Matplotlib绘图知识小结--Python数据分析学习

news2025/1/11 1:20:07

一、Pyplot子库绘制2D图表

1、Matplotlib Pyplot

Pyplot 是 Matplotlib 的子库,提供了和 MATLAB 类似的绘图 API。
Pyplot 是常用的绘图模块,能很方便让用户绘制 2D 图表。
Pyplot 包含一系列绘图函数的相关函数,每个函数会对当前的图像进行一些修改,例如:给图像加上标记,生新的图像,在图像中产生新的绘图区域等等。

使用的时候,我们可以使用 import 导入 pyplot 库,并设置一个别名 plt:

import matplotlib.pyplot as plt

就可以使用 plt 来引用 Pyplot 包的方法。

以下实例,我们通过两个坐标 (0,0) 到 (6,100) 来绘制一条线:

import matplotlib.pyplot as plt
import numpy as np
# 使用 numpy 构造数组作为数据
x=np.array([0,6]) # x轴的数据
y=np.array([0,100]) # y轴的数据
plt.plot(x, y)
plt.show() # 让图形得到显示

在这里插入图片描述
plot() 用于画图它可以绘制点和线,语法格式如下:

# 画单条线
plot([x], y, [fmt], *, data=None, **kwargs)
# 画多条线
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
  • x, y:点或线的节点,x 为 x 轴数据,y 为 y 轴数据,数据可以列表或数组。
  • fmt:可选,定义基本格式(如颜色、标记和线条样式)。
  • **kwargs:可选,用在二维平面图上,设置指定属性,如标签,线的宽度等。

颜色字符:‘b’ 蓝色,‘m’ 洋红色,‘g’ 绿色,‘y’ 黄色,‘r’ 红色,‘k’ 黑色,‘w’ 白色,‘c’ 青绿色,‘#008000’ RGB 颜色符串。多条曲线不指定颜色时,会自动选择不同颜色

线型参数:‘‐’ 实线,‘‐‐’ 破折线,‘‐.’ 点划线,‘:’ 虚线。

标记字符:‘.’ 点标记,‘,’ 像素标记(极小点),‘o’ 实心圈标记,‘v’ 倒三角标记,‘^’ 上三角标记,‘>’ 右三角标记,‘<’ 左三角标记…等等。

2、实例:绘制sin、cos函数,并指定线型和颜色

import matplotlib.pyplot as plt
import numpy as np
x=np.arange(0,4*np.pi,0.1) # 0-4pi 每隔0.1取一个数
# 直接调用numpy里面的三角函数
y=np.sin(x)
z=np.cos(x)
plt.plot(x,y,'r-.',x,z,'b:')# 第一条线的参数、样式,第二条线的参数、样式
plt.show()

在这里插入图片描述

3、绘制散点图

import matplotlib.pyplot as plt
import numpy as np
x=np.array([1,2,3,4,5,6])
y=np.array([1,2,3,4,5,6])
plt.plot(x,y,'o')#实心点,绘制散点图
plt.show()

在这里插入图片描述

以上只是简单的使用了pyplot库。

二、Matplotlib 绘图标记

绘图过程如果我们想要给坐标自定义一些不一样的标记,就可以使用 plot() 方法的 marker 参数来定义。
fmt 参数
fmt 参数定义了基本格式,如标记、线条样式和颜色。

fmt = '[marker][line][color]'

marker 可以定义的符号如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述标记大小与颜色
我们可以自定义标记的大小与颜色,使用的参数分别是:

  • markersize,简写为 ms:定义标记的大小。
  • markerfacecolor,简写为 mfc:定义标记内部的颜色。
  • markeredgecolor,简写为 mec:定义标记边框的颜色。

线的宽度
线的宽度可以使用 linewidth 参数来定义,简写为 lw,值可以是浮点数,如:1、2.0、5.67 等。

1、综合案例

(1)拐点带样式的散点图

y = np.array([1,5,3,54,6,3,67,4,23])
plt.plot(y,marker='o') # x轴参数不指定,则按0-n对应y轴参数

plt.show()   

在这里插入图片描述
(2)多参数

import matplotlib.pyplot as plt
import numpy as np
y=np.array([3,5,1,8,4])
plt.plot(y,'o-.b',ms=15,mfc='r',mec='g')# 线条的样式、标记的大小、标记内部填充的颜色、标记的边框颜色
plt.show()

在这里插入图片描述

三、Matplotlib 轴标签和标题

设置轴标签和标题时,如果使用中文,可能会出现乱码情况,可以使用以下两行代码解决

plt.rcParams['font.sans-serif'] = [u'SimHei'] # SimHei就是中文字体
# 因为设置了中文后,负号就乱码了,所以还要设置负号的编码
plt.rcParams['axes.unicode_minus'] = False # 修改坐标轴中符号的编码

1、轴标签

可以使用 xlabel() 和 ylabel() 方法来设置 x 轴和 y 轴的标签。

2、标题

我们可以使用 title() 方法来设置标题。

案例

import matplotlib.pyplot as plt
import numpy as np
x=np.array([1,2,3,4,5])
y=np.array([1,4,9,16,25])
plt.plot(x,y,'.-.',linewidth=1)
plt.title('matplotlib')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

3、标题与标签的定位

  • title() 方法提供了 loc 参数来设置标题显示的位置,可以设置为: ‘left’, ‘right’, 和 ‘center’, 默认值为 ‘center’。

  • xlabel() 方法提供了 loc 参数来设置 x 轴显示的位置,可以设置为: ‘left’, ‘right’, 和 ‘center’, 默认值为 ‘center’。

  • ylabel() 方法提供了 loc 参数来设置 y 轴显示的位置,可以设置为: ‘bottom’, ‘top’, 和 ‘center’, 默认值为 ‘center’。

4、使用中文字体

方法有很多种,这里使用系统的字体。
查看字体种类:

from matplotlib import pyplot as plt
import matplotlib
a=sorted([f.name for f in matplotlib.font_manager.fontManager.ttflist])

for i in a:
    print(i)

绘图中添加字体:

plt.rcParams['font.family']=['STFangsong']

实例:

import matplotlib.pyplot as plt

import numpy as np
plt.rcParams['font.family']=['FangSong']

x=np.array([1,2,3,4,5])
y=np.array([1,4,9,16,25])
plt.plot(x,y,'.-.',linewidth=1)
plt.title('绘图',fontsize=25)
plt.xlabel('x轴',loc='right',fontsize=18)
plt.ylabel('y轴',loc='top',fontsize=18)
plt.show()

在这里插入图片描述

四、Matplotlib 网格线

我们可以使用 pyplot 中的 grid() 方法来设置图表中的网格线。

grid() 方法语法格式如下:

matplotlib.pyplot.grid(b=None, which='major', axis='both', )
  • b:可选,默认为 None,可以设置布尔值,true 为显示网格线,false 为不显示,如果设置 **kwargs 参数,则值为 true。
  • which:可选,可选值有 ‘major’、‘minor’ 和 ‘both’,默认为 ‘major’,表示应用更改的网格线。
  • axis:可选,设置显示哪个方向的网格线,可以是取 ‘both’(默认),‘x’ 或 ‘y’,分别表示两个方向,x 轴方向或 y 轴方向。
  • **kwargs:可选,设置网格样式,可以是 color=‘r’, linestyle=‘-’ 和 linewidth=2,分别表示网格线的颜色,样式和宽度。

实例:

1、使用默认值

import numpy as np
from matplotlib import pyplot as plt

plt.rcParams['font.sans-serif'] = [u'SimHei'] # SimHei就是中文字体
# 因为设置了中文后,负号就乱码了,所以还要设置负号的编码
plt.rcParams['axes.unicode_minus'] = False # 修改坐标轴中符号的编码

x=np.array([1,2,3,4,5])
y=np.array([1,4,9,16,25])
plt.plot(x,y,'.-.',linewidth=1)
plt.title('绘图',fontsize=25)
plt.xlabel('x轴',loc='right',fontsize=18)
plt.ylabel('y轴',loc='top',fontsize=18)

plt.grid() # 使用默认值

plt.show()  

在这里插入图片描述

2、自定义网格线

import matplotlib.pyplot as plt

import numpy as np
plt.rcParams['font.family']=['FangSong']

x=np.array([1,2,3,4,5])
y=np.array([1,4,9,16,25])
plt.plot(x,y,'.-',linewidth=1)
plt.title('绘图',fontsize=25)
plt.xlabel('x轴',loc='right')
plt.ylabel('y轴',loc='top')
# 只有平行于x轴方向有网格线
plt.grid(axis='y',color='r',linestyle='--',linewidth=0.5)
plt.show()

在这里插入图片描述
参数说明:

  • color:‘b’ 蓝色,‘m’ 洋红色,‘g’ 绿色,‘y’ 黄色,‘r’ 红色,‘k’ 黑色,‘w’ 白色,‘c’
    青绿色,‘#008000’ RGB 颜色符串。
  • linestyle:‘‐’ 实线,‘‐‐’ 破折线,‘‐.’ 点划线,‘:’ 虚线。
  • linewidth:设置线的宽度,可以设置一个数字。

五、Matplotlib 绘制多图

我们可以使用 pyplot 中的 subplot() 和 subplots() 方法来绘制多个子图。
subplot() 方法在绘图时需要指定位置,subplots() 方法可以一次生成多个,在调用时只需要调用生成对象的 ax 即可。

1、subplot

subplot(nrows, ncols, index, **kwargs)
subplot(pos, **kwargs)
subplot(**kwargs)
subplot(ax)

以上函数将整个绘图区域分成 nrows 行和 ncols 列,然后从左到右,从上到下的顺序对每个子区域进行编号 1…N ,左上的子区域的编号为 1、右下的区域编号为 N,编号可以通过参数 index 来设置。

设置 numRows = 1,numCols = 2,就是将图表绘制成 1x2 的图片区域, 对应的坐标为:(1, 1), (1, 2)
plotNum = 1, 表示的坐标为(1, 1), 即第一行第一列的子图。
plotNum = 2, 表示的坐标为(1, 2), 即第一行第二列的子图。

可以使用 suptitle函数设置公共的标题 注意是sup(超级),也就是父级标题

import matplotlib.pyplot as plt

import numpy as np

#plot1
x1=np.array([1,2,3,4,5])
y1=np.array([1,4,9,16,25])
plt.subplot(1,2,1)
plt.plot(x1,y1)
plt.title('plot1')

#plot2
x2=np.array([1,4,9,16,25])
y2=np.array([1,2,3,4,5])
plt.subplot(1,2,2)
plt.plot(x2,y2)
plt.title('plot2')

plt.suptitle('subplot')#总标题suptitle
plt.show()#最后调用show方法

在这里插入图片描述

2、subplots()

subplots() 方法语法格式如下:

matplotlib.pyplot.subplots(nrows=1, ncols=1, *, 
sharex=False, sharey=False, squeeze=True, 
subplot_kw=None, gridspec_kw=None, **fig_kw)
  • nrows:默认为 1,设置图表的行数。
  • ncols:默认为 1,设置图表的列数。
  • sharex、sharey:设置 x、y 轴是否共享属性,默认为 false,可设置为 ‘none’、‘all’、‘row’ 或 ‘col’。 False 或 none 每个子图的 x 轴或 y 轴都是独立的,True 或 ‘all’:所有子图共享 x 轴或 y 轴,‘row’ 设置每个子图行共享一个 x 轴或 y 轴,‘col’:设置每个子图列共享一个 x 轴或 y 轴。
  • squeeze:布尔值,默认为 True,表示额外的维度从返回的 Axes(轴)对象中挤出,对于 N1 或 1N 个子图,返回一个 1 维数组,对于 N*M,N>1 和 M>1 返回一个 2 维数组。如果设置为 False,则不进行挤压操作,返回一个元素为 Axes 实例的2维数组,即使它最终是1x1。
  • subplot_kw:可选,字典类型。把字典的关键字传递给 add_subplot() 来创建每个子图。
  • gridspec_kw:可选,字典类型。把字典的关键字传递给 GridSpec 构造函数创建子图放在网格里(grid)。
  • **fig_kw:把详细的关键字参数传给 figure() 函数。
import matplotlib.pyplot as plt
import numpy as np

# 创建一些测试数据 -- 图1
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)

# 创建一个画像和子图 -- 图2
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title('Simple plot')

# 创建两个子图 -- 图3
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
ax1.plot(x, y)
ax1.set_title('Sharing Y axis')
ax2.scatter(x, y)

# 创建四个子图 -- 图4
fig, axs = plt.subplots(2, 2, subplot_kw=dict(projection="polar"))
axs[0, 0].plot(x, y)
axs[1, 1].scatter(x, y)

# 共享 x 轴
plt.subplots(2, 2, sharex='col')

# 共享 y 轴
plt.subplots(2, 2, sharey='row')

# 共享 x 轴和 y 轴
plt.subplots(2, 2, sharex='all', sharey='all')

# 这个也是共享 x 轴和 y 轴
plt.subplots(2, 2, sharex=True, sharey=True)

# 创建10 张图,已经存在的则删除
fig, ax = plt.subplots(num=10, clear=True)

plt.show()

六、散点图、柱形图、饼图

1、Matplotlib 散点图

我们可以使用 pyplot 中的 scatter() 方法来绘制散点图。

scatter() 方法语法格式如下:

matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None,
 norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, 
 edgecolors=None, plotnonfinite=False, data=None, **kwargs)
x,y:长度相同的数组,也就是我们即将绘制散点图的数据点,输入数据。

s:点的大小,默认 20,也可以是个数组,数组每个参数为对应点的大小。

c:点的颜色,默认蓝色 'b',也可以是个 RGB 或 RGBA 二维行数组。

marker:点的样式,默认小圆圈 'o'。

cmap:Colormap,默认 None,标量或者是一个 colormap 的名字,只有 c 是一个浮点数数组的时才使用。如果没有申明就是 image.cmap。

norm:Normalize,默认 None,数据亮度在 0-1 之间,只有 c 是一个浮点数的数组的时才使用。

vmin,vmax::亮度设置,在 norm 参数存在时会忽略。

alpha::透明度设置,0-1 之间,默认 None,即不透明。

linewidths::标记点的长度。

edgecolors::颜色或颜色序列,默认为 'face',可选值有 'face', 'none', None。

plotnonfinite::布尔值,设置是否使用非限定的 c ( inf, -inf 或 nan) 绘制点。

**kwargs::其他参数。
import matplotlib.pyplot as plt
import numpy as np

x=np.array([1,2,3,4,5])
y=np.array([1,2,3,4,5])
plt.scatter(x, y, s=25,c='r',alpha=0.6)# 大小为25像素、颜色为红色、透明度为0.6

在这里插入图片描述
两组数据

x1 = np.array([1,4,3,7,34])
y1 = np.array([78,23,19,16,25])
plt.scatter(x1, y1, c='r', s=25)

x2 = np.array([22,15,34,51,21,4,12,45,1,47,5,78,34])
y2 = np.array([1,3,4,5,6,8,2,6,2,90,8,2,23])
plt.scatter(x2, y2, c='g', s=95)

plt.show()  

在这里插入图片描述

2、Matplotlib 柱形图

我们可以使用 pyplot 中的 bar() 方法来绘制柱形图。

bar() 方法语法格式如下:

matplotlib.pyplot.bar(x, height, width=0.8, 
bottom=None, *, align='center', data=None, **kwargs)
x:浮点型数组,柱形图的 x 轴数据。

height:浮点型数组,柱形图的高度。

width:浮点型数组,柱形图的宽度。

bottom:浮点型数组,底座的 y 坐标,默认 0。

align:柱形图与 x 坐标的对齐方式,'center' 以 x 位置为中心,这是默认值。
 'edge':将柱形图的左边缘与 x 位置对齐。
 要对齐右边缘的条形,可以传递负数的宽度值及 align='edge'**kwargs::其他参数。

例子:

import matplotlib.pyplot as plt
import numpy as np

x=np.array(['google','baidu','jingdong','alibaba','taobao'])
y=np.array([11,32,34,24,15])
plt.bar(x,y)
plt.show()

在这里插入图片描述

垂直方向的柱形图可以使用 barh() 方法来设置:

import matplotlib.pyplot as plt
import numpy as np

x=np.array(['google','baidu','jingdong','alibaba','taobao'])
y=np.array([11,32,34,24,15])
plt.barh(x,y)
plt.show()

在这里插入图片描述

设置柱形图宽度,bar() 方法使用 width 设置,barh() 方法使用 height 设置 height:

import matplotlib.pyplot as plt
import numpy as np

x=np.array(['google','baidu','jingdong','alibaba','taobao'])
y=np.array([11,32,34,24,15])
plt.bar(x,y,width=0.2)
plt.show()

在这里插入图片描述

x = ['一月','二月','三月','四月','五月']
y = [20,56,23,12,33]
plt.barh(x,y, height=0.2)
plt.show()  

在这里插入图片描述

还可以使用color属性自定义每个柱形的颜色

x = ['一月','二月','三月','四月','五月']
y = [20,56,23,12,33]
plt.barh(x,y, height=0.2, color = ["#4CAF50","red","hotpink","#556B2F"])
plt.show()  

在这里插入图片描述

3、Matplotlib 饼图

我们可以使用 pyplot 中的 pie() 方法来绘制饼图。

注意:默认情况下,第一个扇形的绘制是从 x 轴开始并逆时针移动:

pie() 方法语法格式如下:

matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None, 
pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=0, radius=1, 
counterclock=True, wedgeprops=None, textprops=None, center=0, 0, frame=False, 
rotatelabels=False, *, normalize=None, data=None)[source]
x:浮点型数组,表示每个扇形的面积。

explode:数组,表示各个扇形之间的间隔,默认值为0。

labels:列表,各个扇形的标签,默认值为 None。

colors:数组,表示各个扇形的颜色,默认值为 None。

autopct:设置饼图内各个扇形百分比显示格式,%d%% 整数百分比,%0.1f 一位小数, %0.1f%% 一位小数百分比, %0.2f%% 两位小数百分比。

labeldistance:标签标记的绘制位置,相对于半径的比例,默认值为 1.1,如 <1则绘制在饼图内侧。

pctdistance::类似于 labeldistance,指定 autopct 的位置刻度,默认值为 0.6。

shadow::布尔值 TrueFalse,设置饼图的阴影,默认为 False,不设置阴影。

radius::设置饼图的半径,默认为 1。

startangle::起始绘制饼图的角度,默认为从 x 轴正方向逆时针画起,如设定 =90 则从 y 轴正方向画起。

counterclock:布尔值,设置指针方向,默认为 True,即逆时针,False 为顺时针。

wedgeprops :字典类型,默认值 None。参数字典传递给 wedge 对象用来画一个饼图。例如:wedgeprops={'linewidth':5} 设置 wedge 线宽为5。

textprops :字典类型,默认值为:None。传递给 text 对象的字典参数,用于设置标签(labels)和比例文字的格式。

center :浮点类型的列表,默认值:(0,0)。用于设置图标中心位置。

frame :布尔类型,默认值:False。如果是 True,绘制带有表的轴框架。

rotatelabels :布尔类型,默认为 False。如果为 True,旋转每个 label 到指定的角度。
import matplotlib.pyplot as plt
import numpy as np

y=np.array([15,35,25,5,20]) # 每块所占的大小
label=['A','B','C','D','E']#设置饼图标签
color=['r','b','g','y','g']#设置饼图颜色
plt.pie(y,labels=label,colors=color)
plt.show()

在这里插入图片描述

突出显示第二个扇形,并格式化输出百分比:

import matplotlib.pyplot as plt
import numpy as np

y=np.array([15,35,25,5,20])
label=['A','B','C','D','E']#设置饼图标签
color=['r','b','g','y','g']#设置饼图颜色
explodes=[0,0.2,0,0,0]# 第二部分突出显示,值越大,距离中心越远
plt.pie(y,labels=label,colors=color,explode=explodes,autopct='%.2f%%')#格式化输出百分比
plt.show()

在这里插入图片描述

七、设置坐标轴的刻度

以设置x轴的刻度为例

xticks(ticks, [labels], **kwargs)

参数说明:
ticks:数组类型,用于设置X轴刻度间隔
[labels]:数组类型,用于设置每个间隔的显示标签
**kwargs:用于设置标签字体倾斜度rotation和颜色color等外观属性。

不设置刻度时的样式

x = np.arange(1, 13)
y = np.arange(1, 13)

plt.plot(x, y)
plt.show()

在这里插入图片描述

可以发现,本来x和y都是1-12,但是刻度却只显示偶数,这是Matplotlib默认的样式。

我们可以自己定义刻度

x = np.arange(1, 13)
y = np.arange(1, 13)

# 第一个参数是x轴刻度间隔,x是包含1-12的数组
# calendar.month_name[1:13] 获取1-12月份对应的英文名 即 1 - January
# rotation 设置label的旋转角度
# color设置label字体颜色
plt.xticks(x,calendar.month_name[1:13],rotation=45,color='b',fontsize=14)
plt.yticks(y)
plt.plot(x, y)
plt.show()

在这里插入图片描述

另一种情况就是当x轴每个label太长时,需要增大刻度,减少label

x = ['2021/3/4','2021/2/14','2021/9/4','2021/5/24','2021/3/14','2021/7/4','2021/8/14','2021/1/14']
y = [100,200,300,400,500,600,700,800]
plt.plot(x, y)
plt.show()

在这里插入图片描述
x轴太密集,不方便观看

x = ['2021/3/4','2021/2/14','2021/9/4','2021/5/24','2021/3/14','2021/7/4','2021/8/14','2021/1/14']
y = [100,200,300,400,500,600,700,800]
plt.xticks(range(1,len(x),2), ['日期%s'%i for i in x[1:len(x):2]], rotation=45)
plt.plot(x, y)
plt.show()

在这里插入图片描述

这样x轴的刻度减少了一半

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/886455.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

线上问题排查: jmap mat 工具排查生产环境占用内存过大问题

一. 背景 线上任务内存占用居高不下, 机器load较高. 排查问题原因. 二. 操作 2.1. 工具文件下载清单. mat 工具 linux版本. ( dump文件太大了有20多G, 只能在服务器上解析. 所以下载linux版本. ) 下载地址: https://eclipse.dev/mat/downloads.php 下载高版本的jdk , 目前…

Spark第二课RDD的详解

1.前言 RDD JAVA中的IO 1.小知识点穿插 1. 装饰者设计模式 装饰者设计模式:本身功能不变,扩展功能. 举例&#xff1a; 数据流的读取 一层一层的包装&#xff0c;进而将功能进行进一步的扩展 2.sleep和wait的区别 本质区别是字体不一样,sleep斜体,wait正常 斜体是静态方法…

数学 容斥原理

全都是mn-1&#xff0c;下图都写成m-n-1了&#xff0c;没有脑子o(╥﹏╥)o 题目链接&#xff1a;214. Devu和鲜花 - AcWing题库 #include <bits/stdc.h> #define ll long long using namespace std; const int mod 1e97; ll A[25]; ll Pow(ll a, ll k){ll ans 1;while…

538页21万字数字政府智慧政务大数据云平台项目建设方案WORD

导读&#xff1a;原文《538页21万字数字政府智慧政务大数据云平台项目建设方案WORD》&#xff08;获取来源见文尾&#xff09;&#xff0c;本文精选其中精华及架构部分&#xff0c;逻辑清晰、内容完整&#xff0c;为快速形成售前方案提供参考。 根据业务的不同属性&#xff0c…

爱校对:公文材料的新时代伙伴

在这个数字化、智能化日益增强的新时代&#xff0c;公文材料处理方式也在发生着巨大的变化。传统的人工校对方式逐渐被智能化的工具所替代&#xff0c;而在这其中&#xff0c;爱校对正以其卓越的性能和便捷的使用体验&#xff0c;崭露头角&#xff0c;成为公文材料处理的新时代…

利用高级定时器产生PWM

这个图中阐述了利用高级定时器产生PWM的原理&#xff0c;其中 ARR是自动重装载寄存器(TIMx_ARR)的值 CNT是定时器计数器当前的值 CCRx是捕获/比较寄存器 x(TIMx_CCRx)的值 每经过一次定时器时钟周期就会1&#xff0c;通过设置定时器的输出模式&#xff0c;可以实现&#xff0c…

编译工具:CMake(四)|安装目标文件、普通文件、脚本、目录

编译工具&#xff1a;CMake&#xff08;四&#xff09;|安装目标文件、普通文件、脚本、目录 如何安装目标文件的安装普通文件的安装&#xff1a;非目标文件的可执行程序安装(比如脚本之类)目录的安装 如何安装 安装的需要有两种&#xff0c;一种是从代码编译后直接 make inst…

【C++11保姆级教程】新的函数声明(trailing return type)、右值引用(rvalue references)

文章目录 前言一、新的函数声明&#xff08;trailing return type&#xff09;1.1新的函数声明&#xff08;trailing return type&#xff09;概念1.2新的函数声明的使用 二、右值引用&#xff08;rvalue references&#xff09;2.1右值引用&#xff08;rvalue references&…

[机器学习]特征工程:特征降维

特征降维 1、简介 特征降维是指通过减少特征空间中的维度&#xff0c;将高维数据映射到一个低维子空间的过程。 在机器学习和数据分析中&#xff0c;特征降维可以帮助减少数据的复杂性、降低计算成本、提高模型性能和可解释性&#xff0c;以及解决维度灾难等问题。特征降维通…

机器学习知识点总结:什么是EM(最大期望值算法)

什么是EM(最大期望值算法) 在现实生活中&#xff0c;苹果百分百是苹果&#xff0c;梨百分白是梨。 生活中还有很多事物是概率分布&#xff0c;比如有多少人结了婚&#xff0c;又有多少人有工作&#xff0c; 如果我们想要调查人群中吸大麻者的比例呢&#xff1f;敏感问题很难得…

实战项目:基于主从Reactor模型实现高并发服务器

项目完整代码仿mudou库one thread one loop式并发服务器实现: 仿muduo库One Thread One Loop式主从Reactor模型实现⾼并发服务器&#xff1a;通过模拟实现的⾼并发服务器组件&#xff0c;可以简洁快速的完成⼀个⾼性能的服务器搭建。并且&#xff0c;通过组件内提供的不同应⽤层…

更新arm的linux编译工具链

虑到目前arm的gcc 5.5的工具链对C17语法支持不足&#xff0c;需要升级下工具链。 以下是详细步骤。使用官方提供的工具链 ARM官方的工具链网站&#xff1a; https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads bare-metal这个版本就是没有操作系统(裸机环…

如何利用Simulation模拟零件受到的冲击力

线性静力载荷作用过程是恒定的&#xff0c;不随时间变化&#xff1b;单冲击力载荷作用的时间很短&#xff0c;高速高能量&#xff1b;今天给大家分享的是Simulation怎么模拟零件受到冲击力。 DEMO案例介绍&#xff1a;板材规格250X120X10&#xff0c;在板材的中心Φ5的区域受冲…

时序预测 | MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价) 目录 时序预测 | MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)预测结果基本介绍程序设计参考资料 预测结果 基本介绍 MATLAB实现基…

【T3】畅捷通T3凭证预览/打印摘要和凭证中看到的摘要不一样。

【问题描述】 畅捷通T3软件中&#xff0c; 凭证打印预览以及打印出来的效果和直接在凭证界面看到的该凭证摘要不一致。 【解决方法】 执行下述清除凭证摘要特殊字符和空格的语句后&#xff0c;重新预览打印。 update GL_accvouch set cdigestREPLACE(cdigest,CHAR(9),) whe…

找pr剪辑素材就上这6个网站,免费可商用。

视频剪辑没素材&#xff0c;就上这几个网站找&#xff0c;免费、付费、商用素材全都有&#xff0c;最重要的是高清、4K无水印&#xff0c;赶紧马住了。 潮点视频 https://shipin520.com/?from_code2510 潮点视频是一个提供优质高清、无水印的视频素材网站&#xff0c;站内有大…

javaScript:数组方法(增删/提取类/截取/操作方法等)

目录 一.数组的增删方法 1.push()数组末尾添加元素 解释 代码 运行截图 2.unshift()向数组的头部添加数组 解释 代码 运行截图 3.pop()数组的尾部删除一个元素 解释 代码 运行截图 4.shift()数组的头部删除一个元素 解释 代码 运行截图 5. splice()任意位…

2003-2022年高铁站开通时间

2003-2022年高铁站开通时间 1、时间区间&#xff1a;2003-2022年 2、指标如下&#xff1a;高铁站名称、开通时间、所在省份、所在城市、所属线路名称、以及相关备注 指标说明&#xff1a;Hsrwsnm[高铁站名称]-高铁站名称 Optm[开通时间]-高铁站开通的时间 Prvn[所在省份]-高…

《Go 语言第一课》课程学习笔记(一)

配好环境&#xff1a;选择一种最适合你的 Go 安装方法 选择 Go 版本 一般情况下&#xff0c;建议采用最新版本。因为 Go 团队发布的 Go 语言稳定版本的平均质量一直是很高的&#xff0c;少有影响使用的重大 bug。可以根据不同实际项目需要或开源社区的情况使用不同的版本。 有…

【Web 表单】与用户数据打交道-2(mdn笔记)

8. UI 伪类 8.1 都有什么样的伪类&#xff1f; 我们可以使用的&#xff08;截至 CSS 2.1&#xff09;与表单相关的原始伪类是&#xff1a; :hover&#xff1a;只在鼠标指针悬停在一个元素上时选择该元素。:focus&#xff1a;只在元素被聚焦时选择该元素&#xff08;也就是说&am…