稀疏感知图像和体数据恢复的系统对象研究(Matlab代码实现)

news2025/1/12 15:44:49

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

稀疏感知图像和体数据恢复是一种用于恢复损坏、噪声或不完整的图像和体数据的技术。它利用了信号的稀疏性,即信号在某种基础下可以用较少的非零系数表示,从而实现高质量的恢复。

在进行稀疏感知图像和体数据恢复的研究时,需要定义一些系统对象。这些对象描述了系统中的各个组成部分和它们之间的关系,有助于实现恢复算法的设计和实现。

系统对象的定义包括以下几个方面:

1. 输入数据对象:这个对象描述了输入的损坏、噪声或不完整的图像或体数据。它可以是一个图像矩阵、一个体数据的三维数组或其他适当的数据结构。

2. 稀疏表示对象:这个对象描述了信号的稀疏表示。它可以是一个稀疏矩阵、一个稀疏系数向量或其他适当的数据结构。稀疏表示对象是恢复算法的关键部分,它通过选择适当的基础和优化方法来实现信号的稀疏表示。

3. 恢复算法对象:这个对象描述了用于恢复稀疏感知图像和体数据的算法。它可以是一个迭代算法、一个优化算法或其他适当的算法。恢复算法对象通常包括对输入数据对象和稀疏表示对象的处理步骤,以及对恢复结果的评估和优化步骤。

4. 输出数据对象:这个对象描述了恢复后的图像或体数据。它可以是一个恢复后的图像矩阵、一个恢复后的体数据的三维数组或其他适当的数据结构。

通过定义这些系统对象,研究人员可以更好地理解稀疏感知图像和体数据恢复的过程,并设计出高效、准确的恢复算法。这些系统对象的定义还可以为稀疏感知图像和体数据恢复的实际应用提供指导,例如医学图像处理、计算机视觉和图像压缩等领域。

📚2 运行结果

 

 部分代码:

%% Create a step monitor system object
% ISTA iteratively approaches to the optimum solution. In order to 
% observe the intermediate results, the following class can be used:
%
% * saivdr.utility.StepMonitoringSystem

% Parameters for StepMonitoringSystem
isverbose = true;  % Verbose mode
isvisible = true;  % Monitor intermediate results
hfig2 = figure(2); % Figure to show the source, observed and result image 
hfig2.Name = 'ISTA-based Image Restoration';

% Instantiation of StepMonitoringSystem
import saivdr.utility.StepMonitoringSystem
stepmonitor = StepMonitoringSystem(...
    'DataType', 'Image',...
    'SourceImage',   orgImg,...    % Original image
    'ObservedImage', obsImg,...    % Observed image
    'IsMSE',         false,...     % Switch for MSE  evaluation
    'IsPSNR',        true,...      % Switch for PSNR evaluation
    'IsSSIM',        false,...     % Switch for SSIM evaluation
    'IsVerbose',     isverbose,... % Switch for verbose mode
    'IsVisible',     isvisible,... % Switch for display intermediate result
    'ImageFigureHandle',hfig2);    % Figure handle
    
% Set the object to the ISTA system object
ista.StepMonitor = stepmonitor;

%% Perform ISTA-based image restoration
% STEP method of IstaImRestoration system object, _ista_ , executes 
% the ISTA-based image restoration to deblur the observed image.
% As the result, a restored image 
%
% $\hat{\mathbf{u}} = \mathbf{D}\hat{\mathbf{y}}$
%
% is obtained.

fprintf('\n ISTA')
resImg = ista.step(obsImg); % STEP method of IstaImRestoration

%% Extract the final evaluation  
% The object of StepMonitoringSystem, _stepmonitor_ , stores the 
% evaluation values calculated iteratively in ISTA as a vector. The GET 
% method of _stepmonitor_  can be used to extract the number of iterations
% and the sequence of PSNRs. 

nItr  = stepmonitor.nItr;
psnrs = stepmonitor.PSNRs;
psnr_ista = psnrs(nItr);

%% Perform Wiener filtering
% As a reference, let us show a result of Wiener filter.

% Create a step monitor system object for the PSNR evaluation
stepmonitor = StepMonitoringSystem(...
    'SourceImage',orgImg,...
    'MaxIter', 1,...
    'IsMSE',  false,...
    'IsPSNR', true,...
    'IsSSIM', false,...
    'IsVisible', false,...
    'IsVerbose', isverbose);

% Use the same blur kernel as that applied to the observed image, obsImg
blurKernel = blur.BlurKernel;

% Estimation of noise to signal ratio
nsr = noise_var/var(orgImg(:));

% Wiener filter deconvolution of Image Processing Toolbox
wnfImg = deconvwnr(obsImg, blurKernel, nsr);

% Evaluation
fprintf('\n Wiener')
psnr_wfdc = stepmonitor.step(wnfImg); % STEP method of StepMonitoringSystem

%% Compare deblurring performances
% In order to compare the deblurring performances between two methods,
% ISTA-based deblurring with NSOLT and Wiener filter, let us show 
% the original, observed and two results in one figure together.

hfig3 = figure(3);

% Original image x
subplot(2,2,1)
imshow(orgImg)
title('Original image {\bf u}')

% Observed image u
subplot(2,2,2)
imshow(obsImg)
title('Observed image {\bf x}')

% Result u^ of ISTA 
subplot(2,2,3)
imshow(resImg)
title(['{\bf u}\^ by ISTA  : ' num2str(psnr_ista) ' [dB]'])

% Result u^ of Wiener filter
subplot(2,2,4)
imshow(wnfImg)
title(['{\bf u}\^ by Wiener: ' num2str(psnr_wfdc) ' [dB]'])

%% Create a step monitor system object
% ISTA iteratively approaches to the optimum solution. In order to 
% observe the intermediate results, the following class can be used:
%
% * saivdr.utility.StepMonitoringSystem

% Parameters for StepMonitoringSystem
isverbose = true;  % Verbose mode
isvisible = true;  % Monitor intermediate results
hfig2 = figure(2); % Figure to show the source, observed and result image 
hfig2.Name = 'ISTA-based Image Restoration';

% Instantiation of StepMonitoringSystem
import saivdr.utility.StepMonitoringSystem
stepmonitor = StepMonitoringSystem(...
    'DataType', 'Image',...
    'SourceImage',   orgImg,...    % Original image
    'ObservedImage', obsImg,...    % Observed image
    'IsMSE',         false,...     % Switch for MSE  evaluation
    'IsPSNR',        true,...      % Switch for PSNR evaluation
    'IsSSIM',        false,...     % Switch for SSIM evaluation
    'IsVerbose',     isverbose,... % Switch for verbose mode
    'IsVisible',     isvisible,... % Switch for display intermediate result
    'ImageFigureHandle',hfig2);    % Figure handle
    
% Set the object to the ISTA system object
ista.StepMonitor = stepmonitor;

%% Perform ISTA-based image restoration
% STEP method of IstaImRestoration system object, _ista_ , executes 
% the ISTA-based image restoration to deblur the observed image.
% As the result, a restored image 
%
% $\hat{\mathbf{u}} = \mathbf{D}\hat{\mathbf{y}}$
%
% is obtained.

fprintf('\n ISTA')
resImg = ista.step(obsImg); % STEP method of IstaImRestoration

%% Extract the final evaluation  
% The object of StepMonitoringSystem, _stepmonitor_ , stores the 
% evaluation values calculated iteratively in ISTA as a vector. The GET 
% method of _stepmonitor_  can be used to extract the number of iterations
% and the sequence of PSNRs. 

nItr  = stepmonitor.nItr;
psnrs = stepmonitor.PSNRs;
psnr_ista = psnrs(nItr);

%% Perform Wiener filtering
% As a reference, let us show a result of Wiener filter.

% Create a step monitor system object for the PSNR evaluation
stepmonitor = StepMonitoringSystem(...
    'SourceImage',orgImg,...
    'MaxIter', 1,...
    'IsMSE',  false,...
    'IsPSNR', true,...
    'IsSSIM', false,...
    'IsVisible', false,...
    'IsVerbose', isverbose);

% Use the same blur kernel as that applied to the observed image, obsImg
blurKernel = blur.BlurKernel;

% Estimation of noise to signal ratio
nsr = noise_var/var(orgImg(:));

% Wiener filter deconvolution of Image Processing Toolbox
wnfImg = deconvwnr(obsImg, blurKernel, nsr);

% Evaluation
fprintf('\n Wiener')
psnr_wfdc = stepmonitor.step(wnfImg); % STEP method of StepMonitoringSystem

%% Compare deblurring performances
% In order to compare the deblurring performances between two methods,
% ISTA-based deblurring with NSOLT and Wiener filter, let us show 
% the original, observed and two results in one figure together.

hfig3 = figure(3);

% Original image x
subplot(2,2,1)
imshow(orgImg)
title('Original image {\bf u}')

% Observed image u
subplot(2,2,2)
imshow(obsImg)
title('Observed image {\bf x}')

% Result u^ of ISTA 
subplot(2,2,3)
imshow(resImg)
title(['{\bf u}\^ by ISTA  : ' num2str(psnr_ista) ' [dB]'])

% Result u^ of Wiener filter
subplot(2,2,4)
imshow(wnfImg)
title(['{\bf u}\^ by Wiener: ' num2str(psnr_wfdc) ' [dB]'])

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]薛明.压缩感知及稀疏性分解在图像复原中的应用研究[D].西安电子科技大学,2011.DOI:CNKI:CDMD:2.2010.083018.

  • uiki Kobayashi, Shogo Muramatsu, Shunsuke Ono, "Proximal Gradient-Based Loop Unrolling with Interscale Thresholding," Proc. Assoc. Annual Summit and Conf. (APSIPA ASC), Dec. 2021

  • Genki Fujii, Yuta Yoshida, Shogo Muramatsu, Shunsuke Ono, Samuel Choi, Takeru Ota, Fumiaki Nin, Hiroshi Hibino, "OCT Volumetric Data Restoration with Latent Distribution of Refractive Index," Proc. of 2019 IEEE International Conference on Image Processing (ICIP), pp.764-768, Sept. 2019

  • Yuhei Kaneko, Shogo Muramatsu, Hiroyasu Yasuda, Kiyoshi Hayasaka, Yu Otake, Shunsuke Ono, Masahiro Yukawa, "Convolutional-Sparse-Coded Dynamic Mode Decompsition and Its Application to River State Estimation," Proc. of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1872-1876, May 2019

  • Shogo Muramatsu, Samuel Choi, Shunske Ono, Takeru Ota, Fumiaki Nin, Hiroshi Hibino, "OCT Volumetric Data Restoration via Primal-Dual Plug-and-Play Method," Proc. of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.801-805, Apr. 2018

  • Shogo Muramatsu, Kosuke Furuya and Naotaka Yuki, "Multidimensional Nonseparable Oversampled Lapped Transforms: Theory and Design," IEEE Trans. on Signal Process., Vol.65, No.5, pp.1251-1264, DOI:10.1109/TSP.2016.2633240, March 2017

  • Kota Horiuchi and Shogo Muramatsu, "Fast convolution technique for Non-separable Oversampled Lapped Transforms," Proc. of Asia Pacific Signal and Information Proc. Assoc. Annual Summit and Conf. (APSIPA ASC), Dec. 2016

  • Shogo Muramatsu, Masaki Ishii and Zhiyu Chen, "Efficient Parameter Optimization for Example-Based Design of Non-separable Oversampled Lapped Transform," Proc. of 2016 IEEE Intl. Conf. on Image Process. (ICIP), pp.3618-3622, Sept. 2016

  • Shogo Muramatsu, "Structured Dictionary Learning with 2-D Non-separable Oversampled Lapped Transform," Proc. of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.2643-2647, May 2014

  • Kousuke Furuya, Shintaro Hara and Shogo Muramatsu, "Boundary Operation of 2-D non-separable Oversampled Lapped Transforms," Proc. of Asia Pacific Signal and Information Proc. Assoc. Annual Summit and Conf. (APSIPA ASC), Nov. 2013

  • Shogo Muramatsu and Natsuki Aizawa, "Image Restoration with 2-D Non-separable Oversampled Lapped Transforms," Proc. of 2013 IEEE International Conference on Image Process. (ICIP), pp.1051-1055, Sep. 2013

  • Shogo Muramatsu and Natsuki Aizawa, "Lattice Structures for 2-D Non-separable Oversampled Lapped Transforms," Proc. of 2013 IEEE International Conference on Acoustics, Speech and Signal Process. (ICASSP), pp.5632-5636, May 2013

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/875859.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringCloud微服务之间如何进行用户信息传递(涉及:Gateway、OpenFeign组件)

目录 1、想达到的效果2、用户信息在微服务之间传递的两种途径3、用RuoYi-Cloud为例进行演示说明(1)网关将用户信息写在请求头中(2)业务微服务之间通过OpenFeign进行调用,并且将用户信息写在OpenFeign准备的请求头中&am…

02:STM32--EXTI外部中断

目录 一:中断 1:简历 2:AFIO 3:EXTI ​编辑 4:NVIC基本结构 5:使用步骤 二:中断的应用 A:对外式红外传感计数器 1:连接图​编辑 2:函数介绍 3:硬件介绍 4:计数代码 B;旋转编码计数器 1:连接图 2:硬件介绍 3:旋转编码器代码: 一:中断 1:简历 中断:在主程…

硬件产品经理:从入门到精通(新书发布)

目录 简介 新书 框架内容 相关课程 简介 在完成多款硬件产品从设计到推向市场的过程后。 笔者于2020年开始在产品领域平台输出硬件相关的内容。 在这个过程中经常会收到很多读者的留言,希望能推荐一些硬件相关的书籍或资料。 其实,笔者刚开始做硬…

电力能源管理系统在生物制药行业的应用

安科瑞 华楠 摘要:根据生物制品类企业的电力能源使用特点,制定了符合公司实际情况的能源管理系统,介绍了该系统的架构及其在企业的应用情况,提升了公司能源数据的实时监控能力,优化了公司能源分配,降低了公…

React Native Expo项目,复制文本到剪切板

装包: npx expo install expo-clipboard import * as Clipboard from expo-clipboardconst handleCopy async (text) > {await Clipboard.setStringAsync(text)Toast.show(复制成功, {duration: 3000,position: Toast.positions.CENTER,})} 参考链接&#xff1a…

接口自动化测试,Fiddler使用抓包辅助实战,一篇彻底打通...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、快捷设置&…

GaussDB数据库SQL系列-UNION UNION ALL

目录 一、前言 二、GaussDB UNION/UNION ALL 1、GaussDB UNION 操作符 2、语法定义 三、GaussDB实验示例 1、创建实验表 2、合并且除重(UNION) 3、合并不除重(UNION ALL) 4、合并带有WHERE子句SQL结果集(UNION ALL) 5、…

ansible的playbook剧本

playbook剧本 PlayBook1.playbooks 本身由以下各部分组成2.示例:3.运行playbook补充参数: 4.定义、引用变量5.指定远程主机sudo切换用户6.when条件判断7.迭代8.Templates 模块1.先准备一个以 .j2 为后缀的 template 模板文件,设置引用的变量2…

9.3.2.2网络原理(传输层TCP)

TCP全部细节参考RFC标准文档 一.TCP特点: 有连接,可靠传输,面向字节流,全双工. 二.TCP数据报: 1.端口号是传输层的重要概念. 2.TCP的报头是变长的(UDP是固定的8字节),大小存在4位首部长度中,用4个bit位(0~15)表示长度单位是4字节.(TCP报头最大长度是60字节,前面20字节是固定…

VR时代真的到来了?

业界对苹果的期待是,打造一台真正颠覆性的,给头显设备奠定发展逻辑底座的产品,而实际上,苹果只是发布了一台更强大的头显。 大众希望苹果回答的问题是“我为什么需要一台AR或者VR产品?”,但苹果回答的是“…

数据结构—图的应用

6.4图的应用 概念回顾—生成树 生成树:所有顶点均由边连接在一起,但不存在回路的图。 一个图可以有许多棵不同的生成树、含有n个顶点 n-1 条边的图不一定是生成树所有生成树具有以下共同特点 生成树的顶点个数与图的顶点个数相同;生成树是图的…

【正点原子STM32连载】第四章 APM32初体验摘自【正点原子】APM32F407最小系统板使用指南

1)实验平台:正点原子stm32f103战舰开发板V4 2)平台购买地址:https://detail.tmall.com/item.htm?id609294757420 3)全套实验源码手册视频下载地址: http://www.openedv.com/thread-340252-1-1.html# 第四…

达梦数据库(dm8) Centos7 高可用集群

国产数据库-达梦 一、环境详情二、Centos7 参数优化(所有节点)三、创建用户(所有节点)四、开始安装(所有节点)五、服务注册启动 当前安装:在指定版本环境下 测试,仅供参考 官网描述&…

ad+硬件每日学习十个知识点(31)23.8.11 (23ad的value,AD的mysql数据库)

文章目录 1.ad的sch库(23版本的value放在下面了)2.安装mysql数据库 1.ad的sch库(23版本的value放在下面了) 答: 2.安装mysql数据库 https://www.bilibili.com/video/BV1EJ411D7dd/?spm_id_from333.337.search-card.…

Redis使用Lua脚本和Redisson来保证库存扣减中的原子性和一致性

文章目录 前言1.使用SpringBoot Redis 原生实现方式2.使用redisson方式实现3. 使用RedisLua脚本实现3.1 lua脚本代码逻辑 3.2 与SpringBoot集成 4. Lua脚本方式和Redisson的方式对比5. 源码地址6. Redis从入门到精通系列文章7. 参考文档 前言 背景:最近有社群技术交…

免费试用!谷露人才Mapping2.0上线,组织架构直链人才库速来体验

关注“谷露软件”公众号,后台回复“人才mapping”即可立刻免费试用。 点击去免费试用 点击去免费试用 谷露软件(Gllue Software)成立于2012年,目前已经成为中国领先的招聘管理系统和招聘解决方案供应商。谷露旗下涵盖猎头版和企业…

基于ssm+vue的新能源汽车在线租赁管理系统源码和论文PPT

基于ssmvue的新能源汽车在线租赁管理系统源码和论文PPT010 开发环境: 开发工具:idea 数据库mysql5.7(mysql5.7最佳) 数据库链接工具:navcat,小海豚等 开发技术:java ssm tomcat8.5 摘 要 随着科学技术的飞速发展&#xff0…

latex三线表按页面大小填充

latex三线表按页面大小填充 使用Latex表格时会出现下图情况,表格没有填充整个页面,导致不美观。 解决方法: 在\begin{tabular}前加上\resizebox{\linewidth}{!}{ , 在\end{tabular} 后加 ‘}’ 如下:\resizebox{…

helm部署vmalert

先决条件 安装以下软件包:git, kubectl, helm, helm-docs,请参阅本教程。 在 CentOS 上启用 snap 并安装 helm 启用 snapd 使用以下命令将 EPEL 存储库添加到您的系统中: sudo yum install epel-release 按如下方式安装 Snap&#xff1…

Nginx 基本原理与最小配置

文章和代码已经归档至【Github仓库:https://github.com/timerring/front-end-tutorial 】或者公众号【AIShareLab】回复 nginx 也可获取。 文章目录 目录结构基本运行原理Nginx配置与应用场景最小配置worker_processesevents模块下worker_connections http模块下inc…