机器学习中基本的数据结构说明

news2025/1/10 17:16:26

数据维度或数据结构

当我们在机器学习或深度学习的领域内处理数据,我们通常会遇到四种主要的数据结构:标量,向量,矩阵和张量。理解这些基本数据结构是非常重要的,因为它们是机器学习算法和神经网络的核心。下面是对这些概念的解释:

  1. 标量 :在机器学习中,一个标量是一个单一的数量,或者说是一个单一的实数。例如,一个学习算法的学习率(learning rate)就是一个标量。
  2. 向量 :向量就是一列有序的数。在机器学习中,我们经常会把样本的特征放在一个向量中。例如,假如我们有一个1000个样本的数据集,其中每个样本有10个特征,那么我们可以把这个数据集表示为一个1000x10的矩阵,其中每一行就是一个有10个元素的向量,这个向量就表示一个样本。
  3. 矩阵 :矩阵是具有相同特性的对象的一个二维数组。在机器学习中,我们一般会把一个数据集表示为一个矩阵。每一行代表一个样本(例子),每一列代表一个特征。
  4. 张量 :当我们需要处理的数据的维度超过2时,就需要用到张量了。矩阵是二维的,而张量则可以是任意维度。例如,我们用卷积神经网络(Convolutional Neural Network,CNN)处理图片时,一张图片通常由三个彩色通道(红,绿,蓝)构成,每个通道都是一个二维数组(矩阵),因此一张图片可以表示为一个3维的张量。

在深度学习中,我们常常需要处理四维张量,比如在处理一批训练样本时,我们会把它们放在一个四维张量中。
这四个维度分别是:样本数,通道数,图片高度,图片宽度。

Simply put

  1. Scalar : In machine learning, a scalar is a single quantity or a real number. For example, the learning rate of a learning algorithm is a scalar.
  2. Vector : A vector is an ordered list of numbers. In machine learning, we frequently put the features of a sample into a vector. For example, if we have a dataset with 1000 samples, each having 10 features, we can represent this dataset as a 1000x10 matrix, where each row is a vector with 10 elements, representing a sample.
  3. Matrix : A matrix is a two-dimensional array of objects with the same type. In machine learning, we typically represent a dataset as a matrix. Each row represents a sample (instance), and each column represents a feature.
  4. Tensor : When we need to handle data with more than two dimensions, we use tensors. A matrix is two-dimensional, while a tensor can be of any dimension. For example, when we use convolutional neural networks (CNN) to process images, a picture is usually composed of three color channels (red, green, blue), each being a two-dimensional array (matrix), so a picture can be represented as a three-dimensional tensor.

On the other hand

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/878292.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AssetBundle总结

文章目录 目的打包过程打包时的分组策略和压缩方式资源的载入和卸载其它:Manifest、校验、视图工具思维导图 前言: 大佬文章链接(据此总结的) 目的 避免软件因资源占用空间太大,导致运行缓慢 避免每次更新资源&#…

【STM32】高效开发工具CubeMonitor快速上手

工欲善其事必先利其器。拥有一个辅助测试工具,能极大提高开发项目的效率。STM32CubeMonitor系列工具能够实时读取和呈现其变量,从而在运行时帮助微调和诊断STM32应用,类似于一个简单的示波器。它是一款基于流程的图形化编程工具,类…

Michael.W基于Foundry精读Openzeppelin第26期——ERC1820Implementer.sol

Michael.W基于Foundry精读Openzeppelin第26期——ERC1820Implementer.sol 0. 版本0.1 ERC1820Implementer.sol 1. 目标合约2. 代码精读2.1 _registerInterfaceForAddress(bytes32 interfaceHash, address account) internal2.2 canImplementInterfaceForAddress(bytes32 interf…

Java的反射机制、Lambda表达式和枚举

Java的反射机制、Lambda表达式和枚举 文章目录 Java的反射机制、Lambda表达式和枚举1.反射机制反射的概念、用途、优缺点反射相关的类及使用(重要!!)相关类Class类:代表类实体,表示类和接口Field类&#xf…

URLSearchParams:JavaScript中的URL查询参数处理工具

文章目录 导言:一、URLSearchParams的来历二、URLSearchParams的作用三、URLSearchParams的方法和属性四、使用示例五、注意事项六、结论参考资料 导言: 在Web开发中,处理URL查询参数是一项常见的任务。为了简化这一过程,JavaScr…

论文阅读——Adversarial Eigen Attack on Black-Box Models

Adversarial Eigen Attack on Black-Box Models 作者:Linjun Zhou, Linjun Zhou 攻击类别:黑盒(基于梯度信息),白盒模型的预训练模型可获得,但训练数据和微调预训练模型的数据不可得&#xff…

龙迅LT86102UXE产品概括,HDMI2.0转一分二HDMI2.0/1.4,支持音频剥离,支持4K60HZ

LT86102UXE 1. 一般说明 龙迅 LT86102UXE HDMI2.0 分路器具有符合 HDMI2.0/1.4 规范的 1:2 分路器、最大 6Gbps 高速数据速率、自适应均衡 RX 输入和预加重 TX 输出(用于支持长电缆应用)、内部 TX 通道交换以实现灵活的 PCB 布线。 LT86102…

A Survey for In-context Learning

A Survey for In-context Learning 摘要: 随着大语言模型(LLMs)能力的增长,上下文学习(ICL)已经成为一个NLP新的范式,因为LLMs仅基于几个训练样本让内容本身增强。现在已经成为一个新的趋势去探索ICL来评价和extrapolate LLMs的能力。在这篇…

vue3+element-plus表格默认排序default-sort失效问题

场景 在使用动态数据渲染的场景&#xff0c;el-table设置默认属性default-sort失效。 原因 el-table的default-sort属性是针对静态数据的&#xff0c;如果是动态数据&#xff0c;default-sort则无法监听到。 案例&#xff1a;静态数据 <template><el-table:data&…

一文分析多少杠杆最高

在进行加杠杆操作时&#xff0c;合约产品通常会有一定的杠杆比例限制&#xff0c;这是由监管机构或交易平台设定的。杠杆比例限制的目的是为了控制风险&#xff0c;避免过度杠杆化导致的潜在损失过大。 不同的交易平台和合约产品可以有不同的杠杆比例限制。一般来说&#xff0…

堆叠注入进阶--(buuctf-随便注、GYCTF-black_list)【多方法详解】

了解一下 堆叠注入基础知识及其他题目&#xff1a; SQL-堆叠注入 终于有时间来填填坑了 Buuctf-随便注 算是堆叠注入中非常经典的题目了。 随便试试就能看到黑名单&#xff1a; 没了select&#xff0c;其实大概率就是堆叠注入 先探测一下&#xff1a; 1;show databases;…

Struts2一次请求参数问题的记录

最近&#xff0c;一次前端正常请求&#xff0c;但后台出现请求参数值的变化&#xff0c;导致报错&#xff0c;问题如下&#xff1a; 从入参request中查看请求参数&#xff0c;是一个Json字符串&#xff0c;其中有个description的键值对&#xff1b; 但是&#xff0c;接下来调用…

分布式websocket解决方案

1、websocket问题由来 websocket基础请自行学习,本文章是解决在分布式环境下websocket通讯问题。 在单体环境下,所有web客户端都是连接到某一个微服务上,这样消息都是到达统一服务端,并且也是由一个服务端进行响应,所以不会出现问题。 但是在分布式环境下,我们很容易发现…

【Vue】Vue2创建移动端项目实战教程,创建移动端项目保姆级教程,设置axios,utils工具包,vue.fonfig.js配置项 (下)

系列文章目录 这里是创建移动端项目 【Vue】Vue2.x创建项目全程讲解&#xff0c;保姆级教程&#xff0c;手把手教&#xff0c;Vue2怎么创建项目&#xff08;上&#xff09; 【Vue】Vue2创建移动端项目实战教程&#xff0c;创建移动端项目保姆级教程&#xff0c;接上一篇创建Vue…

解压版 MySQL 数据库的安装与配置

目录 1 下载2 安装3 配置3.1 添加环境变量3.2 新建配置文件3.3 初始化MySQL3.4 注册MySQL服务3.5 启动MySQL服务3.6 修改默认账户密码 4 登录MySQL5 卸载MySQL 安装环境:Win10 64位 软件版本:MySQL 5.7.24 解压版 1 下载 点击链接 进入如下界面 ❗️注意&#xff1a; 我们一般不…

JavaEE初阶:多线程 - 编程

1.认识线程 我们在之前认识了什么是多进程&#xff0c;今天我们来了解线程。 一个线程就是一个 "执行流". 每个线程之间都可以按照顺讯执行自己的代码. 多个线程之间 "同时" 执行 着多份代码. 引入进程这个概念&#xff0c;主要是为了解决并发编程这样的…

JAVA集合-List

// 数组的缺点&#xff1a;每次使用都需要指定长度&#xff0c;掉率低&#xff0c;操作麻烦 // // 【java集合体系】&#xff1a;分类&#xff1a;6个接口&#xff0c;1个工具类 // 6个接口&#xff1a; 单列 :Collection,(父接口) // …

成功项目管理必备的五个关键因素

在任何组织中&#xff0c;良好的项目管理都是项目成功的首要标准。然而&#xff0c;一旦被淹没在无穷无尽的任务、持续的紧迫性和利益相关者相互冲突等情况中&#xff0c;管理好项目可能会让你感到力不从心。找出项目成功的关键因素并加以解决&#xff0c;就能避免一切失败。 …

浅谈学生宿舍安全用电管理存在的问题及防范措施

安科瑞 华楠 摘要&#xff1a;2009年&#xff0c;由一个小小的“热的快”引起的学院女生火灾事件&#xff0c;再一次敲响了大学生安全用电的警钟。而近年来随着教育事业的蓬勃发展和教育体制的推进&#xff0c;我国高等教育总规模在逐年增加。而目前高等学校能源使用主要是以电…

产品帮助中心的制作方法,保姆级0-1完整的实操教程!

帮助中心是一个产品的重要用户自助服务模块&#xff0c;包括各类产品相关信息&#xff0c;用以帮助用户快速理解和使用产品功能。对于我们产品开发和管理者而言&#xff0c;设计帮助中心的初衷是解决用户困惑&#xff0c;怎么设计帮助中心&#xff0c;才能让其价值尽可能的大&a…