定字段值

在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:

  • 如果新增时,ID已经存在,则修改

  • 如果新增时,ID不存在,则新增

这里不再赘述,我们主要关注增量修改。

代码示例如图:

与之前类似,也是三步走:

  • 1)准备Request对象。这次是修改,所以是UpdateRequest

  • 2)准备参数。也就是JSON文档,里面包含要修改的字段

  • 3)更新文档。这里调用client.update()方法 

2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testUpdateDocument() throws IOException {
    // 1.准备Request
    UpdateRequest request = new UpdateRequest("hotel", "61083");
    // 2.准备请求参数
    request.doc(
        "price", "952",
        "starName", "四钻"
    );
    // 3.发送请求
    client.update(request, RequestOptions.DEFAULT);
}

RestClient操作文档-删除文档(P98)

 

删除的DSL为是这样的:

DELETE /hotel/_doc/{id}

与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:

  • 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id

  • 2)准备参数,无参

  • 3)发送请求。因为是删除,所以是client.delete()方法

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testDeleteDocument() throws IOException {
    // 1.准备Request
    DeleteRequest request = new DeleteRequest("hotel", "61083");
    // 2.发送请求
    client.delete(request, RequestOptions.DEFAULT);
}

总结:

RestClient操作文档-批量导入文档(P99)

案例需求:利用BulkRequest批量将数据库数据导入到索引库中。

步骤如下:

  • 利用mybatis-plus查询酒店数据

  • 将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)

  • 利用JavaRestClient中的BulkRequest批处理,实现批量新增文档

1.语法说明

批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。

其中提供了一个add方法,用来添加其他请求:

可以看到,能添加的请求包括:

  • IndexRequest,也就是新增

  • UpdateRequest,也就是修改

  • DeleteRequest,也就是删除

因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:

其实还是三步走:

  • 1)创建Request对象。这里是BulkRequest

  • 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest

  • 3)发起请求。这里是批处理,调用的方法为client.bulk()方法

我们在导入酒店数据时,将上述代码改造成for循环处理即可。

2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testBulkRequest() throws IOException {
    // 批量查询酒店数据
    List<Hotel> hotels = hotelService.list();
​
    // 1.创建Request
    BulkRequest request = new BulkRequest();
    // 2.准备参数,添加多个新增的Request
    for (Hotel hotel : hotels) {
        // 2.1.转换为文档类型HotelDoc
        HotelDoc hotelDoc = new HotelDoc(hotel);
        // 2.2.创建新增文档的Request对象
        request.add(new IndexRequest("hotel")
                    .id(hotelDoc.getId().toString())
                    .source(JSON.toJSONString(hotelDoc), XContentType.JSON));
    }
    // 3.发送请求
    client.bulk(request, RequestOptions.DEFAULT);
}

小结

文档操作的基本步骤:

  • 初始化RestHighLevelClient

  • 创建XxxRequest。XXX是Index、Get、Update、Delete、Bulk

  • 准备参数(Index、Update、Bulk时需要)

  • 发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete、bulk

  • 解析结果(Get时需要)

DSL查询语法-DSL查询分类和基本语法(P100,P101)

elasticsearch最擅长的还是搜索和数据分析。

今天分别使用DSLRestClient实现搜索。

elasticsearch的查询依然是基于JSON风格的DSL来实现的。

DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match_query

    • multi_match_query

  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids

    • range

    • term

  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance

    • geo_bounding_box

  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool

    • function_score

查询的语法基本一致:

GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}

我们以查询所有为例,其中:

  • 查询类型为match_all

  • 没有查询条件

// 查询所有
GET /indexName/_search
{
  "query": {
    "match_all": {
    }
  }
}

其它查询无非就是查询类型查询条件的变化。

 

DSL查询语法-全文检索查询(P102)

1.使用场景

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条

  • 根据词条去倒排索引库中匹配,得到文档id

  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索

  • 百度输入框搜索

例如京东:

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。

2.基本语法

常见的全文检索查询包括:

  • match查询:单字段查询

  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}

mulit_match语法如下:

GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}

3.示例

match查询示例:

multi_match查询示例:(可以多字段查询)

可以看到,两种查询结果是一样的,为什么?

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

4.总结

match和multi_match的区别是什么?

  • match:根据一个字段查询

  • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

 

DSL查询语法-精确查询(P103)

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询

  • range:根据值的范围查询

1.term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法说明:

// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}

示例:

当我搜索的是精确词条时,能正确查询出结果:

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:

2.range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

基本语法:

// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}

示例:

3.总结

精确查询常见的有哪些?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段

  • range查询:根据数值范围查询,可以是数值、日期的范围

 

DSL查询语法-地理查询(P104)

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:Geo queries | Elasticsearch Guide [8.9] | Elastic

常见的使用场景包括:

  • 携程:搜索我附近的酒店

  • 滴滴:搜索我附近的出租车

  • 微信:搜索我附近的人

附近的酒店:

附近的车:

1.矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}

这种并不符合“附近的人”这样的需求,所以我们就不做了。

2.附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

语法说明:

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

示例:

我们先搜索陆家嘴附近15km的酒店:

发现共有47家酒店。

然后把半径缩短到3公里:

可以发现,搜索到的酒店数量减少到了5家。

DSL查询语法-相关性算分(P105)

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名

  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

1.相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 "虹桥如家",结果如下:

[
  {
    "_score" : 17.850193,
    "_source" : {
      "name" : "虹桥如家酒店真不错",
    }
  },
  {
    "_score" : 12.259849,
    "_source" : {
      "name" : "外滩如家酒店真不错",
    }
  },
  {
    "_score" : 11.91091,
    "_source" : {
      "name" : "迪士尼如家酒店真不错",
    }
  }
]

在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:

  • TF-IDF算法

  • BM25算法,elasticsearch5.1版本后采用的算法

DSL查询语法-FunctionScoreQuery(P106)

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

1)语法说明

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)

  • 过滤条件:filter部分,符合该条件的文档才会重新算分

  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数

    • weight:函数结果是常量

    • field_value_factor:以文档中的某个字段值作为函数结果

    • random_score:以随机数作为函数结果

    • script_score:自定义算分函数算法

  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:

    • multiply:相乘

    • replace:用function score替换query score

    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)

  • 2)根据过滤条件,过滤文档

  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)

  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改

  • 算分函数:决定函数算分的算法

  • 运算模式:决定最终算分结果

2)示例

需求:给“如家”这个品牌的酒店排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化

  • 过滤条件:brand = "如家"

  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight

  • 运算模式:比如求和

因此最终的DSL语句如下:

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是如家
            "term": {
              "brand": "如家"
            }
          },
          "weight": 2 // 算分权重为2
        }
      ],
      "boost_mode": "sum" // 加权模式,求和
    }
  }
}

测试,在未添加算分函数时,如家得分如下:

添加了算分函数后,如家得分就提升了:

3)小结

function score query定义的三要素是什么?

  • 过滤条件:哪些文档要加分

  • 算分函数:如何计算function score

  • 加权方式:function score 与 query score如何运算

DSL查询语法-BooleanQuery(P107)

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”

  • should:选择性匹配子查询,类似“或”

  • must_not:必须不匹配,不参与算分,类似“非”

  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分

  • 其它过滤条件,采用filter查询。不参与算分

1)语法示例:

GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city": "上海" }}
      ],
      "should": [
        {"term": {"brand": "皇冠假日" }},
        {"term": {"brand": "华美达" }}
      ],
      "must_not": [
        { "range": { "price": { "lte": 500 } }}
      ],
      "filter": [
        { "range": {"score": { "gte": 45 } }}
      ]
    }
  }
}

2)示例

需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:

  • 名称搜索,属于全文检索查询,应该参与算分。放到must中

  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中

  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中

3)小结

bool查询有几种逻辑关系?

  • must:必须匹配的条件,可以理解为“与”

  • should:选择性匹配的条件,可以理解为“或”

  • must_not:必须不匹配的条件,不参与打分

  • filter:必须匹配的条件,不参与打分

搜索结果处理-排序(P108)

搜索的结果可以按照用户指定的方式去处理或展示。

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

1.普通字段排序

keyword、数值、日期类型排序的语法基本一致。

语法

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "FIELD": "desc"  // 排序字段、排序方式ASC、DESC
    }
  ]
}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

示例

需求描述:酒店数据按照用户评价(score)降序排序,评价相同的按照价格(price)升序排序

2.地理坐标排序

地理坐标排序略有不同。

语法说明

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
          "order" : "asc", // 排序方式
          "unit" : "km" // 排序的距离单位
      }
    }
  ]
}

这个查询的含义是:

  • 指定一个坐标,作为目标点

  • 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少

  • 根据距离排序

示例:

需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序

提示:获取你的位置的经纬度的方式:获取鼠标点击经纬度-地图属性-示例中心-JS API 2.0 示例 | 高德地图API

假设我的位置是:31.034661,121.612282,寻找我周围距离最近的酒店。

搜索结果处理-分页(P109)

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始

  • size:总共查询几个文档

类似于mysql中的limit ?, ?

1.基本的分页

分页的基本语法如下:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

2.深度分页问题

现在,我要查询990~1000的数据,查询逻辑要这么写:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 990, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

这里是查询990开始的数据,也就是 第990~第1000条 数据。

不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:

查询TOP1000,如果es是单点模式,这并无太大影响。

但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。

因为节点A的TOP200,在另一个节点可能排到10000名以外了。

因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。

那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?

当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,ES提供了两种解决方案,官方文档:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。

  • scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。

3.小结

分页查询的常见实现方案以及优缺点:

  • from + size

    • 优点:支持随机翻页

    • 缺点:深度分页问题,默认查询上限(from + size)是10000

    • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索

  • after search

    • 优点:没有查询上限(单次查询的size不超过10000)

    • 缺点:只能向后逐页查询,不支持随机翻页

    • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页

  • scroll

    • 优点:没有查询上限(单次查询的size不超过10000)

    • 缺点:会有额外内存消耗,并且搜索结果是非实时的

    • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

搜索结果处理-高亮(P110)

1.高亮原理

什么是高亮显示呢?

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

高亮显示的实现分为两步:

  • 1)给文档中的所有关键字都添加一个标签,例如<em>标签

  • 2)页面给<em>标签编写CSS样式

2.实现高亮

高亮的语法

GET /hotel/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
    }
  },
  "highlight": {
    "fields": { // 指定要高亮的字段
      "FIELD": {
        "pre_tags": "<em>",  // 用来标记高亮字段的前置标签
        "post_tags": "</em>" // 用来标记高亮字段的后置标签
      }
    }
  }
}

注意:

  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。

  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮

  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false

示例

3.总结

查询的DSL是一个大的JSON对象,包含下列属性:

  • query:查询条件

  • from和size:分页条件

  • sort:排序条件

  • highlight:高亮条件

示例:

RestClient查询文档-快速入门(P111)

文档的查询同样适用昨天学习的 RestHighLevelClient对象,基本步骤包括:

  • 1)准备Request对象

  • 2)准备请求参数

  • 3)发起请求

  • 4)解析响应

我们以match_all查询为例

1.发起查询请求

代码解读:

  • 第一步,创建SearchRequest对象,指定索引库名

  • 第二步,利用request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等

    • query():代表查询条件,利用QueryBuilders.matchAllQuery()构建一个match_all查询的DSL

  • 第三步,利用client.search()发送请求,得到响应

这里关键的API有两个,一个是request.source(),其中包含了查询、排序、分页、高亮等所有功能:

另一个是QueryBuilders,其中包含match、term、function_score、bool等各种查询:

2.解析响应

响应结果的解析:

elasticsearch返回的结果是一个JSON字符串,结构包含:

  • hits:命中的结果

    • total:总条数,其中的value是具体的总条数值

    • max_score:所有结果中得分最高的文档的相关性算分

    • hits:搜索结果的文档数组,其中的每个文档都是一个json对象

      • _source:文档中的原始数据,也是json对象

因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:

  • SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果

    • SearchHits#getTotalHits().value:获取总条数信息

    • SearchHits#getHits():获取SearchHit数组,也就是文档数组

      • SearchHit#getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据

3.完整代码

完整代码如下:

@Test
void testMatchAll() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchAllQuery());
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
​
    // 4.解析响应
    handleResponse(response);
}
​
private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

4.小结

查询的基本步骤是:

  1. 创建SearchRequest对象

  2. 准备Request.source(),也就是DSL。

    ① QueryBuilders来构建查询条件

    ② 传入Request.source() 的 query() 方法

  3. 发送请求,得到结果

  4. 解析结果(参考JSON结果,从外到内,逐层解析)

RestClient查询文档-match、term、range、bool查询(P112)

match查询

全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分。

match_all:查询全部的数据

match:在“all”中的所有数据(all是所有索引字段添加的)

multi_match:多个字段查询

因此,Java代码上的差异主要是request.source().query()中的参数了。同样是利用QueryBuilders提供的方法:

而结果解析代码则完全一致,可以抽取并共享。

完整代码如下:

@Test
void testMatch() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchQuery("all", "如家"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
​
}


private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

精确查询

精确查询主要是两者:

  • term:词条精确匹配

  • range:范围查询

与之前的查询相比,差异同样在查询条件,其它都一样。

查询条件构造的API如下:

布尔查询

布尔查询是用must、must_not、filter等方式组合其它查询,代码示例如下:

可以看到,API与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变。

完整代码如下:

@Test
void testBool() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.准备BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 2.2.添加term
    boolQuery.must(QueryBuilders.termQuery("city", "杭州"));
    // 2.3.添加range
    boolQuery.filter(QueryBuilders.rangeQuery("price").lte(250));
​
    request.source().query(boolQuery);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
​
}

总结 :

RestClient查询文档-排序和分页(P113)

搜索结果的排序和分页是与query同级的参数,因此同样是使用request.source()来设置。

对应的API如下:

完整代码示例:

@Test
void testPageAndSort() throws IOException {
    // 页码,每页大小
    int page = 1, size = 5;
​
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchAllQuery());
    // 2.2.排序 sort
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页 from、size
    request.source().from((page - 1) * size).size(5);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
​
}

RestClient查询文档-高亮显示(P114)

高亮的代码与之前代码差异较大,有两点:

  • 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。

  • 结果解析:结果除了要解析_source文档数据,还要解析高亮结果

1.高亮请求构建

高亮请求的构建API如下:

上述代码省略了查询条件部分,但是大家不要忘了:高亮查询必须使用全文检索查询,并且要有搜索关键字,将来才可以对关键字高亮。

完整代码如下:

@Test
void testHighlight() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchQuery("all", "如家"));
    // 2.2.高亮
    request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
​
}

2.高亮结果解析

高亮的结果与查询的文档结果默认是分离的,并不在一起。

因此解析高亮的代码需要额外处理:

代码解读:

  • 第一步:从结果中获取source。hit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为HotelDoc对象

  • 第二步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值

  • 第三步:从map中根据高亮字段名称,获取高亮字段值对象HighlightField

  • 第四步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了

  • 第五步:用高亮的结果替换HotelDoc中的非高亮结果

完整代码如下:

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        // 获取高亮结果
        Map<String, HighlightField> highlightFields = hit.getHighlightFields();
        if (!CollectionUtils.isEmpty(highlightFields)) {
            // 根据字段名获取高亮结果
            HighlightField highlightField = highlightFields.get("name");
            if (highlightField != null) {
                // 获取高亮值
                String name = highlightField.getFragments()[0].string();
                // 覆盖非高亮结果
                hotelDoc.setName(name);
            }
        }
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

 旅游案例-搜索,分页(P115)

案例需求:实现黑马旅游的酒店搜索功能,完成关键字搜索和分页

1.需求分析

在项目的首页,有一个大大的搜索框,还有分页按钮:

点击搜索按钮,可以看到浏览器控制台发出了请求:

请求参数如下:

由此可以知道,我们这个请求的信息如下:

  • 请求方式:POST

  • 请求路径:/hotel/list

  • 请求参数:JSON对象,包含4个字段:

    • key:搜索关键字

    • page:页码

    • size:每页大小

    • sortBy:排序,目前暂不实现

  • 返回值:分页查询,需要返回分页结果PageResult,包含两个属性:

    • total:总条数

    • List<HotelDoc>:当前页的数据

因此,我们实现业务的流程如下:

  • 步骤一:定义实体类,接收请求参数的JSON对象

  • 步骤二:编写controller,接收页面的请求

  • 步骤三:编写业务实现,利用RestHighLevelClient实现搜索、分页

2.定义实体类

实体类有两个,一个是前端的请求参数实体,一个是服务端应该返回的响应结果实体。

1)请求参数

前端请求的json结构如下:

{
    "key": "搜索关键字",
    "page": 1,
    "size": 3,
    "sortBy": "default"
}

因此,我们在cn.itcast.hotel.pojo包下定义一个实体类:

package cn.itcast.hotel.pojo;
​
import lombok.Data;
​
@Data
public class RequestParams {
    private String key;
    private Integer page;
    private Integer size;
    private String sortBy;
}

2)返回值

分页查询,需要返回分页结果PageResult,包含两个属性:

  • total:总条数

  • List<HotelDoc>:当前页的数据

因此,我们在cn.itcast.hotel.pojo中定义返回结果:

package cn.itcast.hotel.pojo;
​
import lombok.Data;
​
import java.util.List;
​
@Data
public class PageResult {
    private Long total;
    private List<HotelDoc> hotels;
​
    public PageResult() {
    }
​
    public PageResult(Long total, List<HotelDoc> hotels) {
        this.total = total;
        this.hotels = hotels;
    }
}

3.定义controller

定义一个HotelController,声明查询接口,满足下列要求:

  • 请求方式:Post

  • 请求路径:/hotel/list

  • 请求参数:对象,类型为RequestParam

  • 返回值:PageResult,包含两个属性

    • Long total:总条数

    • List<HotelDoc> hotels:酒店数据

因此,我们在cn.itcast.hotel.web中定义HotelController:

@RestController
@RequestMapping("/hotel")
public class HotelController {
​
    @Autowired
    private IHotelService hotelService;
    // 搜索酒店数据
    @PostMapping("/list")
    public PageResult search(@RequestBody RequestParams params){
        return hotelService.search(params);
    }
}

4.实现搜索业务

我们在controller调用了IHotelService,并没有实现该方法,因此下面我们就在IHotelService中定义方法,并且去实现业务逻辑。

1)在cn.itcast.hotel.service中的IHotelService接口中定义一个方法:

/**
 * 根据关键字搜索酒店信息
 * @param params 请求参数对象,包含用户输入的关键字 
 * @return 酒店文档列表
 */
PageResult search(RequestParams params);

2)实现搜索业务,肯定离不开RestHighLevelClient,我们需要把它注册到Spring中作为一个Bean。在cn.itcast.hotel中的HotelDemoApplication中声明这个Bean:

@Bean
public RestHighLevelClient client(){
    return  new RestHighLevelClient(RestClient.builder(
        HttpHost.create("http://192.168.150.101:9200")
    ));
}

通过@Autowired注入bean

3)在cn.itcast.hotel.service.impl中的HotelService中实现search方法:

@Override
public PageResult search(RequestParams params) {
    try {
        // 1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备DSL
        // 2.1.query
        String key = params.getKey();
        if (key == null || "".equals(key)) {
            boolQuery.must(QueryBuilders.matchAllQuery());
        } else {
            boolQuery.must(QueryBuilders.matchQuery("all", key));
        }
​
        // 2.2.分页
        int page = params.getPage();
        int size = params.getSize();
        request.source().from((page - 1) * size).size(size);
​
        // 3.发送请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.解析响应
        return handleResponse(response);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}
​
// 结果解析
private PageResult handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    List<HotelDoc> hotels = new ArrayList<>();
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        // 放入集合
        hotels.add(hotelDoc);
    }
    // 4.4.封装返回
    return new PageResult(total, hotels);
}

 旅游案例-条件过滤(P116)

需求:添加品牌、城市、星级、价格等过滤功能

1.需求分析

在页面搜索框下面,会有一些过滤项:

传递的参数如图:

包含的过滤条件有:

  • brand:品牌值
  • city:城市
  • minPrice~maxPrice:价格范围
  • starName:星级

我们需要做两件事情:

  • 修改请求参数的对象RequestParams,接收上述参数
  • 修改业务逻辑,在搜索条件之外,添加一些过滤条件

2.修改实体类

修改在cn.itcast.hotel.pojo包下的实体类RequestParams:

@Data
public class RequestParams {
    private String key;
    private Integer page;
    private Integer size;
    private String sortBy;
    // 下面是新增的过滤条件参数
    private String city;
    private String brand;
    private String starName;
    private Integer minPrice;
    private Integer maxPrice;
}

3.修改搜索业务

在HotelService的search方法中,只有一个地方需要修改:requet.source().query( … )其中的查询条件。

在之前的业务中,只有match查询,根据关键字搜索,现在要添加条件过滤,包括:

  • 品牌过滤:是keyword类型,用term查询
  • 星级过滤:是keyword类型,用term查询
  • 价格过滤:是数值类型,用range查询
  • 城市过滤:是keyword类型,用term查询

多个查询条件组合,肯定是boolean查询来组合:

  • 关键字搜索放到must中,参与算分
  • 其它过滤条件放到filter中,不参与算分

因为条件构建的逻辑比较复杂,这里先封装为一个函数:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-erAcDDMS-1692105687313)(assets/image-20210722092935453.png)]

buildBasicQuery的代码如下:

private void buildBasicQuery(RequestParams params, SearchRequest request) {
    // 1.构建BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 2.关键字搜索
    String key = params.getKey();
    if (key == null || "".equals(key)) {
        boolQuery.must(QueryBuilders.matchAllQuery());
    } else {
        boolQuery.must(QueryBuilders.matchQuery("all", key));
    }
    // 3.城市条件
    if (params.getCity() != null && !params.getCity().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("city", params.getCity()));
    }
    // 4.品牌条件
    if (params.getBrand() != null && !params.getBrand().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand()));
    }
    // 5.星级条件
    if (params.getStarName() != null && !params.getStarName().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("starName", params.getStarName()));
    }
	// 6.价格
    if (params.getMinPrice() != null && params.getMaxPrice() != null) {
        boolQuery.filter(QueryBuilders
                         .rangeQuery("price")
                         .gte(params.getMinPrice())
                         .lte(params.getMaxPrice())
                        );
    }
	// 7.放入source
    request.source().query(boolQuery);
}

 旅游案例-我附近的酒店(P117)

需求:我附近的酒店

1.需求分析

在酒店列表页的右侧,有一个小地图,点击地图的定位按钮,地图会找到你所在的位置:

并且,在前端会发起查询请求,将你的坐标发送到服务端:

我们要做的事情就是基于这个location坐标,然后按照距离对周围酒店排序。实现思路如下:

  • 修改RequestParams参数,接收location字段

  • 修改search方法业务逻辑,如果location有值,添加根据geo_distance排序的功能

2.修改实体类

修改在cn.itcast.hotel.pojo包下的实体类RequestParams:

package cn.itcast.hotel.pojo;
​
import lombok.Data;
​
@Data
public class RequestParams {
    private String key;
    private Integer page;
    private Integer size;
    private String sortBy;
    private String city;
    private String brand;
    private String starName;
    private Integer minPrice;
    private Integer maxPrice;
    // 我当前的地理坐标
    private String location;
}
​

3.距离排序API

我们以前学习过排序功能,包括两种:

  • 普通字段排序

  • 地理坐标排序

我们只讲了普通字段排序对应的java写法。地理坐标排序只学过DSL语法,如下:

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "price": "asc"  
    },
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度",
          "order" : "asc",
          "unit" : "km"
      }
    }
  ]
}

对应的java代码示例:

4.添加距离排序

cn.itcast.hotel.service.implHotelServicesearch方法中,添加一个排序功能:

完整代码:

@Override
public PageResult search(RequestParams params) {
    try {
        // 1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备DSL
        // 2.1.query
        buildBasicQuery(params, request);
​
        // 2.2.分页
        int page = params.getPage();
        int size = params.getSize();
        request.source().from((page - 1) * size).size(size);
​
        // 2.3.排序
        String location = params.getLocation();
        if (location != null && !location.equals("")) {
            request.source().sort(SortBuilders
                                  .geoDistanceSort("location", new GeoPoint(location))
                                  .order(SortOrder.ASC)
                                  .unit(DistanceUnit.KILOMETERS)
                                 );
        }
​
        // 3.发送请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.解析响应
        return handleResponse(response);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

5.排序距离显示

重启服务后,测试我的酒店功能:

发现确实可以实现对我附近酒店的排序,不过并没有看到酒店到底距离我多远,这该怎么办?

排序完成后,页面还要获取我附近每个酒店的具体距离值,这个值在响应结果中是独立的:

因此,我们在结果解析阶段,除了解析source部分以外,还要得到sort部分,也就是排序的距离,然后放到响应结果中。

我们要做两件事:

  • 修改HotelDoc,添加排序距离字段,用于页面显示

  • 修改HotelService类中的handleResponse方法,添加对sort值的获取

1)修改HotelDoc类,添加距离字段

package cn.itcast.hotel.pojo;
​
import lombok.Data;
import lombok.NoArgsConstructor;
​
​
@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;
    // 排序时的 距离值
    private Object distance;
​
    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
    }
}
​

2)修改HotelService中的handleResponse方法

重启后测试,发现页面能成功显示距离了:

 旅游案例-广告置顶(P118)

需求:让指定的酒店在搜索结果中排名置顶

1.需求分析

要让指定酒店在搜索结果中排名置顶,效果如图:

页面会给指定的酒店添加广告标记。

那怎样才能让指定的酒店排名置顶呢?

我们之前学习过的function_score查询可以影响算分,算分高了,自然排名也就高了。而function_score包含3个要素:

  • 过滤条件:哪些文档要加分

  • 算分函数:如何计算function score

  • 加权方式:function score 与 query score如何运算

这里的需求是:让指定酒店排名靠前。因此我们需要给这些酒店添加一个标记,这样在过滤条件中就可以根据这个标记来判断,是否要提高算分

比如,我们给酒店添加一个字段:isAD,Boolean类型:

  • true:是广告

  • false:不是广告

这样function_score包含3个要素就很好确定了:

  • 过滤条件:判断isAD 是否为true

  • 算分函数:我们可以用最简单暴力的weight,固定加权值

  • 加权方式:可以用默认的相乘,大大提高算分

因此,业务的实现步骤包括:

  1. 给HotelDoc类添加isAD字段,Boolean类型

  2. 挑选几个你喜欢的酒店,给它的文档数据添加isAD字段,值为true

  3. 修改search方法,添加function score功能,给isAD值为true的酒店增加权重

2.修改HotelDoc实体

cn.itcast.hotel.pojo包下的HotelDoc类添加isAD字段:

3.添加广告标记

接下来,我们挑几个酒店,添加isAD字段,设置为true:

POST /hotel/_update/1902197537
{
    "doc": {
        "isAD": true
    }
}
POST /hotel/_update/2056126831
{
    "doc": {
        "isAD": true
    }
}
POST /hotel/_update/1989806195
{
    "doc": {
        "isAD": true
    }
}
POST /hotel/_update/2056105938
{
    "doc": {
        "isAD": true
    }
}

4.添加算分函数查询

接下来我们就要修改查询条件了。之前是用的boolean 查询,现在要改成function_socre查询。

function_score查询结构如下:

对应的JavaAPI如下:

我们可以将之前写的boolean查询作为原始查询条件放到query中,接下来就是添加过滤条件算分函数加权模式了。所以原来的代码依然可以沿用。

修改cn.itcast.hotel.service.impl包下的HotelService类中的buildBasicQuery方法,添加算分函数查询:

private void buildBasicQuery(RequestParams params, SearchRequest request) {
    // 1.构建BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 关键字搜索
    String key = params.getKey();
    if (key == null || "".equals(key)) {
        boolQuery.must(QueryBuilders.matchAllQuery());
    } else {
        boolQuery.must(QueryBuilders.matchQuery("all", key));
    }
    // 城市条件
    if (params.getCity() != null && !params.getCity().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("city", params.getCity()));
    }
    // 品牌条件
    if (params.getBrand() != null && !params.getBrand().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand()));
    }
    // 星级条件
    if (params.getStarName() != null && !params.getStarName().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("starName", params.getStarName()));
    }
    // 价格
    if (params.getMinPrice() != null && params.getMaxPrice() != null) {
        boolQuery.filter(QueryBuilders
                         .rangeQuery("price")
                         .gte(params.getMinPrice())
                         .lte(params.getMaxPrice())
                        );
    }
​
    // 2.算分控制
    FunctionScoreQueryBuilder functionScoreQuery =
        QueryBuilders.functionScoreQuery(
        // 原始查询,相关性算分的查询
        boolQuery,
        // function score的数组
        new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{
            // 其中的一个function score 元素
            new FunctionScoreQueryBuilder.FilterFunctionBuilder(
                // 过滤条件
                QueryBuilders.termQuery("isAD", true),
                // 算分函数
                ScoreFunctionBuilders.weightFactorFunction(10)
            )
        });
    request.source().query(functionScoreQuery);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/892005.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【论文阅读】 Model Sparsity Can Simplify Machine Unlearning

Model Sparsity Can Simplify Machine Unlearning 背景主要内容Contribution Ⅰ&#xff1a;对Machine Unlearning的一个全面的理解Contribution Ⅱ&#xff1a;说明model sparsity对Machine Unlearning的好处Pruning方法的选择sparse-aware的unlearning framework Experiments…

选择大型语言模型自定义技术

推荐&#xff1a;使用 NSDT场景编辑器 助你快速搭建可二次编辑器的3D应用场景 企业需要自定义模型来根据其特定用例和领域知识定制语言处理功能。自定义LLM使企业能够在特定的行业或组织环境中更高效&#xff0c;更准确地生成和理解文本。 自定义模型使企业能够创建符合其品牌…

Android Studio实现解析HTML获取图片URL将图片保存到本地

目录 效果activity_main.xmlMainActivityImageItemImageAdapter 效果 项目本来是要做成图片保存到手机然后读取数据后瀑布流展示&#xff0c;但是有问题&#xff0c;目前只能做到保存到手机 activity_main.xml <?xml version"1.0" encoding"utf-8"?…

《python编程基础及应用》,python编程基础及应用pdf

大家好&#xff0c;小编为大家解答python编程基础课后答案上海交通大学出版社周志化的问题。很多人还不知道python编程基础及应用课后答案高等教育出版社&#xff0c;现在让我们一起来看看吧&#xff01; 单项选择题 第一章python语法基础 1. Python 3.x 版本的保留字总数是C A…

UDP TCP 报文内容

1.UDP 2.TCP 源/目的端口号:表示数据是从哪个进程来,到哪个进程去; 32位序号/32位确认号:后面详细讲;4位TCP报头长度:表示该TCP头部有多少个32位bit(有多少个4字节);所以TCP头部最大长度是15*460 6位标志位: o URG:紧急指针是否有效 ——urgent 紧急的 o ACK:确认号是否有…

K8S核心组件etcd详解(上)

1 介绍 https://etcd.io/docs/v3.5/ etcd是一个高可用的分布式键值存储系统&#xff0c;是CoreOS&#xff08;现在隶属于Red Hat&#xff09;公司开发的一个开源项目。它提供了一个简单的接口来存储和检索键值对数据&#xff0c;并使用Raft协议实现了分布式一致性。etcd广泛应用…

vector使用以及模拟实现

vector使用以及模拟实现 vector介绍vector常用接口1.构造2.迭代器3.容量4.增删查改5.练习 vector模拟实现1.迭代器失效2.反向迭代器3.完整代码 vector介绍 和我们原来讲的string不同&#xff0c;vector并不是类&#xff0c;是一个类模板&#xff0c;加<类型>实例化以后才…

【云原生】Docker基本原理及镜像管理

目录 一、Docker概述 1.1 IT架构的演进&#xff1a; 1.2 Docker初始 1.3 容器的特点 1.4 Docker容器与虚拟机的区别 1.5 容器在内核中支持2种重要技术 1.6 Docker核心概念 1&#xff09;镜像 2&#xff09;容器 3&#xff09;仓库 二、安装Docker 2.1 Yum安装Docker…

【NEW】视频云存储EasyCVR平台H.265转码配置增加分辨率设置

关于视频分析EasyCVR视频汇聚平台的转码功能&#xff0c;我们在此前的文章中也介绍过不少&#xff0c;感兴趣的用户可以翻阅往期的文章进行了解。 安防视频集中存储EasyCVR视频监控综合管理平台可以根据不同的场景需求&#xff0c;让平台在内网、专网、VPN、广域网、互联网等各…

sCrypt编程马拉松于8月13日在复旦大学成功举办

继6月在英国Exeter大学成功举办了为期一周的区块链编程马拉松后&#xff0c;美国sCrypt公司创始人兼CEO刘晓晖博士带领核心团队成员王一强、郑宏锋、周全&#xff0c;于8月13日在复旦大学再次成功举办了一场全新的sCrypt编程马拉松。 本次活动由上海可一澈科技有限公司与复旦大…

【数据挖掘】使用 Python 分析公共数据【01/10】

一、说明 本文讨论了如何使用 Python 使用 Pandas 库分析官方 COVID-19 病例数据。您将看到如何从实际数据集中收集见解&#xff0c;发现乍一看可能不那么明显的信息。特别是&#xff0c;本文中提供的示例说明了如何获取有关疾病在不同国家/地区传播速度的信息。 二、准备您的…

QT中的按钮控件Buttons介绍

目录 Buttons 按钮控件 1、常用属性介绍 2、按钮介绍 2.1QPushButton 普通按钮 2.2QtoolButton 工具按钮 2.3Radio Button单选按钮 2.4CheckButton复选按钮 2.5Commam Link Button命令链接按钮 2.6Dialog Button Box命令链接按钮 Buttons 按钮控件 在Qt里&#xff0c;…

公告:微信小程序备案期限官方要求

备案期限要求 1、若微信小程序未上架&#xff0c;自2023年9月1日起&#xff0c;微信小程序须完成备案后才可上架&#xff0c;备案时间1-20日不等&#xff1b; 2、若微信小程序已上架&#xff0c;请于2024年3月31日前完成备案&#xff0c;逾期未完成备案&#xff0c;平台将按照…

docker启用cgroup v2

要求 本人的操作系统是kali&#xff0c;基于debian docker info如果你这里是2那么说明启用了&#xff0c;如果是1&#xff0c;那么就未启用 对于Docker来说&#xff0c;Cgroups v2的使用需要满足以下条件&#xff1a; Linux内核版本在4.15以上。 uname -r 系统已经启用Cgro…

vue-组件库-storybook:理解storybook、实践

一、理解 storybook Storybook是一个开源的工具&#xff0c;可以帮助前端开发者更好地构建、测试和展示组件。 具体来说&#xff0c;Storybook可以做以下几件事情&#xff1a; 1、为每个组件提供一个独立的页面&#xff0c;可以快速展示或调试组件。 2、管理多个组件&#x…

微服务-Ribbon(负载均衡)

负载均衡的面对多个相同的服务的时候&#xff0c;我们选择一定的策略去选择一个服务进行 负载均衡流程 Ribbon结构组成 负载均衡策略 RoundRobinRule&#xff1a;简单的轮询服务列表来选择服务器AvailabilityFilteringRule 对两种情况服务器进行忽略&#xff1a; 1.在默认情…

linux部署clickhouse(单机)

一、下载安装 1.1、下载地址 阿里巴巴开源镜像站-OPSX镜像站-阿里云开发者社区阿里巴巴开源镜像站&#xff0c;免费提供Linux镜像下载服务&#xff0c;拥有Ubuntu、CentOS、Deepin、MongoDB、Apache、Maven、Composer等多种开源软件镜像源&#xff0c;此外还提供域名解析DNS、…

使用 Visual Studio Code Docker 工具调试 .NET 容器

作者&#xff1a;Chet Husk 排版&#xff1a;Alan Wang Visual Studio Code Docker 工具已发布1.26.0版本&#xff0c;这个版本为使用 .NET SDK 构建和调试容器映像提供了内置支持。 VS Code 中的 Docker 调试 Visual Studio Code Docker 工具使开发人员可以轻松入门容器。它…

微服务—Eureka注册中心

eureka相当于是一个公司的管理人事HR,各部门之间如果有合作时&#xff0c;由HR进行人员的分配以及调度&#xff0c;具体选哪个人&#xff0c;全凭HR的心情&#xff0c;如果你这个部门存在没有意义&#xff0c;直接把你这个部门撤销&#xff0c;全体人员裁掉&#xff0c;所以不想…

跟着美团学设计模式(感处)

读了着篇文章之后发现真的是&#xff0c;你的思想&#xff0c;你的思维是真的比比你拥有什么技术要强的。 注 开闭原则 开闭原则&#xff08;Open-Closed Principle&#xff09;是面向对象设计中的基本原则之一&#xff0c;它的定义是&#xff1a;一个软件实体应该对扩展开放…