diffusion model (七) diffusion model是一个zero-shot 分类器

news2024/11/23 9:27:58

Paper: Your Diffusion Model is Secretly a Zero-Shot Classifier

Website: diffusion-classifier.github.io/

文章目录

    • 相关阅读
    • 背景
    • 方法大意
      • diffusion model的背景知识
      • 如何将diffusion model应用到zero-shot classification
        • 如何求解
    • 实验
    • 参考文献

相关阅读

  • diffusion model(一)DDPM技术小结 (denoising diffusion probabilistic)
  • diffusion model(二)—— DDIM技术小结
  • diffusion model(三)—— classifier guided diffusion model
  • diffusion model(四)文生图diffusion model(classifier-free guided)
  • diffusion model(五)stable diffusion底层原理(latent diffusion model, LDM

背景

最近,出现了一系列大规模的文生图模型,它们极大地增强了我们通过文字生成图片的能力。这些模型可以根据各种提示生成逼真的图片,展现出惊人的综合创作能力。到目前为止,几乎所有的应用都只关注了模型的生成功能,但实际上,这些模型还能提供条件密度估计,这对于处理图像生成之外的任务也很有用。

本篇文章指出类似stable diffusion这样的大规模文本转图像模型所计算出的密度估计,可以被用来进行“零样本分类” (zero-shot classification),而不需要额外的训练。

方法大意

diffusion model的背景知识

从前面diffusions系列文章中我们知道,diffuison model的去噪过程是一个马尔可夫过程
p θ ( x 0 ) = ∫ p θ ( x 0 : T ) d x 1 : T 其中:  p θ ( x 0 : T ) : = p θ ( x T ) ∏ t = 1 T p θ ( x t − 1 ∣ x t ) p θ ( x t − 1 ∣ x t ) = N ( x t − 1 ; μ θ ( x t , t ) , σ t I ) (1) p_\theta(x_{0})= \int p_\theta(x_{0:T})dx_{1:T} \\ \text{其中:} \space p_\theta(x_{0:T}) := p_\theta(x_T)\prod_{t=1}^{T} p_\theta (x_{t-1}|x_t) \\ p_\theta (x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_\theta(x_t, t) , \sigma_t \textbf{I}) \tag{1} pθ(x0)=pθ(x0:T)dx1:T其中: pθ(x0:T):=pθ(xT)t=1Tpθ(xt1xt)pθ(xt1xt)=N(xt1;μθ(xt,t),σtI)(1)
即:
p θ ( x 0 ) = ∫ p θ ( x T ) ∏ t = 1 T p θ ( x t − 1 ∣ x t ) d x 1 : T p θ ( x t − 1 ∣ x t ) = N ( x t − 1 ; μ θ ( x t , t ) , σ t I ) (2) p_\theta(x_{0})= \int p_\theta(x_T)\prod_{t=1}^{T} p_\theta (x_{t-1}|x_t) dx_{1:T} \\ p_\theta (x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_\theta(x_t, t) , \sigma_t \textbf{I}) \tag{2} pθ(x0)=pθ(xT)t=1Tpθ(xt1xt)dx1:Tpθ(xt1xt)=N(xt1;μθ(xt,t),σtI)(2)
p θ ( x T ) p_\theta(x_T) pθ(xT)服从正态分布 N ( x T ; 0 , I ) \mathcal{N}(x_T; 0, \mathrm{I}) N(xT;0,I), 其与 θ \theta θ无关,可记作 p ( x T ) p(x_T) p(xT)

当给定条件 c c c时,采样过程可以表述为
p θ ( x 0 ∣ c ) = ∫ p ( x T ) ∏ t = 1 T p θ ( x t − 1 ∣ x t , c ) d x 1 : T (3) p_\theta(x_{0} | c)= \int p(x_T)\prod_{t=1}^{T} p_\theta (x_{t-1}|x_t, c) dx_{1:T} \\ \tag{3} pθ(x0c)=p(xT)t=1Tpθ(xt1xt,c)dx1:T(3)

由于涉及到积分,直接最大化 p θ ( x 0 ∣ c ) p_\theta(x_0|c) pθ(x0c)很难求解,因此diffusion model的训练采用了最小化对数似然的证据下界(Evidence Lower Bound, ELBO)。通过推导得出:最大化 p θ ( x 0 ∣ c ) p_\theta(x_0|c) pθ(x0c)相当于优化下界【预测噪声和实际添加噪声差异的期望越小越好】。详细过程可参考文献[1]中的式32-45, 86-92
log ⁡ p θ ( x 0 ∣ c ) ≥ E q [ log ⁡ p θ ( x 0 : T ∣ c ) q ( x 1 : T ∣ x 0 ) ] = E q [ log ⁡ p ( x T ) ∏ t = 1 T p θ ( x t − 1 ∣ x t , c ) ∏ t = 1 T q ( x t ∣ x t − 1 ) ] = E q [ log ⁡ p ( x T ) p θ ( x 0 ∣ x 1 , c ) ∏ t = 2 T p θ ( x t − 1 ∣ x t , c ) q ( x T ∣ x T − 1 ) ∏ t = 1 T − 1 q ( x t ∣ x t − 1 ) ] ⋯ = − E ϵ [ ∑ t = 2 T w t ⏟ 当训练时以均匀分布采样时间步时 w t = 1 ∥ ϵ − ϵ θ ( x t , c ) ∥ 2 − log ⁡ p θ ( x 0 ∣ x 1 , c ) ⏟ 当T足够大时,该项 → 0 ] + C ⏟ 常数与c无关 ≈ 去除无关项 − E ϵ , t [ ∥ ϵ − ϵ θ ( x t , c ) ∥ 2 ] (4) \begin{aligned} \log p _ { \theta } ( x _ { 0 } \vert c ) &\ge \mathbb{E} _ { q } [ \log \frac { p _ { \theta } ( x _ { 0 : T } | c ) } { q ( x _ { 1 : T } \vert x _ { 0 } ) } ] \\ &= \mathbb{E} _ { q } [ \log \frac { p(x_T)\prod_{t=1}^{T} p_\theta (x_{t-1}|x_t, c)} { \prod _ { t = 1 } ^ { T } q ( x _ { t } \vert x _ { t - 1 } ) } ] \\ & = \mathbb{ E } _ { q } [ \log \frac { p ( x _ { T } ) p _ { \theta } ( x _ { 0 } \vert x _ { 1 } , c) \prod _ { t = 2 } ^ { T } p _ { \theta } ( x _ { t - 1 } \vert x _ { t } , c ) } { q ( x _ { T } \vert x _ { T - 1 } ) \prod _ { t = 1 } ^ { T - 1 } q ( x _ { t } \vert x _ { t - 1 } ) } ] \\ & \cdots \\ &= - \mathbb{E} _ { \epsilon } [ \sum _ { t = 2 } ^ { T } \underbrace{w _ { t }}_{\text{当训练时以均匀分布采样时间步时}w_t=1} \Vert \epsilon - \epsilon _ { \theta } ( x _ { t } , c ) \Vert ^ { 2 } - \underbrace {\log p _ { \theta } ( x _ { 0 } \vert x _ { 1 } , c )}_{\text{当T足够大时,该项} \rightarrow 0} ] + \underbrace{C}_{\text{常数与c无关}} \\ & \stackrel{去除无关项} \approx - \mathbb{E} _ { \epsilon, t} \left[ \Vert \epsilon - \epsilon _ { \theta } ( x _ { t } , c ) \Vert ^ { 2 } \right]\\ \end{aligned}\tag{4} logpθ(x0c)Eq[logq(x1:Tx0)pθ(x0:Tc)]=Eq[logt=1Tq(xtxt1)p(xT)t=1Tpθ(xt1xt,c)]=Eq[logq(xTxT1)t=1T1q(xtxt1)p(xT)pθ(x0x1,c)t=2Tpθ(xt1xt,c)]=Eϵ[t=2T当训练时以均匀分布采样时间步时wt=1 wtϵϵθ(xt,c)2T足够大时,该项0 logpθ(x0x1,c)]+常数与c无关 C去除无关项Eϵ,t[ϵϵθ(xt,c)2](4)

如何将diffusion model应用到zero-shot classification

在这里插入图片描述

对于一个分类模型,给定输入 x x x,模型输出类别的概率向量 c c c, 即 p θ ( c ∣ x ) p_\theta(c|x) pθ(cx),为了用diffusion model求解 p θ ( c ∣ x ) p_\theta(c|x) pθ(cx),需要用到贝叶斯公式
p θ ( c i ∣ x ) = p ( c i )   p θ ( x ∣ c i ) ∑ j p ( c j )   p θ ( x ∣ c j ) (5) p _ { \theta } ( c _ { i } \vert x ) = \frac { p ( c _ { i } ) \, p _ { \theta } ( x \vert c _ { i } ) } { \sum _ { j } p ( c _ { j } ) \, p _ { \theta } ( x \vert c _ { j } ) } \tag{5} pθ(cix)=jp(cj)pθ(xcj)p(ci)pθ(xci)(5)
不妨假设各个类别的先验概率相同,有 p ( c 1 ) = p ( c 2 ) = ⋯ = p ( c N ) = 1 N p(c_1)=p(c_2)=\cdots=p(c_N) = \frac{1}{N} p(c1)=p(c2)==p(cN)=N1

式5可写作
p θ ( c i ∣ x ) = p θ ( x ∣ c i ) ∑ j   p θ ( x ∣ c j ) = exp ⁡ { log ⁡ ( p θ ( x ∣ c i ) ) } ∑ j   exp ⁡ { log ⁡ ( p θ ( x ∣ c j ) ) } (6) \begin{aligned} p _ { \theta } ( c _ { i } \vert x ) &= \frac { p _ { \theta } ( x \vert c _ { i } ) } { \sum _ { j } \, p _ { \theta } ( x \vert c _ { j } ) } \\ & = \frac { \exp \{ \log {( p _ { \theta } ( x \vert c _ { i } ) } ) \} } { \sum _ { j } \, \exp \{ \log {( p _ { \theta } ( x \vert c _ { j } ))} \} } \end{aligned} \tag{6} pθ(cix)=jpθ(xcj)pθ(xci)=jexp{log(pθ(xcj))}exp{log(pθ(xci))}(6)
根据式4,我们知道 log ⁡ p θ ( x 0 ∣ c ) ≈ − E ϵ , t [ ∥ ϵ − ϵ θ ( x t , c ) ∥ 2 ] \log p _ { \theta } ( x _ { 0 } \vert c ) \approx - \mathbb{E} _ { \epsilon, t} \left[ \Vert \epsilon - \epsilon _ { \theta } ( x _ { t } , c ) \Vert ^ { 2 } \right] logpθ(x0c)Eϵ,t[ϵϵθ(xt,c)2], 带入上式得
p θ ( c i ∣ x ) ≈ exp ⁡ { − E ϵ , t [ ∥ ϵ − ϵ θ ( x t , c i ) ∥ 2 ] } ∑ j   exp ⁡ { − E ϵ , t [ ∥ ϵ − ϵ θ ( x t , c j ) ∥ 2 ] } (7) \begin{aligned} p _ { \theta } ( c _ { i } \vert x ) & \approx \frac { \exp \{ - \mathbb{E} _ { \epsilon, t} \left[ \Vert \epsilon - \epsilon _ { \theta } ( x _ { t } , c_i ) \Vert ^ { 2 } \right]\} } { \sum _ { j } \, \exp \{ - \mathbb{E} _ { \epsilon, t} \left[ \Vert \epsilon - \epsilon _ { \theta } ( x _ { t } , c_j ) \Vert ^ { 2 } \right] \} } \end{aligned} \tag{7} pθ(cix)jexp{Eϵ,t[ϵϵθ(xt,cj)2]}exp{Eϵ,t[ϵϵθ(xt,ci)2]}(7)
由此我们推导出了基于diffusion model的classifier。

如何求解

我们看到求式7的关键是不同类别下,预测的噪声和实际噪声差异的期望。这里面有两个随机变量,分别是 ϵ , t \epsilon, t ϵ,t,其中 ϵ ∼ N ( 0 , I ) \epsilon \sim \mathcal{N}(0, \mathrm{I}) ϵN(0,I), t ∼ u n i f o r m ( 0 , T ) t \sim \mathrm{uniform}(0, T) tuniform(0,T)。可以用蒙特卡诺采样对上述期望进行估计,假定依概率对上述两个随机变量采样 K K K次,得到 { ( ϵ i , t i ) ∣ i = 0 , 1 , ⋯ K } \{ (\epsilon_i, t_i)|i = 0, 1, \cdots K \} {(ϵi,ti)i=0,1,K},可将式7转化为
E ϵ , t [ ∥ ϵ − ϵ θ ( x t , c j ) ∥ 2 ] = 1 K ∑ i = 1 K ∥ ϵ i − ϵ θ ( x t i , c j ) ∥ 2 (8) \mathbb{E} _ { \epsilon, t} \left[ \Vert \epsilon - \epsilon _ { \theta } ( x _ { t } , c_j ) \Vert ^ { 2 } \right] = \frac { 1 } { K } \sum _ { i = 1 } ^ { K } \Vert \epsilon _ { i } - \epsilon _ { \theta } (x_{t_i}, c _ { j } ) \Vert ^ { 2 } \tag{8} Eϵ,t[ϵϵθ(xt,cj)2]=K1i=1Kϵiϵθ(xti,cj)2(8)
当我们求出每一个类别 j j j下的 p θ ( c j ∣ x ) p _ { \theta } ( c _ { j } \vert x ) pθ(cjx),值最大的就是预测出来的类别。

细心的同学发现了,为了准确的估计期望,需要用蒙特卡诺方法采样较多的样本,一个样本意味着需要用diffusion model推理一次得到预测的噪声,当样本量较大时,推理时间会非常大。总的推理次数为 K ∗ # c K * \# c K#c, K K K为蒙特卡诺的采样的样本数目, # c \# c #c为类别数目, # c = N \#c=N #c=N

在实践中为了减少推理速度,作者修改了对 t i , ϵ i t_i, \epsilon_i ti,ϵi这两个随机变量的采样逻辑,也将上面的one-stage分类的范式转化为two-stage。感兴趣的读者可以阅读原文。本文简单介绍核心思路:

对于第一个提速方案:修改采样逻辑。主要基于实验观测,如下图。

(注:横轴表示 ϵ i \epsilon_i ϵi的采样数目。Uniform: t = [ 0 , 1 , 2 , . . , 1000 ] t = [0,1, 2, .., 1000] t=[0,1,2,..,1000], 0, 500, 1000: t = [ 0 , 500 , 1000 ] t=[0, 500, 1000] t=[0,500,1000], even 10: t = [ 0 , 10 , 20 , . . . , 1000 ] t = [0, 10, 20, ..., 1000] t=[0,10,20,...,1000]

在这里插入图片描述

对于第二个提速方案:作者将 N = { ( ϵ i , t i ) ∣ i = 0 , 1 , ⋯ K } N= \{ (\epsilon_i, t_i)|i = 0, 1, \cdots K \} N={(ϵi,ti)i=0,1,K}划分了成两个集合 K 1 , K 2 K_1, K_2 K1,K2, 首先在 K 1 K_1 K1中根据式7估计 x x x的类别。保留概率最高的 M M M个类别。随后在集合 K 2 K_2 K2上对前 M M M个可能的类别继续用式7计算概率。此时的计算量从 K ∗ # c K * \#c K#c变为 K 1 ∗ # c + ( K 2 ) ∗ M K_1 * \#c + (K_2) * M K1#c+(K2)M

实验

作者对比同为zero-shot classifier的CLIP,结果如下。zero-shot的能力以及接近了基于renset50的CLIP。但与openCLIP ViT-H/14还有较大差距。其它更多的实验对比请见原始论文。

在这里插入图片描述

参考文献

[1]: Luo, Calvin. “Understanding diffusion models: A unified perspective.” arXiv preprint arXiv:2208.11970 (2022).
[2]: Li, Alexander C., et al. “Your diffusion model is secretly a zero-shot classifier.” arXiv preprint arXiv:2303.16203 (2023).

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/888162.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux--KVM虚拟机扩容

KVM虚拟机扩容 扩容流程 通过virsh list --all可以看到新clone的虚拟机名称 查看磁盘所在位置 virsh domblklist 虚拟机名称 查看虚拟机磁盘文件的大小 qemu-img info 上述hda 扩容之前先关闭虚拟机(后面所有的命令都在虚拟机关闭的状态下运行)&…

sd卡显示为空白怎么办?解析原因及分享解决方法

随着智能手机和数码相机的普及,SD卡已成为我们常用的存储媒体之一。然而,由于各种原因,SD卡有时会突然显示为空白,这意味着存储在卡上的数据不再可见。这对于用户来说可能造成困扰和焦虑,因为其中的重要照片、视频等文…

CSS中的calc()函数有什么作用?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ CSS中的calc()函数及其作用⭐ 作用⭐ 示例1. 动态计算宽度:2. 响应式布局:3. 自适应字体大小:4. 计算间距: ⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点…

激光里程计:fast-lio复现

文章目录 复现概要相关代码和数据下载环境搭建运行demo简要说明Velodyne Rosbag TEST 里程计话题发布参考 复现概要 按照GitHub上面的markdown文档,搭建FAST_LIO环境并进行Rosbag Example验证的整个过程的简单记录。 相关代码和数据下载 url: https://pan.baidu.…

【数据结构】二叉树链式结构的实现及其常见操作

目录 1.手搓二叉树 2.二叉树的遍历 2.1前序、中序以及后序遍历 2.2二叉树的层序遍历 3.二叉树的常见操作 3.1求二叉树节点数量 3.2求二叉树叶子节点数量 3.3求二叉树第k层节点个数 3.3求二叉树的深度 3.4二叉树查找值为x的节点 4.二叉树的销毁 1.手搓二叉树 在学习…

安防监控视频云存储EasyCVR平台H.265转码功能更新:新增分辨率配置

安防视频集中存储EasyCVR视频监控综合管理平台可以根据不同的场景需求,让平台在内网、专网、VPN、广域网、互联网等各种环境下进行音视频的采集、接入与多端分发。在视频能力上,视频云存储平台EasyCVR可实现视频实时直播、云端录像、视频云存储、视频存储…

el-table实现纯前端查询列表(不走后端接口)

2023.8.16今天我学习了如何使用前端进行数据的查询,有时候后端会直接返回全部的数据,这时候我们就需要用前端进行查找数据。 首先elementUI有自带el-table查询的组件: Element - The worlds most popular Vue UI framework 我们发现在这段代…

章节3:防御篇

章节3:防御篇 06 密码暴力破解的防御 暴力破解防御 sleepToken限制尝试次数,锁定账户 二次验证 reCAPTCHA(IP验证) 行为识别 WAF 强制修改密码 取消密码登录 segmentfault、知乎 个人用户安全建议 使用复杂密码不同网站使用…

python编程需要的电脑配置,python编程对电脑的要求

大家好,给大家分享一下python编程用什么笔记本电脑,很多人还不知道这一点。下面详细解释一下。现在让我们来看看! 不打游戏,只学编程。刚开始自学 Python小发猫伪原创,python下载需要花钱吗。 如果不搞机器学习的话,也…

centos7异常断电重启丢失系统引导。

起因: 公司机房意外断电,服务器断电异常关机,次日到达公司启动服务器,无法正常进入系统。 报错1: i8042: No controller found 报错2: Failed to mount /sysroot 排查思路: 通过报错可以看出系…

Linux网络编程(高并发服务器)

文章目录 前言一、什么是高并发服务器二、使用多线程和多进程实现高并发服务器的思路三、多进程服务器代码编写四、多线程服务器代码编写总结 前言 本篇文章带大家学习Linux网络编程中的高并发服务器。首先我们需要了解什么是高并发服务器,然后是学习如何来编写高并…

python——案例24:输出日历

案例24:输出日历import calendar #导入日历 yearint(2023) #设定年 moonint(8) #设定月print(calendar.month(year,moon))

黑客入侵:福特汽车Sync3车机存在漏洞,黑客入侵可抹除系统数据

据福特汽车公告,他们发现部分2021年至2022年车型的Sync3车机存在Wi-Fi漏洞,该漏洞可能被黑客利用来入侵并抹除车机内的系统数据。这一漏洞源于福特车系中采用的WL18xx MCP驱动程序的内存缓冲区溢位漏洞,其漏洞编号为CVE-2023-29468。 这一发现…

产品经理:实现一个微信输入框

近期在开发AI对话产品的时候为了提升用户体验增强了对话输入框的相关能力,产品初期阶段对话框只是一个单行输入框,导致在文本内容很多的时候体验很不好,所以进行体验升级,类似还原了微信输入框的功能(只是其中的一点点…

matlab保存图片

仅作为记录,大佬请跳过。 即可。 参考 感谢大佬博主文章:传送门

Java算法_ 检查对称树(LeetCode_Hot100)

题目描述:给你一个二叉树的根节点 , 检查它是否轴对称。root 获得更多?算法思路:代码文档,算法解析的私得。 运行效果 完整代码 /*** 2 * Author: LJJ* 3 * Date: 2023/8/17 8:47* 4*/ public class SymmetricTree {static class…

Journal of Cheminformatics投稿经验分享

期刊名: Journal of Cheminformatics期刊名缩写:J CHEMINFORMATICS期刊ISSN:1758-2946E-ISSN:1758-29462023年影响因子/JCR分区:8.6/Q1SCI分区: CHEMISTRY, MULTIDISCIPLINARY 化学综合3区COMPUTER SCIENCE, INFORMATION SYSTEMS 计算机:信息系统2区COMPUTER SCIENCE, I…

AgentBench:AI智能体的应用前景——生产端的应用

生产端的应用 相比于消费端,AI智能体作为生产力工具的潜力则更为巨大。在现实中,很多工作需要专业化的数据作为支撑,通用化大模型显然不能胜任,这就给专用型的AI智能体留下了空间。在实践中,人们已经用大模型训练了不少专用的AI智能体。比如,不久前北京大学团队发行了一…

linux内核异步内存回收的另一个思路:基于冷热文件的冷热区域精准的回收冷文件页page(内核ko方案)

本文介绍的针对pagecache的异步内存回收方案与现有的思路有很大不同:内存回收的单位是一个个文件,再把文件的pagecache分成一个个小单元(或者叫区域)。提前判断出文件那些区域是频繁访问的(热区域),哪些区域很少访问(冷区域)。异步内存回收线…

移动通信系统的LMS自适应波束成形技术matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ..................................................................... idxx0; while idxx&…