MySQL — 索引

news2025/1/23 13:01:21

文章目录

  • 索引
  • 索引结构 — B树与B+树
    • B树
    • B+树
  • 聚簇索引与非聚簇索引
    • 聚簇索引
    • 非聚簇索引
    • 优缺点
  • 覆盖索引与回表
  • 联合索引
    • 索引覆盖
    • 最左前缀匹配

索引

索引是对数据库表中一列或多列的值进行排序的一种结构。MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度。

索引只是提高效率的一个因素,如果你的MySQL有大数据量的表,就需要花时间研究建立最优秀的索引,或优化查询语句。

简单类比一下,数据库如同书籍,索引如同书籍目录,假如我们需要从书籍查找与 xx 相关的内容,我们可以直接从目录中查找,定位到 xx 内容所在页面,如果目录中没有 xx 相关字符或者没有设置目录(索引),那只能逐字逐页阅读文本查找,效率可想而知。

索引结构 — B树与B+树

在MySQL的InnoDB存储引擎中,使用的是B+树来实现索引。使用这种数据结构可以快速定位到目标数据,也可以有效减少磁盘IO开销。

下面先简单了解一下B树和B+树。

B树

平衡多路查找树(B-Tree),是为磁盘等外存储设备设计的一种平衡查找树。

B树简略示意图:
在这里插入图片描述
B树的两个特点:

  • 树内的每个节点都存储数据
  • 叶子节点之间无指针连接

B+树

B+树简略示意图:
在这里插入图片描述
B+树的两个特点:

  • 数据只出现在叶子节点
  • 所有叶子节点增加了一个链指针

为什么是B+树而不是B树呢?原因有两点:

  • B树每个节点中不仅包含数据的key值,还有data值。而每一个页的存储空间是有限的,如果data数据较大时将会导致每个节点能存储的key的数量很小,要保存同样多的key,就需要增加树的高度。树的高度每增加一层,查询时的磁盘I/O次数就增加一次,进而影响查询效率。而在B+Tree中,所有数据记录节点都是按照键值大小顺序存放在同一层的叶子节点上,而非叶子节点上只存储key值信息,这样可以增加每个节点存储的key值数量,降低B+树的高度。
  • B+树的叶子节点上有指针进行相连,因此在做数据遍历的时候,只需要对叶子节点进行遍历即可,这个特性使得B+树非常适合做范围查询。

聚簇索引与非聚簇索引

聚簇索引

聚簇索引(clustered index)不是单独的一种索引类型,而是一种数据存储方式。这种存储方式是依靠B+树来实现的,根据表的主键构造一棵B+树且B+树叶子节点存放的都是表的行记录数据时,方可称该主键索引为聚簇索引。聚簇索引也可理解为将数据存储与索引放到了一块,找到索引也就找到了数据。

非聚簇索引

非聚簇索引,数据和索引是分开的,B+树叶子节点存放的不是数据表的行记录,而是主键值。

虽然InnoDB和MyISAM存储引擎都默认使用B+树结构存储索引,但是只有InnoDB的主键索引才是聚簇索引,InnoDB中的辅助索引以及MyISAM使用的都是非聚簇索引。每张表最多只能拥有一个聚簇索引。

优缺点

优点:

  • 数据访问更快,因为聚簇索引将索引和数据保存在同一个B+树中,因此从聚簇索引中获取数据比非聚簇索引更快
  • 聚簇索引对于主键的排序查找和范围查找速度非常快

缺点:

  • 插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影响性能。因此,对于InnoDB表,我们一般都会定义一个自增的ID列为主键(主键列不要选没有意义的自增列,选经常查询的条件列才好,不然无法体现其主键索引性能)
  • 更新主键的代价很高,因为将会导致被更新的行移动。因此,对于InnoDB表,我们一般定义主键为不可更新。
  • 二级索引访问需要两次索引查找,第一次找到主键值,第二次根据主键值找到行数据。

覆盖索引与回表

在InnoDB中的主键索引就是聚簇索引,主键索引的查询效率也是非常高的,非聚簇索引,其查询效率稍逊。

覆盖索引其形式就是,搜索的索引键中的字段恰好是查询的字段(或是组合索引键中的其它字段)。覆盖索引的查询效率极高,原因在于其不用做回表查询。

回表查询,先通过普通索引的值定位聚簇索引值,再通过聚簇索引的值定位行记录数据,需要扫描两次索引B+树,它的性能较扫一遍索引树更低。

实现索引覆盖常见的方法就是建立联合索引

联合索引

联合索引,也称多列索引,就是建立在多个字段上的索引,这个概念是跟单列索引相对的。联合索引依然是B+树,但联合索引的健值数量不是一个,而是多个。构建一颗B+树只能根据一个值来构建,因此数据库依据联合索引最左的字段来构建B+树。

索引覆盖

假如在 t 表的a,b,c三个列上建立联合索引。

如果在查询记录时,返回的列刚好是a, b, c或其中几个,那么这个过程可以实现索引覆盖,避免回表查询。

select a, b, c from t where a=1 and b=2 and c=3;

最左前缀匹配

联合索引中有一个重要的概念,就是最左前缀匹配原则。

最左前缀匹配原则:在MySQL建立联合索引时会遵守最左前缀匹配原则,即最左优先,在检索数据时从联合索引的最左边开始匹配。

假如在 t 表的a,b,c三个列上建立联合索引,简要分类分析下联合索引的最左前缀匹配。

1、全值匹配查询时(where子句搜索条件顺序调换不影响索引使用,因为查询优化器会自动优化查询顺序 ),可以用到联合索引

SELECT * FROM t WHERE a=1 AND b=3 AND c=2
SELECT * FROM t WHERE b=3 AND c=4 AND a=2

2、匹配左边的列时,可以用到联合索引

SELECT * FROM t WHERE a=1
SELECT * FROM t WHERE a=1 AND b=3

3、未从最左列开始时,无法用到联合索引

SELECT * FROM t WHERE b=1 AND b=3

4、查询列不连续时,无法使用联合索引(会用到a列索引,但c排序依赖于b,所以会先通过a列的索引筛选出a=1的记录,再在这些记录中遍历筛选c=3的值,是一种不完全使用索引的情况)

SELECT * FROM t WHERE a=1 AND c=3

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/883280.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

图像去雨-雨线清除-图像处理-(计算机作业附代码)

背景 多年来,图像去雨已经被广泛研究,使用传统方法和基于学习的方法。然而,传统方法如高斯混合模型和字典学习方法耗时,并且无法很好地处理受到严重雨滴影响的图像块。 算法 通过考虑雨滴条状特性和角度分布,这个问…

2023+HuggingGPT: Solving AI Tasks with ChatGPT and itsFriends in Hugging Face

摘要: 语言是llm(例如ChatGPT)连接众多AI模型(例如hugs Face)的接口,用于解决复杂的AI任务。在这个概念中,llms作为一个控制器,管理和组织专家模型的合作。LLM首先根据用户请求规划任务列表,然后为每个任务分配专家模…

3D- vista:预训练的3D视觉和文本对齐Transformer

论文:https://arxiv.org/abs/2308.04352 代码: GitHub - 3d-vista/3D-VisTA: Official implementation of ICCV 2023 paper "3D-VisTA: Pre-trained Transformer for 3D Vision and Text Alignment" 摘要 三维视觉语言基础(3D- vl)是一个新兴领域&…

JDBC封装与设计模式

什么是 DAO ? Data Access Object(数据存取对象) 位于业务逻辑和持久化数据之间实现对持久化数据的访问 DAO起着转换器的作用,将数据在实体类和数据库记录之间进行转换。 ----------------------------------------------------- DAO模式的组成部分 …

【动画】p60动画蓝图、播放蒙太奇、打包

p60动画蓝图、播放蒙太奇、打包 p60动画蓝图、播放蒙太奇、打包添加动画动画蓝图使模型使用动画蓝图奔跑跳舞蒙太奇 移动打断蒙太奇打包退出游戏 p60动画蓝图、播放蒙太奇、打包 添加动画 右键内容浏览器-》动画-》混合空间1D-》选择新的角色的骨骼 如下图在资产详情修改参数…

【TypeScript】基础类型

安装 Node.js 环境 https://nodejs.org/en 终端中可以查到版本号即安装成功。 然后,终端执行npm i typescript -g安装 TypeScript 。 查到版本号即安装成功。 字符串类型 let str:string "Hello"; console.log(str);终端中先执行tsc --init&#xf…

机器学习:特征工程之特征预处理

目录 特征预处理 1、简述 2、内容 3、归一化 3.1、鲁棒性 3.2、存在的问题 4、标准化 ⭐所属专栏:人工智能 文中提到的代码如有需要可以私信我发给你😊 特征预处理 1、简述 什么是特征预处理:scikit-learn的解释: provide…

预训练GNN:GPT-GNN Generative Pre-Training of Graph Neural Networks

一.文章概述 本文提出了一种自监督属性图生成任务来预训练GNN,使得其能捕图的结构和语义属性。作者将图的生成分为两个部分:属性生成和边生成,即给定观测到的边,生成节点属性;给定观测到的边和生成的节点属性&#xf…

【第三阶段】kotlin中使用带let的安全调用

let常常和?.配合使用,如果前面的对象为null,let不执行,能够执行到let里面 对象一定不为null 1.不为null fun main() {var name:String?"kotlin" //name是一个可空类型,发出广播,调用的地方必须补救措施var…

WSL2 Ubuntu子系统安装cuda+cudnn+torch

文章目录 前言一、安装cudncudnn安装pytorch 前言 确保Windows系统版本高于windows10 21H2或Windows11,然后在Windows中将显卡驱动升级到最新即可,WSL2已支持对显卡的直接调用。 一、安装cudncudnn 配置cuda环境,WSL下的Ubuntu子系统的cu…

炬芯科技低延迟高音质无线麦克风解决方案

随着互联网技术的高速发展,诸多新兴产业被带动起来。就近十年来看,内容平台以及其载体在不断演变,从自媒体到短视频以及直播,一点一滴地渗透进大众生活。而这些平台的兴起,亦为普罗大众提供了广阔的分享空间&#xff0…

六十四卦-整体

前言:整理一下学习的卦,从整体上更好地了解六十四卦。 目录 八纯卦 难卦 消息卦 最吉的卦 六爻皆正位的卦 六爻皆不正位的卦 爻辞中含有“利涉大川”的卦 八纯卦 乾三连,坤六断,震仰盂,艮覆碗,离…

【免费分享 图书】《阿里云天池大赛赛题解析——机器学习篇》-PDF电子书-百度云...

找这本书的资源简直要把我找吐了,各种网站压缩包一下下来就开始各种套路(比如要你充钱) 为了防止还有我这样的受害者,这就把找到的PDF给大家分享一下。 链接在文章最后 如果这篇文章能够帮到您,麻烦帮我点个赞,并关注一下我&…

【uniapp】中 微信小程序实现echarts图表组件的封装

插件地址:echarts-for-uniapp - DCloud 插件市场 图例: 一、uniapp 安装 npm i uniapp-echarts --save 二、文件夹操作 将 node_modules 下的 uniapp-echarts 文件夹复制到 components 文件夹下 当前不操作此步骤的话,运行 -> 运行到小…

动手学深度学习—卷积神经网络LeNet(代码详解)

1. LeNet LeNet由两个部分组成: 卷积编码器:由两个卷积层组成;全连接层密集块:由三个全连接层组成。 每个卷积块中的基本单元是一个卷积层、一个sigmoid激活函数和平均汇聚层;每个卷积层使用55卷积核和一个sigmoid激…

基于libevent的tcp服务器

libevent使用教程_evutil_make_socket_nonblocking_易方达蓝筹的博客-CSDN博客 一、准备 centos7下安装libevent库 yum install libevent yum install -y libevent-devel 二、代码 server.cpp /** You need libevent2 to compile this piece of code Please see: http://li…

分类预测 | MATLAB实现MTBO-CNN多输入分类预测

分类预测 | MATLAB实现MTBO-CNN多输入分类预测 目录 分类预测 | MATLAB实现MTBO-CNN多输入分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现MTBO-CNN多输入分类预测 2.代码说明:基于登山队优化算法(MTBO)、卷积神经…

android 12系统加上TTS引擎

系统层修改&#xff1a; 1.frameworks/base/packages/SettingsProvider/res/values/defaults.xml <string name"def_tts"></string> 2.frameworks/base/packages/SettingsProvider/src/com/android/providers/settings/DatabaseHelper.java loadString…

​五金件机器视觉定位​并获取外观轮廓软硬件视觉方案

【检测目的】 五金件机器视觉定位&#xff0c;视觉检测五金件轮廓并矫正五金件位置进行涂油 【客户要求】 FOV:540*400mm 【拍摄与处理效图一】 【拍摄与处理效图二】 【实验原理及说明】 【方案评估】 根据目前的图像和处理结果来看&#xff0c;可以检测出产品轮廓并进行位置…

Unity小项目__小球吃零食

// Player脚本文件源代码 public class Player : MonoBehaviour {public Rigidbody rd; // 定义了一个刚体组件public int score 0; // 定义了一个计分器public Text scoreText; // 定义了一个文本组件public GameObject winText; // 定义了一个游戏物体用于检验游戏结束// S…