分类预测 | MATLAB实现MTBO-CNN多输入分类预测

news2025/1/23 15:11:18

分类预测 | MATLAB实现MTBO-CNN多输入分类预测

目录

    • 分类预测 | MATLAB实现MTBO-CNN多输入分类预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现MTBO-CNN多输入分类预测
2.代码说明:基于登山队优化算法(MTBO)、卷积神经网络(CNN)的数据分类预测程序。
程序平台:要求于Matlab 2021版及以上版本。
特点:
通过登山队优化算法优化学习率、卷积核大小、卷积核个数,这3个关键参数,以测试集精度最高为目标函数。绘制:损失、精度迭代变化图;测试对比散点图、混淆矩阵图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线)。展示:精确度、召回率、精确率、F1分数等评价指标。可直接替换数据,使用EXCEL表格导入,无需大幅修改程序。代码内部有详细注释,便于理解程序运行。
登山队优化算法(Mountaineering Team-Based Optimization,MTBO)是由Faridmehr于2023年3月提出来的。该算法基于人类行为协调的智力和环境进化。登山队由多名登山者组成,领队经验丰富且专业,其目标是征服该地区的山顶,山顶被认为是优化问题的最终全局解。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复 MATLAB实现MTBO-CNN多输入分类预测获取。
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值

%%  迭代寻优
for i = 1 : maxgen
    for j = 1 : sizepop
        
        % 速度更新
        V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));
        V(j, (V(j, :) > Vmax)) = Vmax;
        V(j, (V(j, :) < Vmin)) = Vmin;
        
        % 种群更新
        pop(j, :) = pop(j, :) + 0.2 * V(j, :);
        pop(j, (pop(j, :) > popmax)) = popmax;
        pop(j, (pop(j, :) < popmin)) = popmin;
        
        % 自适应变异
        pos = unidrnd(numsum);
        if rand > 0.95
            pop(j, pos) = rands(1, 1);
        end
        
        % 适应度值
        fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);

    end
    
    for j = 1 : sizepop

        % 个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j, :) = pop(j, :);
            fitnessgbest(j) = fitness(j);
        end

        % 群体最优更新 
        if fitness(j) < fitnesszbest
            zbest = pop(j, :);
            fitnesszbest = fitness(j);
        end

    end

    BestFit = [BestFit, fitnesszbest];    
end
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130462492


参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129679476?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/129659229?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129653829?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/883252.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

android 12系统加上TTS引擎

系统层修改&#xff1a; 1.frameworks/base/packages/SettingsProvider/res/values/defaults.xml <string name"def_tts"></string> 2.frameworks/base/packages/SettingsProvider/src/com/android/providers/settings/DatabaseHelper.java loadString…

​五金件机器视觉定位​并获取外观轮廓软硬件视觉方案

【检测目的】 五金件机器视觉定位&#xff0c;视觉检测五金件轮廓并矫正五金件位置进行涂油 【客户要求】 FOV:540*400mm 【拍摄与处理效图一】 【拍摄与处理效图二】 【实验原理及说明】 【方案评估】 根据目前的图像和处理结果来看&#xff0c;可以检测出产品轮廓并进行位置…

Unity小项目__小球吃零食

// Player脚本文件源代码 public class Player : MonoBehaviour {public Rigidbody rd; // 定义了一个刚体组件public int score 0; // 定义了一个计分器public Text scoreText; // 定义了一个文本组件public GameObject winText; // 定义了一个游戏物体用于检验游戏结束// S…

征战2023跨境旺季,独立站如何实现新增长?

2023年出海赛道万象更新&#xff0c;行业重回正轨&#xff0c;跨境行业在经历过多轮洗牌过后&#xff0c;中国企业在全球化产业链中表现出了更强大的增长韧性。而随着跨境模式与消费需求的多样化与精细化。单一渠道的出海布局已经不能满足企业实现品牌出海的转型需求。 DTC独立…

前端工具的选择

目录 前端常见开发者工具 浏览器 开发者工具 VScode开发者工具快捷键 前端常见开发者工具 浏览器 浏览器是我们最重要的合作伙伴 关于浏览器的选择&#xff0c;我目前主要用主要是谷歌浏览器&#xff0c;我个人觉得谷歌浏览器使用起来比较方便、简洁&#xff0c;没有太多…

【TypeScript】tsc -v 报错 —— 在此系统上禁止运行脚本

在 VS Code 终端中执行 tsc -v &#xff0c;报错 —— 在此系统上禁止运行脚本 然后 windows x &#xff0c;打开终端管理员&#xff0c;出现同样的问题 解决方法&#xff1a; 终端&#xff08;管理员&#xff09;执行以下命令&#xff1a; 出现 RemoteSigned 则代表更改成功…

Flask-SQLAlchemy

认识Flask-SQLAlchemy Flask-SQLAlchemy 是一个为 Flask 应用增加 SQLAlchemy 支持的扩展。它致力于简化在 Flask 中 SQLAlchemy 的使用。SQLAlchemy 是目前python中最强大的 ORM框架, 功能全面, 使用简单。 ORM优缺点 优点 有语法提示, 省去自己拼写SQL&#xff0c;保证SQL…

誉天HCIP-Datacom课程简介

HCIP-Datacom课程介绍&#xff1a;HCIP-Datacom分为一个核心技术方向&#xff1a;HCIP-Datacom-Core Technology H12-821 &#xff08;核心技术&#xff09;六个可选子方向&#xff1a;HCIP-Datacom-Advanced Routing & Switching Technology H12-831 &#xff08;高级路…

ubuntu设置共享文件夹成功后却不显示找不到(已解决)

1.首先输下面命令查看是否真的设置成功共享文件夹 vmware-hgfsclient如果确实已经设置过共享文件夹将输出window下共享文件夹名字 2.确认自己已设置共享文件夹后输入下面的命令 //如果之前没有命令包则先执行sudo apt-get install open-vm-tools sudo vmhgfs-fuse .host:/ /mn…

Ubuntu18.04.4裸机配置

下载虚拟机Ubuntu18.04.4 链接&#xff1a;https://pan.baidu.com/s/1jyucyUSXa9-Fw9ctuU87hA 提取码&#xff1a;o42a –来自百度网盘超级会员V5的分享 VMware选择镜像安装 设置你的用户名&#xff0c;就像windows上登录用户一样简单 下一步……下一步……如此简单 下载…

《Effects of Graph Convolutions in Multi-layer Networks》阅读笔记

一.文章概述 本文研究了在XOR-CSBM数据模型的多层网络的第一层以上时&#xff0c;图卷积能力的基本极限&#xff0c;并为它们在数据中信号的不同状态下的性能提供了理论保证。在合成数据和真实世界数据上的实验表明a.卷积的数量是决定网络性能的一个更重要的因素&#xff0c;而…

TiDB数据库从入门到精通系列之一:TiDB数据库的软硬件环境要求和系统配置检查

TiDB数据库从入门到精通系列之一&#xff1a;TiDB数据库的软硬件环境要求和系统配置检查 一、软件和硬件配置要求1.操作系统及平台要求2.服务器建议配置3.网络要求4.磁盘空间要求 二、TiDB 环境与系统配置检查1.在 TiKV 部署目标机器上添加数据盘 EXT4 文件系统挂载参数2.设置 …

ECOLOGY9实现正文文档按发布范围授权查看

需求&#xff1a;E9流程需要流程归档后&#xff0c;正文文档按发布范围授权查看&#xff0c;不需要是流程参与者。 解决&#xff1a;表单中定义发布范围是人力资源条件 在流程基础设置-功能设置中设置启用按人力资源 条件字段赋权。 实现的效果。

司徒理财:8.15黄金美盘多空最新操作建议

黄金一直没能跌破1902的支撑&#xff0c;司徒理财依旧维持低多看涨的思路不变&#xff0c;早盘1905多单继续持有中&#xff0c;静待美盘拉升&#xff01;黄金现在的下跌力度已经衰竭&#xff0c;并且日线上已经跌至200日均线的支撑位置&#xff0c;大周期的均线支撑&#xff0c…

WSL2 ubuntu子系统OpenCV调用本机摄像头的RTSP视频流做开发测试

文章目录 前言一、Ubuntu安装opencv库二、启动 Windows 本机的 RTSP 视频流下载解压 EasyDarwin查看本机摄像头设备开始推流 三、在ubuntu 终端编写代码创建目录及文件创建CMakeLists.txt文件启动 cmake 配置并构建 四、结果展示启动图形界面在图形界面打开终端找到 rtsp_demo运…

阿里云与中国中医科学院合作,推动中医药行业数字化和智能化发展

据相关媒体消息&#xff0c;阿里云与中国中医科学院的合作旨在推动中医药行业的数字化和智能化发展。随着互联网的进步和相关政策的支持&#xff0c;中医药产业受到了国家的高度关注。这次合作将以“互联网 中医药”为载体&#xff0c;致力于推进中医药文化的传承和创新发展。…

PDB Database - 高质量 RCSB PDB 蛋白质结构筛选与过滤

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/132307119 Protein Data Bank (PDB) 是一个收集和存储三维结构数据的公共数据库&#xff0c;主要包括蛋白质和核酸分子。PDB 由美国、欧洲和日本三…

机器学习深度学习——机器翻译(序列生成策略)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习——seq2seq实现机器翻译&#xff08;详细实现与原理推导&#xff09; &#x1f4da;订阅专栏&#xff1a;机…

卡车盲区监测+360全景

一、背景分析 1.AI视觉智能终端的ADAS主动防撞告警、DMS驾驶员异常行为告警功能。通过摄像头和人工智能算法对前方车辆、车道、交通场景进行检测识别&#xff0c;再结合对车辆运动状态和驾驶员行为的分析&#xff0c;有效预测ADAS前车碰撞、车道偏离等危险&#xff0c;并对DMS…

pytorch3d成功安装

一、pytorch3d是什么&#xff1f; PyTorch3D的目标是帮助加速深度学习和3D交叉点的研究。3D数据比2D图像更复杂&#xff0c;在从事Mesh R-CNN和C3DPO等项目时&#xff0c;我们遇到了一些挑战&#xff0c;包括3D数据表示、批处理和速度。我们开发了许多有用的算子和抽象&#xf…