为什么要使用多线程呢?
先从总体上来说:
- 从计算机底层来说: 线程可以比作是轻量级的进程,是程序执行的最小单位,线程间的切换和调度的成本远远小于进程。另外,多核 CPU 时代意味着多个线程可以同时运行,这减少了线程上下文切换的开销。
- 从当代互联网发展趋势来说: 现在的系统动不动就要求百万级甚至千万级的并发量,而多线程并发编程正是开发高并发系统的基础,利用好多线程机制可以大大提高系统整体的并发能力以及性能。
再深入到计算机底层来探讨:
- 单核时代: 在单核时代多线程主要是为了提高单进程利用 CPU 和 IO 系统的效率。 假设只运行了一个 Java 进程的情况,当我们请求 IO 的时候,如果 Java 进程中只有一个线程,此线程被 IO 阻塞则整个进程被阻塞。CPU 和 IO 设备只有一个在运行,那么可以简单地说系统整体效率只有 50%。当使用多线程的时候,一个线程被 IO 阻塞,其他线程还可以继续使用 CPU。从而提高了 Java 进程利用系统资源的整体效率。
- 多核时代: 多核时代多线程主要是为了提高进程利用多核 CPU 的能力。举个例子:假如我们要计算一个复杂的任务,我们只用一个线程的话,不论系统有几个 CPU 核心,都只会有一个 CPU 核心被利用到。而创建多个线程,这些线程可以被映射到底层多个 CPU 上执行,在任务中的多个线程没有资源竞争的情况下,任务执行的效率会有显著性的提高,约等于(单核时执行时间/CPU 核心数)。
使用多线程可能带来什么问题?
并发编程的目的就是为了能提高程序的执行效率提高程序运行速度,但是并发编程并不总是能提高程序运行速度的,而且并发编程可能会遇到很多问题,比如:内存泄漏、死锁、线程不安全等等。
说说线程的生命周期和状态?
由上图可以看出:线程创建之后它将处于 NEW(新建) 状态,调用 start()
方法后开始运行,线程这时候处于 READY(可运行) 状态。可运行状态的线程获得了 CPU 时间片(timeslice)后就处于 RUNNING(运行) 状态。
当线程执行 wait()
方法之后,线程进入 WAITING(等待) 状态。进入等待状态的线程需要依靠其他线程的通知才能够返回到运行状态,而 TIMED_WAITING(超时等待) 状态相当于在等待状态的基础上增加了超时限制,比如通过 sleep(long millis)
方法或 wait(long millis)
方法可以将 Java 线程置于 TIMED_WAITING 状态。当超时时间到达后 Java 线程将会返回到 RUNNABLE 状态。当线程调用同步方法时,在没有获取到锁的情况下,线程将会进入到 BLOCKED(阻塞) 状态。线程在执行 Runnable 的run()
方法之后将会进入到 TERMINATED(终止) 状态。