使用 BERT 进行文本分类 (02/3)

news2024/11/24 3:12:11

一、说明

        在使用BERT(1)进行文本分类中,我向您展示了一个BERT如何标记文本的示例。在下面的文章中,让我们更深入地研究是否可以使用 BERT 来预测文本是使用 PyTorch 传达积极还是消极的情绪。首先,我们需要准备数据,以便使用 PyTorch 框架进行分析。

二、什么是 PyTorch

        PyTorch 是用于构建深度学习模型的框架,深度学习模型是一种机器学习,通常用于图像识别和语言处理等应用程序。它由Facebook的人工智能研究小组于2016年开发,由于其灵活性,易用性和动态计算图构建而广受欢迎。

        PyTorch 提供了一个基于 Python 的科学计算包,它使用图形处理单元 (GPU) 的强大功能来加速张量运算的计算。它具有简单直观的API,允许开发人员快速构建和训练深度学习模型。PyTorch 还支持自动微分,使用户能够计算任意函数的梯度。

三、准备我们的数据集

        首先,让我们从Github下载我们的数据。这里有一个关于如何从Github下载CSV文件的小提醒。只需继续并单击以下链接:

github.com

        然后,右键单击“原始”,然后左键单击“将链接文件下载为...”。您将看到“垃圾邮件.csv”并下载它。下载后,将其保存到您的首选文件夹中以供以后使用。

        现在,让我们导入数据。我们看到一条错误消息,告诉我们部分数据未采用 UTF-8 编码。

import pandas as pd
df = pd.read_csv("spam.csv")

ERROR: 
UnicodeDecodeError: 'utf-8' codec can't decode bytes in position 606-607: invalid continuation byte

我们可以通过了解数据包含的字符编码并在读取数据时调用该编码来修复此错误。

# Use chardet to know the character encoding 
import chardet
with open("spam.csv", 'rb') as rawdata:
    result = chardet.detect(rawdata.read(100000))
result

Output: 
{'encoding': 'Windows-1252', 'confidence': 0.7270322499829184, 'language': ''}

似乎我们的数据是在“Windows-1252”中编码的。那让我们再读一遍。它奏效了!

df = pd.read_csv("spam.csv", encoding = 'Windows-1252')
df.head()

        如我们所见,我们实际上并不需要“v1”和“v2”以外的列。此外,如果我们将“v1”和“v2”重命名为“类别”和“消息”,则更容易理解。

df = df.loc[:, ['v1', 'v2']]
df = df.rename(columns={'v1': 'Category', 'v2': 'Message'})
df.head()

        现在,我们应该看看我们的数据集,看看每个类别中有多少条消息。

df['Category'].value_counts()

Output: 
ham     4825
spam     747
Name: Category, dtype: int64

四、创建平衡数据集

        事实证明,正常邮件比垃圾邮件多。构建机器学习模型时,如果数据集不平衡,其中一个类中的数据数量明显多于另一个类,则可能会对模型的性能产生各种影响。一些潜在的后果。例如:

-1 有偏差模型:如果数据集不平衡,模型可能会偏向多数类,而对少数类表现不佳。这是因为模型更有可能预测多数类,这将导致少数类的准确性较差。

-2 泛化不良:不平衡的数据集可能导致模型泛化不良。这是因为该模型将在不代表数据真实世界分布的数据集上进行训练,因此它可能无法很好地概括看不见的数据。

-3 评估不准确:如果使用准确性作为指标评估模型,则可能会产生误导性结果。例如,始终预测不平衡数据集中多数类的模型可能具有很高的准确性,但对少数类没有用。

-4 过拟合:由于数据点数量较多,模型可能会过度拟合多数类,从而导致测试数据的性能不佳。

为了解决这些问题,可以使用各种技术来平衡数据集,例如对少数类进行过采样,对多数类进行欠采样,或同时使用两者的组合。在这篇文章中,我将使用欠采样方法。

df_spam = df[df['Category']=='spam']
df_ham = df[df['Category']=='ham']
df_ham_downsampled = df_ham.sample(df_spam.shape[0])
df_balanced = pd.concat([df_ham_downsampled, df_spam])
df_balanced['Category'].value_counts()

Output: 
ham     747
spam    747
Name: Category, dtype: int64

五、标记数据

        当数据表示为数字而不是分类为用于训练和测试的模型时,机器学习算法在准确性和其他性能指标方面表现更好。我们需要用数值对分类值进行标签编码。在这里,我们创建了一个新列“标签”,如果邮件是垃圾邮件,我们将其标记为 1,否则为 0。

df_balanced['Label']=df_balanced['Category'].apply(lambda x: 1 if x=='spam' else 0)
df_balanced = df_balanced.reset_index(drop=True)

display(df_balanced)

由作者创建

六、训练、验证和测试数据集:谁是谁

        要记住的一件事是,当我们使用 train_test_split 库来训练模型时,我们实际上是将数据集拆分为 TRAINING 数据集和 VALIDATION 数据集,而不是 TRAINING 数据集和 TESTING 数据集。下面提醒一下这些数据集的含义。

  1. 训练集:用于构建我们的模型。我们将使用训练集来找到具有反向传播规则的“最佳”权重和偏差。在此阶段,我们通常会创建多个算法,以便在交叉验证阶段比较它们的性能。
  2. 交叉验证集:此数据集用于比较基于训练集创建的预测算法的性能。我们选择性能最佳的算法。
  3. 测试集:这是“未来”数据集。现在我们已经选择了我们喜欢的预测算法,但我们还不知道它将如何在完全看不见的真实世界数据上执行。因此,我们将我们选择的预测算法应用于我们的测试集,以查看它将如何执行,以便我们可以了解我们的算法在野外的性能。

        因此,在测试集中,我们没有数据的标签,而是使用我们的模型来预测标签。我们只能将手头的数据集拆分为训练集和验证集,因为我们还没有“未来”数据。

七、拆分为训练数据集和验证数据集

        现在我们了解了这三种类型的数据的真正含义,我们可以使用scikit-learn的train_test_split来拆分数据。

from sklearn.model_selection import train_test_split
X_train, X_val, y_train, y_val = train_test_split(df_balanced['Message'],df_balanced['Label'], stratify=df_balanced['Label'], test_size=.2)

X_train.head()

Output: 
708                      ;-) ok. I feel like john lennon.
1386    Cashbin.co.uk (Get lots of cash this weekend!)...
1492    REMINDER FROM O2: To get 2.50 pounds free call...
119     Back in brum! Thanks for putting us up and kee...
89                       Sorry, I can't help you on this.
Name: Message, dtype: object

八、总结

        我们已经学会了如何下载和拆分数据。在下一篇文章中,我们将首先对其进行标记,并使用DistilBERT训练分类器。达门·

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/882433.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

利用POM完成脚本分离实现企业级自动化(POM设计模式+页面的框架封装+测试报告截图)

利用POM完成脚本分离实现企业级自动化(POM设计模式页面的框架封装测试报告截图) 项目-测试-手工测试 项目-测试-手工测试 1.了解需求; 2.编写测试用例(开始)——功能测试组会去做的事情 3.执行测试用例——发送测试报…

vue中router路由的原理?两种路由模式如何实现?(vue2) -(下)

上一期我们说到了如果想要实现一个路由嵌套,那么就需要判断传递实例化路由时的那个路由信息是否存在children属性,如果有children说明它是二级路由,我们还需要去递归判断,因为它不一定只有一个子路由,接下来实现一下路…

【第三阶段】kotlin语言的substring

const val INFO"kotlin java" fun main() {val indexOfINFO.indexOf(j)//左包右不包//0,indexOf等价于0 until indexOf ktolin常用0 until indexOf 方式println(INFO.substring(0,indexOf))println(INFO.substring(0 until indexOf))}执行结果

Android Framework 动态更新插拔设备节点执行权限

TF卡设备节点是插上之后动态添加,所以不能通过初始化设备节点权限来解决,需要监听TF插入事件,在init.rc 监听插入后动态更新设备节点执行权限 添加插拔TF卡监听 frameworks/base/services/core/java/com/android/server/StorageManagerServic…

YOLOv5基础知识入门(6)— 激活函数(Mish、Sigmoid、Tanh、ReLU、Softmax、SiLU等)

前言:Hello大家好,我是小哥谈。激活函数(Activation functions)对于人工神经网络模型去学习、理解非常复杂和非线性的函数具有十分重要的作用。YOLOv5模型训练过程中即使用了激活函数,可以改善模型的训练速度和准确性。…

SpringCloud实用篇7——深入elasticsearch

目录 1 数据聚合1.1 聚合的种类1.2 DSL实现聚合1.2.1 Bucket聚合语法1.2.2 聚合结果排序1.2.3 限定聚合范围1.2.4 Metric聚合语法1.2.5.小结 1.3 RestAPI实现聚合1.3.1 API语法1.3.2 业务需求1.3.3 业务实现 2 自动补全2.1 拼音分词器2.2 自定义分词器2.3 自动补全查询2.4 实现…

vue3-router

一、路由 (1)通过 URL 区分路由的机制上,有两种实现方式: hash 模式:通过 URL 中 # 后面的内容做区分,我们称之为 hash-router; history 模式:在这种方式下,路由看起来和…

C++_模板进阶_非类型模板参数_模板特化_分离编译

一、非类型模板参数 模板参数,分为类型形参和非类型形参。 类型形参就是在模板中跟在typename和class之后的参数类型名称,非类型形参就是用一个常量作为类模板或者函数模板的一个参数,在类模板和函数模板中,可以将该参数当作常量…

第三方软件安全测评如何收费,安全测试包括哪些测试项?

近年来,随着全球范围内网络安全事件的频发,第三方软件安全测评的需求也日益增长。软件安全对于企业的重要性不言而喻,那么如何收费和可做测试项就成了企业最为关注的问题,小编将就以上问题作出以下简析。 一、第三方软件安全测评…

Smartbi 修改用户密码漏洞

漏洞简介 通过查看 Smartbi 的补丁包信息,发现存在漏洞在某种特定情况下修改用户的密码,进行简单的复现和分析 ​ 漏洞复现 在页面上修改密码时,需要知道原本的用户对应的密码 ​ ​ 直接构造这样的数据包,就不需要知道原本…

Excelize Go语言操作 Office Excel文档基础库

Excelize 是 Go 语言编写的用于操作 Office Excel 文档基础库,基于 ECMA-376,ISO/IEC 29500 国际标准。可以使用它来读取、写入由 Microsoft Excel™ 2007 及以上版本创建的电子表格文档。支持 XLAM / XLSM / XLSX / XLTM / XLTX 等多种文档格式&#xf…

硬件-10-浏览器发展史和开源操作系统FydeOS

吊打 IE、Firefox,谷歌 Chrome 十年发展史 fydeos官方网站 全面了解浏览器内核发展史 1 浏览器内核 浏览器内核英文叫做:Rendering Engine,中文翻译很多,排版引擎、解释引擎、渲染引擎,现在流行称为浏览器内核。内核…

42、可靠传输——连续ARQ

上回内容我们学习到,一种保证可靠传输的机制——ARQ协议,ARQ协议通过设置超时定时器,当在规定时间内没有收到来自对方发来的“确认”报文,就自动报文重传。这其中,ARQ协议和停止等待机制的结合,我们把它称作…

USB PD快充保护方案有哪些?用集成式TVS还是分立式TVS?

USB Power Delivery ,简称USB PD,是由USB-IF组织制定的一种快速充电规范,目前主流的快充协议之一。该规范可实现更高的电压和电流,输送的功率最高可达100瓦,并可以自由的改变电力的输送方向。在日常使用USB PD快充充电…

CNN卷积详解(三)

一、卷积层的计算 4 ∗ * ∗ 4的输入矩阵 I I I 和 3 ∗ * ∗ 3 的卷积核 K K K: 在步长(stride)为 1 时,输出的大小为 ( 4 − 3 1 ) ( 4 − 3 1) 计算公式: ● 输入图片矩阵 I I I 大小: w w w w ww ●…

【八大排序】-- 基数排序(动图演示)

基数排序(桶排序)介绍 (1)基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是通…

【环境配置】Windows10-YOLOv8运行报错

问题如下: Windows10 运行 YOLOv8 出现如下错误: Traceback (most recent call last): File “”, line 1, in File “D:\anaconda3\envs\yolov8\Lib\multiprocessing\spawn.py”, line 116, in spawn_main exitcode _main(fd, parent_sentinel) ^^^^^…

【ROS】话题通信--从理论介绍到模型实现

1.简单介绍 话题通信是ROS中使用频率最高的一种通信模式,话题通信是基于发布订阅模式的,也即:一个节点发布消息,另一个节点订阅该消息。像雷达、摄像头、GPS… 等等一些传感器数据的采集,也都是使用了话题通信,换言之…

帆软大屏2.0企业制作

 数字化观点中心 / 当前页 如何从0-1制作数据大屏,我用大白话给你解释清楚了 文 | 商业智能BI相关文章 阅读次数:18,192 次浏览 2023-06-08 11:51:49 好莱坞大片《摩天营救》中有这么一个场景:  你可以看见反派大b…

设备数字化平台的优势和应用价值

在现代工业领域,设备的高效管理和维护对于企业的运营和竞争力至关重要。而设备管理系统作为一个强大的工具,可以极大地提升设备管理和维护的效率,从而实现生产效益的最大化。本文将探讨设备数字化平台的优势和应用价值。 设备数字化平台是一款…