STM32存储左右互搏 I2C总线FATS读写EEPROM ZD24C1MA

news2025/1/15 15:09:18

STM32存储左右互搏 I2C总线FATS读写EEPROM ZD24C1MA

在较低容量存储领域,EEPROM是常用的存储介质,可以通过直接或者文件操作方式进行读写。不同容量的EEPROM的地址对应位数不同,在发送字节的格式上有所区别。EEPROM是非快速访问存储,因为EEPROM按页进行组织,在连续操作模式,当跨页时访问地址不是跳到下一页到开始,而是跳到当前页的首地址,因此跨页时要重新指定起始地址。而在控制端发送写操作I2C数据后还需要有等待EEPROM内部操作完成的时间才能进行下一次操作。ZD24C1MA是1M bit / 128K Byte容量的EEPROM,ZD24C1MA的管脚定义为:
在这里插入图片描述
这里介绍STM32 通过文件系统FATS访问EEPROM ZD24C1MA的例程。采用STM32CUBEIDE开发平台,以STM32F401CCU6芯片为例,通过STM32 I2C硬件电路实现读写操作,通过UART串口进行控制。

STM32工程配置

首先建立基本工程并设置时钟:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
配置硬件I2C接口,在这里插入图片描述
在这里插入图片描述
配置UART1作为通讯串口:
在这里插入图片描述
在这里插入图片描述
对FATS文件系统进行配置:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
保存并生成初始工程代码:
在这里插入图片描述

STM32工程代码

代码里用到的微秒延时函数参考: STM32 HAL us delay(微秒延时)的指令延时实现方式及优化

ZD24C1MA的设备默认访问地址为0xA0, ZD24C1MA的存储单元地址访问略为特殊,17位地址分为两部分,最高位的1位放置于I2C设备默认访问地址的第1位,I2C设备默认访问地址第0位仍然为读写控制位,由于采用硬件I2C控制,库函数自行通过识别调用的是发送还是接收函数对第0位进行发送前设置,因此,不管是调用库函数的I2C写操作还是读操作,提供的地址相同。17位地址的低16位通过在发送设备地址后的作为跟随的第一,二个字节发送。

建立ZD24C1MA.h库头文件

#ifndef INC_ZD24C1MA_H_
#define INC_ZD24C1MA_H_

#include "main.h"

void PY_Delay_us_t(uint32_t Delay);
void ZD24C1MA_Read(uint32_t addr, uint8_t * data, uint32_t len);
void ZD24C1MA_Write(uint32_t addr, uint8_t * data, uint32_t len);

#endif

建立ZD24C1MA.c库源文件:


#include <string.h>
#include <ZD24C1MA.h>

#define Page_Size 256
#define Delay_Param 5
extern I2C_HandleTypeDef hi2c1;
extern uint8_t ZD24C1MA_Default_I2C_Addr ;


void ZD24C1MA_Read(uint32_t addr, uint8_t * data, uint32_t len)
{
	uint8_t ZD24C1MA_I2C_Addr;

	ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | ((addr>>16)<<1); //highest 1-bit access address placed into I2C address

	uint8_t RA[2];
	RA[0] = (addr & 0xFF00)>>8; //high 8-bit access address placed into I2C first data
	RA[1] =addr & 0x00FF; //low 8-bit access address placed into I2C first data

	HAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, &RA[0], 2, 2700); //Write address for read
	HAL_I2C_Master_Receive(&hi2c1, ZD24C1MA_I2C_Addr, data, len, 2700); //Read data

}

void ZD24C1MA_Write(uint32_t addr, uint8_t * data, uint32_t len)
{

	uint8_t ZD24C1MA_I2C_Addr;

	uint32_t addr_page = addr/Page_Size;
	uint32_t addr_index = addr%Page_Size;
	uint32_t TLEN;
    uint8_t TAD[Page_Size+2];
    uint32_t i=0;

    if(len<=(Page_Size-addr_index))
    {
    	TAD[0] = (addr & 0xFF00) >> 8;
    	TAD[1] = addr & 0x00FF ;
    	memcpy(TAD+2, data, len);

    	ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | ((addr>>16)<<1); //highest 1-bit access address placed into I2C address
    	HAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, len+2, 2700);  //Write data
    	PY_Delay_us_t(Delay_Param*1000);
    }
    else
    {
    	TAD[0] = (addr & 0xFF00) >> 8;
    	TAD[1] = addr & 0x00FF ;
    	memcpy(TAD+2, data, (Page_Size-addr_index));

    	ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | ((addr>>16)<<1); //highest 1-bit access address placed into I2C address
    	HAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, (Page_Size-addr_index)+2, 2700);  //Write data
    	PY_Delay_us_t(Delay_Param*1000);

    	TLEN = (len-(Page_Size-addr_index));
    	while( TLEN >= Page_Size )
    	{
    		addr_page += 1;

        	TAD[0] = ((addr_page*Page_Size) & 0xFF00 ) >> 8;
        	TAD[1] = (addr_page*Page_Size) & 0x00FF ;
        	memcpy(TAD+2, data + (Page_Size-addr_index) + i*Page_Size, Page_Size);

        	ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | (((addr_page*Page_Size)>>16)<<1); //highest 1-bit access address placed into I2C address
        	HAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, Page_Size+2, 2700);  //Write data
        	HAL_Delay(Delay_Param);

        	i++;
        	TLEN -= Page_Size;
        	PY_Delay_us_t(Delay_Param*1000);
    	}

    	if(TLEN>0)
    	{
    		addr_page += 1;

        	TAD[0] = ((addr_page*Page_Size) & 0xFF00 ) >> 8;
        	TAD[1] = (addr_page*Page_Size) & 0x00FF ;
        	memcpy(TAD+2, data + (Page_Size-addr_index) + i*Page_Size, TLEN);

        	ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | (((addr_page*Page_Size)>>16)<<1); //highest 1-bit access address placed into I2C address
        	HAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, TLEN+2, 2700);  //Write data
        	PY_Delay_us_t(Delay_Param*1000);
    	}


    }

}


对ffconf.h添加包含信息:
在这里插入图片描述

#include "main.h"
#include "stm32f4xx_hal.h"
#include "ZD24C1MA.h"

修改user_diskio.c,对文件操作函数与底层I2C读写提供连接:

/* USER CODE BEGIN Header */
/**
 ******************************************************************************
  * @file    user_diskio.c
  * @brief   This file includes a diskio driver skeleton to be completed by the user.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
 /* USER CODE END Header */

#ifdef USE_OBSOLETE_USER_CODE_SECTION_0
/*
 * Warning: the user section 0 is no more in use (starting from CubeMx version 4.16.0)
 * To be suppressed in the future.
 * Kept to ensure backward compatibility with previous CubeMx versions when
 * migrating projects.
 * User code previously added there should be copied in the new user sections before
 * the section contents can be deleted.
 */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
#endif

/* USER CODE BEGIN DECL */

/* Includes ------------------------------------------------------------------*/
#include <string.h>
#include "ff_gen_drv.h"

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/

/* Private variables ---------------------------------------------------------*/
/* Disk status */
static volatile DSTATUS Stat = STA_NOINIT;

/* USER CODE END DECL */

/* Private function prototypes -----------------------------------------------*/
DSTATUS USER_initialize (BYTE pdrv);
DSTATUS USER_status (BYTE pdrv);
DRESULT USER_read (BYTE pdrv, BYTE *buff, DWORD sector, UINT count);
#if _USE_WRITE == 1
  DRESULT USER_write (BYTE pdrv, const BYTE *buff, DWORD sector, UINT count);
#endif /* _USE_WRITE == 1 */
#if _USE_IOCTL == 1
  DRESULT USER_ioctl (BYTE pdrv, BYTE cmd, void *buff);
#endif /* _USE_IOCTL == 1 */

Diskio_drvTypeDef  USER_Driver =
{
  USER_initialize,
  USER_status,
  USER_read,
#if  _USE_WRITE
  USER_write,
#endif  /* _USE_WRITE == 1 */
#if  _USE_IOCTL == 1
  USER_ioctl,
#endif /* _USE_IOCTL == 1 */
};

/* Private functions ---------------------------------------------------------*/

/**
  * @brief  Initializes a Drive
  * @param  pdrv: Physical drive number (0..)
  * @retval DSTATUS: Operation status
  */
DSTATUS USER_initialize (
	BYTE pdrv           /* Physical drive nmuber to identify the drive */
)
{
  /* USER CODE BEGIN INIT */
	/**************************SELF DEFINITION PART************/
	 extern uint8_t ZD24C1MA_Default_I2C_Addr ;
	 ZD24C1MA_Default_I2C_Addr =  0xA0; //Pin A2=A1=0
     return RES_OK;
	/**********************************************************/
	/*
    Stat = STA_NOINIT;
    return Stat;
    */
  /* USER CODE END INIT */
}

/**
  * @brief  Gets Disk Status
  * @param  pdrv: Physical drive number (0..)
  * @retval DSTATUS: Operation status
  */
DSTATUS USER_status (
	BYTE pdrv       /* Physical drive number to identify the drive */
)
{
  /* USER CODE BEGIN STATUS */
	/**************************SELF DEFINITION PART************/
		switch (pdrv)
			{
				case 0 :
					return RES_OK;
				case 1 :
					return RES_OK;
				case 2 :
					return RES_OK;
				default:
					return STA_NOINIT;
			}
	/**********************************************************/
    /*
    Stat = STA_NOINIT;
    return Stat;
    */
  /* USER CODE END STATUS */
}

/**
  * @brief  Reads Sector(s)
  * @param  pdrv: Physical drive number (0..)
  * @param  *buff: Data buffer to store read data
  * @param  sector: Sector address (LBA)
  * @param  count: Number of sectors to read (1..128)
  * @retval DRESULT: Operation result
  */
DRESULT USER_read (
	BYTE pdrv,      /* Physical drive nmuber to identify the drive */
	BYTE *buff,     /* Data buffer to store read data */
	DWORD sector,   /* Sector address in LBA */
	UINT count      /* Number of sectors to read */
)
{
  /* USER CODE BEGIN READ */
	/**************************SELF DEFINITION PART************/
		    uint16_t len;
			if( !count )
			{
				return RES_PARERR;  /*count status*/
			}
			switch (pdrv)
			{
				case 0:
					sector <<= 9; //Convert sector number to byte address
				    len = count*512;
				    ZD24C1MA_Read(sector, buff, len);
				    return RES_OK;
				default:
					return RES_ERROR;
			}
	/**********************************************************/
	/*
    return RES_OK;
    */
  /* USER CODE END READ */
}

/**
  * @brief  Writes Sector(s)
  * @param  pdrv: Physical drive number (0..)
  * @param  *buff: Data to be written
  * @param  sector: Sector address (LBA)
  * @param  count: Number of sectors to write (1..128)
  * @retval DRESULT: Operation result
  */
#if _USE_WRITE == 1
DRESULT USER_write (
	BYTE pdrv,          /* Physical drive nmuber to identify the drive */
	const BYTE *buff,   /* Data to be written */
	DWORD sector,       /* Sector address in LBA */
	UINT count          /* Number of sectors to write */
)
{
  /* USER CODE BEGIN WRITE */
  /* USER CODE HERE */
	/**************************SELF DEFINITION PART************/
		    uint16_t len;
			if( !count )
			{
				return RES_PARERR;  /*count status*/
			}
			switch (pdrv)
			{
				case 0:
					sector <<= 9; //Convert sector number to byte address
				    len = count*512;
				    ZD24C1MA_Write(sector, (uint8_t *)buff,len);
				    return RES_OK;
				default:
					return RES_ERROR;
			}
	/*********************************************************/

	/*
    return RES_OK;
    */
  /* USER CODE END WRITE */
}
#endif /* _USE_WRITE == 1 */

/**
  * @brief  I/O control operation
  * @param  pdrv: Physical drive number (0..)
  * @param  cmd: Control code
  * @param  *buff: Buffer to send/receive control data
  * @retval DRESULT: Operation result
  */
#if _USE_IOCTL == 1
DRESULT USER_ioctl (
	BYTE pdrv,      /* Physical drive nmuber (0..) */
	BYTE cmd,       /* Control code */
	void *buff      /* Buffer to send/receive control data */
)
{
  /* USER CODE BEGIN IOCTL */
	/**************************SELF DEFINITION PART************/
             #define user_sector_byte_size 512
		     DRESULT res;
			 switch(cmd)
			    {
				    case CTRL_SYNC:
								res=RES_OK;
				        break;
				    case GET_SECTOR_SIZE:
				        *(WORD*)buff = user_sector_byte_size;
				        res = RES_OK;
				        break;
				    case GET_BLOCK_SIZE:
				        *(WORD*)buff = 4096/user_sector_byte_size;
				        res = RES_OK;
				        break;
				    case GET_SECTOR_COUNT:
				    	*(DWORD*)buff = (128*1024/512);
				        res = RES_OK;
				        break;
				    default:
				        res = RES_PARERR;
				        break;
			    }
				return res;
	/**********************************************************/
	/*
    DRESULT res = RES_ERROR;
    return res;
    */
  /* USER CODE END IOCTL */
}
#endif /* _USE_IOCTL == 1 */

然后在main.c里根据串口输入命令(16进制单字节)实现如下功能:
0x01. 读取EEPROM ID
0x02. 装载FATS文件系统
0x03: 创建/打开文件并从头位置写入数据
0x04: 打开文件并从头位置读入数据
0x05: 创建/打开文件并从特定位置写入数据
0x06: 打开文件并从特定位置读入数据
完整的代码实现如下:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
//Written by Pegasus Yu in 2023
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "fatfs.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "usart.h"
#include "string.h"
#include "ZD24C1MA.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}

void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
DMA_HandleTypeDef hdma_i2c1_tx;

UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t cmd=0;          //for status control
uint8_t URX;

uint8_t ZD24C1MA_Default_I2C_Addr =  0xA0; //Pin A2=A1=0
uint32_t ZD24C1MA_Access_Addr = 0;   //EEPROM ZD24C1MA access address (17-bit)

uint8_t EEPROM_mount_status = 0; //EEPROM fats mount status indication (0: unmount; 1: mount)
uint8_t FATS_Buff[_MAX_SS]; //Buffer for f_mkfs() operation

FRESULT retEEPROM;
FIL file;
FATFS *fs;

UINT bytesread;
UINT byteswritten;
uint8_t rBuffer[20];      //Buffer for read
uint8_t WBuffer[20] ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; //Buffer for write

#define user_sector_byte_size 512
uint8_t eeprombuffer[user_sector_byte_size];

extern char USERPath[4];

char * console;
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
	EEPROM_mount_status = 0;
	uint32_t EEPROM_Read_Size;

    extern char USERPath[4];

    char * dpath = "0:"; //Disk Path
	for(uint8_t i=0; i<4; i++)
	{
		USERPath[i] = *(dpath+i);
	}

	const TCHAR* filepath = "0:test.txt";

	char cchar[256];
	console = cchar;

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_I2C1_Init();
  MX_USART1_UART_Init();
  MX_FATFS_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();

  HAL_UART_Receive_IT(&huart1, &URX, 1);

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	     if(cmd==1) //Read ID
	     {
	    	 cmd = 0;
	    	 printf("EEPROM ID=ZD24C1MAT\r\n\r\n");

	     }
	     else if(cmd==2) //EEPROM File System Mount
	     {
	    	 cmd = 0;

	    	 retEEPROM=f_mount(&USERFatFS, (TCHAR const*)USERPath, 1);
	    	    		 if (retEEPROM != FR_OK)
	    	    		 {
	    	  	    	   printf("File system mount failure: %d\r\n", retEEPROM);

	    	    		   if(retEEPROM==FR_NO_FILESYSTEM)
	    	    		   {
	    	    		       printf("No file system. Now to format......\r\n");

	    	    			   retEEPROM = f_mkfs((TCHAR const*)USERPath, FM_FAT, 1024, FATS_Buff, sizeof(FATS_Buff)); //EEPROM formatting
	    	    			   if(retEEPROM == FR_OK)
	    	    			   {
	    	         	    	  printf("EEPROM formatting success!\r\n");
	    	    			   }
	    	    				else
	    	    			   {
	    	    			      printf("EEPROM formatting failure!\r\n");
	    	    			   }

	    	    		   }
	    	    		 }
	    	    		 else
	    	    		 {
	    	    			 EEPROM_mount_status = 1;
	    	    	    	 printf("File system mount success\r\n");
	    	    		 }
	     }

		 else if(cmd==3) //File creation and write
		 {
				  cmd = 0;

				  if(EEPROM_mount_status==0)
				  {
				    	 printf( "\r\nEEPROM File system not mounted: %d\r\n",retEEPROM);
				  }
				  else
				  {
						retEEPROM = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE );  //Open or create file
						if(retEEPROM == FR_OK)
						{
					    	printf( "\r\nFile open or creation successful\r\n");

							retEEPROM = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten); //Write data

							if(retEEPROM == FR_OK)
							{
						    	 printf("\r\nFile write successful\r\n");
							}
							else
							{
						    	 printf("\r\nFile write error: %d\r\n",retEEPROM);
							}

							f_close(&file);   //Close file
						}
						else
						{
					    	 printf("\r\nFile open or creation error %d\r\n",retEEPROM);
						}
				   }

	    }

	    else if(cmd==4) //File read
	    {
				  cmd = 0;

				  if(EEPROM_mount_status==0)
				  {
				    	 printf("\r\nEEPROM File system not mounted: %d\r\n",retEEPROM);
				  }
				  else
				  {
						retEEPROM = f_open( &file, filepath, FA_OPEN_EXISTING | FA_READ); //Open file
						if(retEEPROM == FR_OK)
						{
					    	printf("\r\nFile open successful\r\n");

							retEEPROM = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread); //Read data

							if(retEEPROM == FR_OK)
							{
						    	printf("\r\nFile read successful\r\n");

								PY_Delay_us_t(200000);

								EEPROM_Read_Size = sizeof(rBuffer);
								for(uint16_t i = 0;i < EEPROM_Read_Size;i++)
								{
							    	printf("%d ", rBuffer[i]);

								}
						    	printf("\r\n");
							}
							else
							{
						    	printf("\r\nFile read error: %d\r\n", retEEPROM);
							}
							f_close(&file); //Close file
						}
						else
						{
					    	printf("\r\nFile open error: %d\r\n", retEEPROM);
						}
				  }

		}

		else if(cmd==5) //File locating write
	    {
				  cmd = 0;

				  if(EEPROM_mount_status==0)
				  {
				    	 printf("\r\nEEPROM File system not mounted: %d\r\n",retEEPROM);
				  }
				  else
				  {
						retEEPROM = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE);  //Open or create file
						if(retEEPROM == FR_OK)
						{
					    	printf("\r\nFile open or creation successful\r\n");
							retEEPROM=f_lseek( &file, f_tell(&file) + sizeof(WBuffer) ); //move file operation pointer, f_tell(&file) gets file head locating

							if(retEEPROM == FR_OK)
							{

								retEEPROM = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten);
								if(retEEPROM == FR_OK)
								{
							    	printf("\r\nFile locating write successful\r\n");
								}
								else
								{
							    	printf("\r\nFile locating write error: %d\r\n", retEEPROM);
								}

							}
							else
							{
						    	printf("\r\nFile pointer error: %d\r\n",retEEPROM);
							}

							f_close(&file);   //Close file
						}
						else
						{
					    	printf("\r\nFile open or creation error %d\r\n",retEEPROM);
						}
				  }
		}

	    else if(cmd==6) //File locating read
		{
				  cmd = 0;

				  if(EEPROM_mount_status==0)
				  {
				    	printf("\r\nEEPROM File system not mounted: %d\r\n",retEEPROM);

				  }
				  else
				  {
						retEEPROM = f_open(&file, filepath, FA_OPEN_EXISTING | FA_READ); //Open file
						if(retEEPROM == FR_OK)
						{
    				    	printf("\r\nFile open successful\r\n");

							retEEPROM =  f_lseek(&file,f_tell(&file)+ sizeof(WBuffer)/2); //move file operation pointer, f_tell(&file) gets file head locating

							if(retEEPROM == FR_OK)
							{
								retEEPROM = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread);
								if(retEEPROM == FR_OK)
								{
							    	printf("\r\nFile locating read successful\r\n");
									PY_Delay_us_t(200000);

									EEPROM_Read_Size = sizeof(rBuffer);
									for(uint16_t i = 0;i < EEPROM_Read_Size;i++)
									{
								    	printf("%d ",rBuffer[i]);
									}

							    	printf("\r\n");
								}
								else
								{
							    	printf("\r\nFile locating read error: %d\r\n",retEEPROM);
								}
							}
							else
							{
						    	printf("\r\nFile pointer error: %d\r\n",retEEPROM);
							}
							f_close(&file);
						}
						else
						{
					    	printf("\r\nFile open error: %d\r\n",retEEPROM);
						}
				  }
	     }

	     PY_Delay_us_t(100);

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 25;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief I2C1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_I2C1_Init(void)
{

  /* USER CODE BEGIN I2C1_Init 0 */

  /* USER CODE END I2C1_Init 0 */

  /* USER CODE BEGIN I2C1_Init 1 */

  /* USER CODE END I2C1_Init 1 */
  hi2c1.Instance = I2C1;
  hi2c1.Init.ClockSpeed = 400000;
  hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  hi2c1.Init.OwnAddress1 = 0;
  hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  hi2c1.Init.OwnAddress2 = 0;
  hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN I2C1_Init 2 */

  /* USER CODE END I2C1_Init 2 */

}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Stream6_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Stream6_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Stream6_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
	if(huart==&huart1)
	{
      cmd = URX;
      HAL_UART_Receive_IT(&huart1, &URX, 1);


	}

}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

#endif /* USE_FULL_ASSERT */

STM32例程测试

串口指令0x01测试效果如下:
在这里插入图片描述
串口指令0x02测试效果如下:
在这里插入图片描述
串口指令0x03测试效果如下:
在这里插入图片描述
串口指令0x04测试效果如下:
在这里插入图片描述
串口指令0x05测试效果如下:
在这里插入图片描述
串口指令0x06测试效果如下:
在这里插入图片描述

STM32例程下载

STM32F401CCU6 I2C总线FATS读写EEPROM ZD24C1MA例程下载

–End–

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/885169.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C语言】每日一题(多数元素)

多数元素&#xff0c;链接奉上 方法 1.摩尔投票2.合理但错误的方法2.1暴力循环2.2排序求出中间元素中间元素 1.摩尔投票 先来简单的介绍摩尔投票&#xff1a; 摩尔投票是一种用来解决绝对众数问题的算法。 什么是绝对众数呢&#xff1f; 在一个集合中&#xff0c;如果一个元素…

Java:迭代器常用方法、增强for循环、Lambda 表达式遍历集合、遍历集合案例

Java 迭代器概述&#xff1a;Iterator 迭代器常用方法 使用迭代器遍历集合时&#xff0c;一开始 it.next()在赵敏的位置&#xff0c;所以第一个打印输出的是赵敏&#xff0c;第二次就到了小昭的位置&#xff0c;第三次到了素素&#xff0c;第四次灭绝&#xff0c;如果多打印了…

探索Java中的面向对象与函数式编程思想

文章目录 &#x1f389; 欢迎来到 Java 学习路线专栏~探索Java中的面向对象与函数式编程思想1. 思想概述面向对象思想函数式编程思想 2. 面向对象思想写代码3. Lambda表达式格式4. 练习4.1 无参无返回值4.2 有参有返回值 5. Lambda省略格式6. 使用Lambda的前提条件 &#x1f38…

智慧乡村综合管控平台_数字孪生

数字乡村是伴随网络化、信息化和数字化在农业农村经济社会发展中的应用&#xff0c;既是乡村振兴的战略方向&#xff0c;也是建设数字中国的重要内容。为了进一步提升乡村治理智能化、专业化水平&#xff0c;解决建设顶层缺失、数据孤岛等问题&#xff0c;数字孪生技术被广泛应…

谈谈智慧农业系统

目录 1.智慧农业的概念 2.智慧农业会用到什么技术 3.智慧农业的优势 4.智慧农业的发展前景 1.智慧农业的概念 智慧农业&#xff08;Smart Agriculture&#xff09;&#xff0c;也被称为农业4.0&#xff0c;是利用先进的信息技术和物联网技术来改进农业生产效率、可持续性和农…

JAVA生成订单号根,可自定义长度、前缀

效率还可以&#xff0c;生成100万数据大概在1秒多左右&#xff0c;不想写说明了&#xff0c;直接粘贴~ public static void main(String[] args) {System.out.println("开始时间" new SimpleDateFormat("YYYY-MM-dd HH:mm:ss:SSS").format(new Date()));L…

Java中调用伪原创API的方法【源码】

在Java中调用API的GET请求可以使用HttpURLConnection或者第三方库如OkHttp等。 使用HttpURLConnection的示例代码: import java.net.HttpURLConnection; import java.net.URL;URL url new URL("http://example.com/api?param1a&param2b"); HttpURLConnectio…

讯飞星火认知大模型全新升级,全新版本、多模交互—测评结果超预期

写在前面 版本新功能 1 体验介绍 登录注册 申请体验 2 具体使用 2.1 多模态能力 2.1.1 多模理解 2.1.2 视觉问答 2.1.3 多模生成 2.2 代码能力 2.2.1 代码生成 2.2.2 代码解释 2.2.3 代码纠错 2.2.4 单元测试 2.3 插件功能 2.3.1 PPT生成 2.3.2 简历生成 2.3.4 文档问答 3 其他…

TiDB基础介绍、应用场景及架构

1. 什么是newsql NewSQL 是对各种新的可扩展/高性能数据库的简称&#xff0c;这类数据库不仅具有NoSQL对海量数据的存储管理能力&#xff0c;还保持了传统数据库支持ACID和SQL等特性。 NewSQL是指这样一类新式的关系型数据库管理系统&#xff0c;针对OLTP&#xff08;读-写&…

如何保证微信小游戏存档不丢失?

引言 微信小游戏的兴起为玩家提供了一个轻松便捷的娱乐方式&#xff0c;然而&#xff0c;存档丢失问题一直以来都是开发者和玩家关注的焦点。为了确保玩家的游戏体验和投入能够得到充分的保障&#xff0c;开发团队需要采取一系列方法来保障微信小游戏存档不丢失。本文将介绍一…

C++之std::tuple应用实例(一百七十八)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

MES管理系统的哪些优势对企业帮助比较大

随着全球制造业的快速发展&#xff0c;MES制造执行系统已成为企业生产管理的重要工具。MES管理系统解决方案集成了企业生产流程中的各个环节&#xff0c;包括计划、调度、质量、设备等&#xff0c;为企业提供了全面的生产管理解决方案。制造企业MES系统的优势颇多&#xff0c;其…

matlab+yalmip+cplex和python3+scipy两种方式实现线性规划求解

Background 对于数学规划问题&#xff0c;有很多的实现。MatlabYALMIPCPLEX这个组合应该是比较主流的&#xff0c;尤其是在电力相关系统中占据着比较重要的地位。MATLAB是一个强大的数值计算工具&#xff0c;用于数学建模、算法开发和数据分析。Yalmip是一个MATLAB工具箱&#…

无涯教程-Perl - splice函数

描述 此函数从LENGTH元素的OFFSET元素中删除ARRAY元素,如果指定,则用LIST替换删除的元素。如果省略LENGTH,则从OFFSET开始删除所有内容。 语法 以下是此函数的简单语法- splice ARRAY, OFFSET, LENGTH, LISTsplice ARRAY, OFFSET, LENGTHsplice ARRAY, OFFSET返回值 该函数…

非常炸裂!一个只有135行源码的插件!

今天&#xff0c;我们接着讨论图片图片懒加载。这是前端性能优化中老生常谈的话题了。旨在提升页面初始化渲染性能和用户体验。 问题 我们是不是会遇到这样的场景&#xff1a; 当访问一个图片展示比较多的网页时&#xff0c;页面加载速度很慢&#xff0c;尤其是其中的图片半天…

C#数据类型转换

目录 1.常用的数据类型: ​编辑1.1别名概念例子: 输出结果&#xff1a; 2.数值类型之间的相互转换: 2.1举例: ​编辑输出结果: 1.常用的数据类型: 1.1别名概念例子: 输出结果&#xff1a; 用GetType来获取数据类型的时候&#xff0c;就是指向System.Byte和System.Char这个…

MAVEN利器:一文带你了解MAVEN以及如何配置

前言&#xff1a; 强大的构建工具——Maven。作为Java生态系统中的重要组成部分&#xff0c;Maven为开发人员提供了一种简单而高效的方式来构建、管理和发布Java项目。无论是小型项目还是大型企业级应用&#xff0c;Maven都能帮助开发人员轻松处理依赖管理、编译、测试和部署等…

Java:集合体系:Collection集合的常用方法(API)

集合体系 用ArrayList 和 HashSet 打印出来的结果 Collection 集合的常用方法&#xff08;API&#xff09; 由于Collection是一个接口 所以不能直接new Collection 编译看左边&#xff0c;运行看右边 转成数组时是Object 类型&#xff0c;方便将来往集合里添加任何数据 拓展&am…

wsl2 Ubuntu子系统 yolov8测试

文章目录 前言安装依赖下载权重测试 前言 OLOv8是Ultralytics公司推出的基于对象检测模型的YOLO最新系列&#xff0c;它能够提供截至目前最先进的对象检测性能。 借助于以前的YOLO模型版本支持技术&#xff0c;YOLOv8模型运行得更快、更准确&#xff0c;同时为执行任务的训练…

小额配资和大额配资是什么?

小额配资和大额配资是股票配资领域中常用的两种方式。本文将会详细介绍小额配资和大额配资的概念&#xff0c;并对其区别进行分析。 首先&#xff0c;小额配资是指投资者通过股票配资机构借取相对较小的资金进行投资。一般而言&#xff0c;小额配资的金额较低&#xff0c;通常…