62、华为昇腾开发板Atlas 200I DK A2配置mmpose的hrnet模型推理python/c++

news2025/1/12 23:00:40

基本思想:适配mmpose模型,记录一下流水帐,环境配置和模型来自,请查看参考链接。

链接: https://pan.baidu.com/s/1IkiwuZf1anyKX1sZkYmD1g?pwd=i51s 提取码: i51s

一、转模型

(base) root@davinci-mini:~/sxj731533730# atc --model=end2end.onnx --framework=5 --output=end2end --input_format=NCHW --input_shape="input:1,3,256,256" --log=error --soc_version=Ascend310B1
ATC start working now, please wait for a moment.
...
ATC run success, welcome to the next use.

python代码


import time
import cv2
import numpy as np
from ais_bench.infer.interface import InferSession

model_path = "end2end.om"
IMG_PATH = "ca110.jpeg"




def bbox_xywh2cs(bbox, aspect_ratio, padding=1., pixel_std=200.):
    """Transform the bbox format from (x,y,w,h) into (center, scale)
    Args:
        bbox (ndarray): Single bbox in (x, y, w, h)
        aspect_ratio (float): The expected bbox aspect ratio (w over h)
        padding (float): Bbox padding factor that will be multilied to scale.
            Default: 1.0
        pixel_std (float): The scale normalization factor. Default: 200.0
    Returns:
        tuple: A tuple containing center and scale.
        - np.ndarray[float32](2,): Center of the bbox (x, y).
        - np.ndarray[float32](2,): Scale of the bbox w & h.
    """

    x, y, w, h = bbox[:4]
    center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32)

    if w > aspect_ratio * h:
        h = w * 1.0 / aspect_ratio
    elif w < aspect_ratio * h:
        w = h * aspect_ratio

    scale = np.array([w, h], dtype=np.float32) / pixel_std
    scale = scale * padding

    return center, scale


def rotate_point(pt, angle_rad):
    """Rotate a point by an angle.
    Args:
        pt (list[float]): 2 dimensional point to be rotated
        angle_rad (float): rotation angle by radian
    Returns:
        list[float]: Rotated point.
    """
    assert len(pt) == 2
    sn, cs = np.sin(angle_rad), np.cos(angle_rad)
    new_x = pt[0] * cs - pt[1] * sn
    new_y = pt[0] * sn + pt[1] * cs
    rotated_pt = [new_x, new_y]

    return rotated_pt


def _get_3rd_point(a, b):
    """To calculate the affine matrix, three pairs of points are required. This
    function is used to get the 3rd point, given 2D points a & b.
    The 3rd point is defined by rotating vector `a - b` by 90 degrees
    anticlockwise, using b as the rotation center.
    Args:
        a (np.ndarray): point(x,y)
        b (np.ndarray): point(x,y)
    Returns:
        np.ndarray: The 3rd point.
    """
    assert len(a) == 2
    assert len(b) == 2
    direction = a - b
    third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)

    return third_pt


def get_affine_transform(center,
                         scale,
                         rot,
                         output_size,
                         shift=(0., 0.),
                         inv=False):
    """Get the affine transform matrix, given the center/scale/rot/output_size.
    Args:
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
        scale (np.ndarray[2, ]): Scale of the bounding box
            wrt [width, height].
        rot (float): Rotation angle (degree).
        output_size (np.ndarray[2, ] | list(2,)): Size of the
            destination heatmaps.
        shift (0-100%): Shift translation ratio wrt the width/height.
            Default (0., 0.).
        inv (bool): Option to inverse the affine transform direction.
            (inv=False: src->dst or inv=True: dst->src)
    Returns:
        np.ndarray: The transform matrix.
    """
    assert len(center) == 2
    assert len(scale) == 2
    assert len(output_size) == 2
    assert len(shift) == 2

    # pixel_std is 200.
    scale_tmp = scale * 200.0

    shift = np.array(shift)
    src_w = scale_tmp[0]
    dst_w = output_size[0]
    dst_h = output_size[1]

    rot_rad = np.pi * rot / 180
    src_dir = rotate_point([0., src_w * -0.5], rot_rad)
    dst_dir = np.array([0., dst_w * -0.5])

    src = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    src[2, :] = _get_3rd_point(src[0, :], src[1, :])

    dst = np.zeros((3, 2), dtype=np.float32)
    dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
    dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
    dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


def bbox_xyxy2xywh(bbox_xyxy):
    """Transform the bbox format from x1y1x2y2 to xywh.
    Args:
        bbox_xyxy (np.ndarray): Bounding boxes (with scores), shaped (n, 4) or
            (n, 5). (left, top, right, bottom, [score])
    Returns:
        np.ndarray: Bounding boxes (with scores),
          shaped (n, 4) or (n, 5). (left, top, width, height, [score])
    """
    bbox_xywh = bbox_xyxy.copy()
    bbox_xywh[:, 2] = bbox_xywh[:, 2] - bbox_xywh[:, 0]
    bbox_xywh[:, 3] = bbox_xywh[:, 3] - bbox_xywh[:, 1]

    return bbox_xywh


def _get_max_preds(heatmaps):
    """Get keypoint predictions from score maps.
    Note:
        batch_size: N
        num_keypoints: K
        heatmap height: H
        heatmap width: W
    Args:
        heatmaps (np.ndarray[N, K, H, W]): model predicted heatmaps.
    Returns:
        tuple: A tuple containing aggregated results.
        - preds (np.ndarray[N, K, 2]): Predicted keypoint location.
        - maxvals (np.ndarray[N, K, 1]): Scores (confidence) of the keypoints.
    """
    assert isinstance(heatmaps,
                      np.ndarray), ('heatmaps should be numpy.ndarray')
    assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'

    N, K, _, W = heatmaps.shape
    heatmaps_reshaped = heatmaps.reshape((N, K, -1))
    idx = np.argmax(heatmaps_reshaped, 2).reshape((N, K, 1))
    maxvals = np.amax(heatmaps_reshaped, 2).reshape((N, K, 1))

    preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
    preds[:, :, 0] = preds[:, :, 0] % W
    preds[:, :, 1] = preds[:, :, 1] // W

    preds = np.where(np.tile(maxvals, (1, 1, 2)) > 0.0, preds, -1)
    return preds, maxvals


def transform_preds(coords, center, scale, output_size, use_udp=False):
    """Get final keypoint predictions from heatmaps and apply scaling and
    translation to map them back to the image.
    Note:
        num_keypoints: K
    Args:
        coords (np.ndarray[K, ndims]):
            * If ndims=2, corrds are predicted keypoint location.
            * If ndims=4, corrds are composed of (x, y, scores, tags)
            * If ndims=5, corrds are composed of (x, y, scores, tags,
              flipped_tags)
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
        scale (np.ndarray[2, ]): Scale of the bounding box
            wrt [width, height].
        output_size (np.ndarray[2, ] | list(2,)): Size of the
            destination heatmaps.
        use_udp (bool): Use unbiased data processing
    Returns:
        np.ndarray: Predicted coordinates in the images.
    """
    assert coords.shape[1] in (2, 4, 5)
    assert len(center) == 2
    assert len(scale) == 2
    assert len(output_size) == 2

    # Recover the scale which is normalized by a factor of 200.
    scale = scale * 200.0

    if use_udp:
        scale_x = scale[0] / (output_size[0] - 1.0)
        scale_y = scale[1] / (output_size[1] - 1.0)
    else:
        scale_x = scale[0] / output_size[0]
        scale_y = scale[1] / output_size[1]

    target_coords = np.ones_like(coords)
    target_coords[:, 0] = coords[:, 0] * scale_x + center[0] - scale[0] * 0.5
    target_coords[:, 1] = coords[:, 1] * scale_y + center[1] - scale[1] * 0.5

    return target_coords


def keypoints_from_heatmaps(heatmaps,
                            center,
                            scale,
                            unbiased=False,
                            post_process='default',
                            kernel=11,
                            valid_radius_factor=0.0546875,
                            use_udp=False,
                            target_type='GaussianHeatmap'):
    # Avoid being affected
    heatmaps = heatmaps.copy()

    N, K, H, W = heatmaps.shape
    preds, maxvals = _get_max_preds(heatmaps)
    # add +/-0.25 shift to the predicted locations for higher acc.
    for n in range(N):
        for k in range(K):
            heatmap = heatmaps[n][k]
            px = int(preds[n][k][0])
            py = int(preds[n][k][1])
            if 1 < px < W - 1 and 1 < py < H - 1:
                diff = np.array([
                    heatmap[py][px + 1] - heatmap[py][px - 1],
                    heatmap[py + 1][px] - heatmap[py - 1][px]
                ])
                preds[n][k] += np.sign(diff) * .25
                if post_process == 'megvii':
                    preds[n][k] += 0.5

    # Transform back to the image
    for i in range(N):
        preds[i] = transform_preds(
            preds[i], center[i], scale[i], [W, H], use_udp=use_udp)

    if post_process == 'megvii':
        maxvals = maxvals / 255.0 + 0.5

    return preds, maxvals


def decode(output, center, scale, score_, batch_size=1):
    c = np.zeros((batch_size, 2), dtype=np.float32)
    s = np.zeros((batch_size, 2), dtype=np.float32)
    score = np.ones(batch_size)
    for i in range(batch_size):
        c[i, :] = center
        s[i, :] = scale

        score[i] = np.array(score_).reshape(-1)

    preds, maxvals = keypoints_from_heatmaps(
        output,
        c,
        s,
        False,
        'default',
        11,
        0.0546875,
        False,
        'GaussianHeatmap'
    )

    all_preds = np.zeros((batch_size, preds.shape[1], 3), dtype=np.float32)
    all_boxes = np.zeros((batch_size, 6), dtype=np.float32)
    all_preds[:, :, 0:2] = preds[:, :, 0:2]
    all_preds[:, :, 2:3] = maxvals
    all_boxes[:, 0:2] = c[:, 0:2]
    all_boxes[:, 2:4] = s[:, 0:2]
    all_boxes[:, 4] = np.prod(s * 200.0, axis=1)
    all_boxes[:, 5] = score
    result = {}

    result['preds'] = all_preds
    result['boxes'] = all_boxes

    print(result)
    return result


def draw(bgr, predict_dict, skeleton,box):
    cv2.rectangle(bgr, (int(box[0]), int(box[1])), (int(box[0]) + int(box[2]), int(box[1]) + int(box[3])),
                      (255, 0, 0))

    all_preds = predict_dict["preds"]
    for all_pred in all_preds:
        for x, y, s in all_pred:
            cv2.circle(bgr, (int(x), int(y)), 3, (0, 255, 120), -1)
        for sk in skeleton:
            x0 = int(all_pred[sk[0]][0])
            y0 = int(all_pred[sk[0]][1])
            x1 = int(all_pred[sk[1]][0])
            y1 = int(all_pred[sk[1]][1])
            cv2.line(bgr, (x0, y0), (x1, y1), (0, 255, 0), 1)
    cv2.imwrite("sxj731533730_sxj.jpg", bgr)


if __name__ == "__main__":

    # Create RKNN object
    model = InferSession(0, model_path)
    print("done")
    bbox = [13.711652 , 26.188112, 293.61298-13.711652 ,  227.78246-26.188112, 9.995332e-01]
    image_size = [256, 256]
    src_img = cv2.imread(IMG_PATH)
    img = cv2.cvtColor(src_img, cv2.COLOR_BGR2RGB)  # hwc rgb
    aspect_ratio = image_size[0] / image_size[1]
    img_height = img.shape[0]
    img_width = img.shape[1]
    padding = 1.25
    pixel_std = 200
    center, scale = bbox_xywh2cs(
        bbox,
        aspect_ratio,
        padding,
        pixel_std)
    trans = get_affine_transform(center, scale, 0, image_size)
    img = cv2.warpAffine(
        img,
        trans, (int(image_size[0]), int(image_size[1])),
        flags=cv2.INTER_LINEAR)
    print(trans)
    img = img / 255.0  # 归一化到0~1

    img = img.transpose(2, 0, 1)
    img = np.ascontiguousarray(img, dtype=np.float32)
    # Inference
    print("--> Running model")

    outputs = model.infer([img])[0]



    print(outputs)
    predict_dict = decode(outputs, center, scale, bbox[-1])
    skeleton = [[0, 1],[0, 2],[1, 3],[0, 4],
                         [1, 4],[4,  5],[5,  7],[5,8],[5,  9],
                         [6,  7],[6,  10],[6,  11],[8,  12],
                         [9,  13],[10,  14],[11,  15],[12,  16],
                         [13,  17],[14,  18],[15,  19]]
    draw(src_img, predict_dict, skeleton,bbox)

cmakelists.txt

cmake_minimum_required(VERSION 3.16)
project(untitled10)
set(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_CXX_STANDARD 11)
add_definitions(-DENABLE_DVPP_INTERFACE)

include_directories(/usr/local/samples/cplusplus/common/acllite/include)
include_directories(/usr/local/Ascend/ascend-toolkit/latest/aarch64-linux/include)
find_package(OpenCV REQUIRED)
#message(STATUS ${OpenCV_INCLUDE_DIRS})
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
#链接Opencv库
add_library(libascendcl SHARED IMPORTED)
set_target_properties(libascendcl PROPERTIES IMPORTED_LOCATION /usr/local/Ascend/ascend-toolkit/latest/aarch64-linux/lib64/libascendcl.so)
add_library(libacllite SHARED IMPORTED)
set_target_properties(libacllite PROPERTIES IMPORTED_LOCATION /usr/local/samples/cplusplus/common/acllite/out/aarch64/libacllite.so)


add_executable(untitled10 main.cpp)
target_link_libraries(untitled10 ${OpenCV_LIBS} libascendcl libacllite)

c++代码

#include <opencv2/opencv.hpp>
#include "AclLiteUtils.h"
#include "AclLiteImageProc.h"
#include "AclLiteResource.h"
#include "AclLiteError.h"
#include "AclLiteModel.h"


using namespace std;
using namespace cv;
typedef enum Result {
    SUCCESS = 0,
    FAILED = 1
} Result;

struct Keypoints {
    float x;
    float y;
    float score;

    Keypoints() : x(0), y(0), score(0) {}

    Keypoints(float x, float y, float score) : x(x), y(y), score(score) {}
};

struct Box {
    float center_x;
    float center_y;
    float scale_x;
    float scale_y;
    float scale_prob;
    float score;

    Box() : center_x(0), center_y(0), scale_x(0), scale_y(0), scale_prob(0), score(0) {}

    Box(float center_x, float center_y, float scale_x, float scale_y, float scale_prob, float score) :
            center_x(center_x), center_y(center_y), scale_x(scale_x), scale_y(scale_y), scale_prob(scale_prob),
            score(score) {}
};

void bbox_xywh2cs(float bbox[], float aspect_ratio, float padding, float pixel_std, float *center, float *scale) {
    float x = bbox[0];
    float y = bbox[1];
    float w = bbox[2];
    float h = bbox[3];
    *center = x + w * 0.5;
    *(center + 1) = y + h * 0.5;
    if (w > aspect_ratio * h)
        h = w * 1.0 / aspect_ratio;
    else if (w < aspect_ratio * h)
        w = h * aspect_ratio;


    *scale = (w / pixel_std) * padding;
    *(scale + 1) = (h / pixel_std) * padding;
}

void rotate_point(float *pt, float angle_rad, float *rotated_pt) {
    float sn = sin(angle_rad);
    float cs = cos(angle_rad);
    float new_x = pt[0] * cs - pt[1] * sn;
    float new_y = pt[0] * sn + pt[1] * cs;
    rotated_pt[0] = new_x;
    rotated_pt[1] = new_y;

}

void _get_3rd_point(cv::Point2f a, cv::Point2f b, float *direction) {

    float direction_0 = a.x - b.x;
    float direction_1 = a.y - b.y;
    direction[0] = b.x - direction_1;
    direction[1] = b.y + direction_0;


}

void get_affine_transform(float *center, float *scale, float rot, float *output_size, float *shift, bool inv,
                          cv::Mat &trans) {
    float scale_tmp[] = {0, 0};
    scale_tmp[0] = scale[0] * 200.0;
    scale_tmp[1] = scale[1] * 200.0;
    float src_w = scale_tmp[0];
    float dst_w = output_size[0];
    float dst_h = output_size[1];
    float rot_rad = M_PI * rot / 180;
    float pt[] = {0, 0};
    pt[0] = 0;
    pt[1] = src_w * (-0.5);
    float src_dir[] = {0, 0};
    rotate_point(pt, rot_rad, src_dir);
    float dst_dir[] = {0, 0};
    dst_dir[0] = 0;
    dst_dir[1] = dst_w * (-0.5);
    cv::Point2f src[3] = {cv::Point2f(0, 0), cv::Point2f(0, 0), cv::Point2f(0, 0)};
    src[0] = cv::Point2f(center[0] + scale_tmp[0] * shift[0], center[1] + scale_tmp[1] * shift[1]);
    src[1] = cv::Point2f(center[0] + src_dir[0] + scale_tmp[0] * shift[0],
                         center[1] + src_dir[1] + scale_tmp[1] * shift[1]);
    float direction_src[] = {0, 0};
    _get_3rd_point(src[0], src[1], direction_src);
    src[2] = cv::Point2f(direction_src[0], direction_src[1]);
    cv::Point2f dst[3] = {cv::Point2f(0, 0), cv::Point2f(0, 0), cv::Point2f(0, 0)};
    dst[0] = cv::Point2f(dst_w * 0.5, dst_h * 0.5);
    dst[1] = cv::Point2f(dst_w * 0.5 + dst_dir[0], dst_h * 0.5 + dst_dir[1]);
    float direction_dst[] = {0, 0};
    _get_3rd_point(dst[0], dst[1], direction_dst);
    dst[2] = cv::Point2f(direction_dst[0], direction_dst[1]);

    if (inv) {
        trans = cv::getAffineTransform(dst, src);
    } else {
        trans = cv::getAffineTransform(src, dst);
    }


}


void
transform_preds(std::vector <cv::Point2f> coords, std::vector <Keypoints> &target_coords, float *center, float *scale,
                int w, int h, bool use_udp = false) {
    float scale_x[] = {0, 0};
    float temp_scale[] = {scale[0] * 200, scale[1] * 200};
    if (use_udp) {
        scale_x[0] = temp_scale[0] / (w - 1);
        scale_x[1] = temp_scale[1] / (h - 1);
    } else {
        scale_x[0] = temp_scale[0] / w;
        scale_x[1] = temp_scale[1] / h;
    }
    for (int i = 0; i < coords.size(); i++) {
        target_coords[i].x = coords[i].x * scale_x[0] + center[0] - temp_scale[0] * 0.5;
        target_coords[i].y = coords[i].y * scale_x[1] + center[1] - temp_scale[1] * 0.5;
    }

}


int main() {
    const char *modelPath = "../end2end.om";

    bool flip_test = true;
    bool heap_map = false;
    float keypoint_score = 0.3f;
    cv::Mat bgr = cv::imread("../ca110.jpeg");
    cv::Mat rgb;
    cv::cvtColor(bgr, rgb, cv::COLOR_BGR2RGB);

    float image_target_w = 256;
    float image_target_h = 256;
    float padding = 1.25;
    float pixel_std = 200;
    float aspect_ratio = image_target_h / image_target_w;
    float bbox[] = {13.711652, 26.188112, 293.61298, 227.78246, 9.995332e-01};// 需要检测框架 这个矩形框来自检测框架的坐标 x y w h score
    bbox[2] = bbox[2] - bbox[0];
    bbox[3] = bbox[3] - bbox[1];
    float center[2] = {0, 0};
    float scale[2] = {0, 0};
    bbox_xywh2cs(bbox, aspect_ratio, padding, pixel_std, center, scale);
    float rot = 0;
    float shift[] = {0, 0};
    bool inv = false;
    float output_size[] = {image_target_h, image_target_w};
    cv::Mat trans;
    get_affine_transform(center, scale, rot, output_size, shift, inv, trans);
    std::cout << trans << std::endl;
    std::cout << center[0] << " " << center[1] << " " << scale[0] << " " << scale[1] << std::endl;
    cv::Mat detect_image;//= cv::Mat::zeros(image_target_w ,image_target_h, CV_8UC3);
    cv::warpAffine(rgb, detect_image, trans, cv::Size(image_target_h, image_target_w), cv::INTER_LINEAR);
    //cv::imwrite("te.jpg",detect_image);
    std::cout << detect_image.cols << " " << detect_image.rows << std::endl;



    // inference
    bool release = false;
    //SampleYOLOV7 sampleYOLO(modelPath, target_width, target_height);

    float *imageBytes;
    AclLiteResource aclResource_;
    AclLiteImageProc imageProcess_;
    AclLiteModel model_;
    aclrtRunMode runMode_;
    ImageData resizedImage_;
    const char *modelPath_;
    int32_t modelWidth_;
    int32_t modelHeight_;

    AclLiteError ret = aclResource_.Init();
    if (ret == FAILED) {
        ACLLITE_LOG_ERROR("resource init failed, errorCode is %d", ret);
        return FAILED;
    }

    ret = aclrtGetRunMode(&runMode_);
    if (ret == FAILED) {
        ACLLITE_LOG_ERROR("get runMode failed, errorCode is %d", ret);
        return FAILED;
    }

    // init dvpp resource
    ret = imageProcess_.Init();
    if (ret == FAILED) {
        ACLLITE_LOG_ERROR("imageProcess init failed, errorCode is %d", ret);
        return FAILED;
    }

    // load model from file
    ret = model_.Init(modelPath);
    if (ret == FAILED) {
        ACLLITE_LOG_ERROR("model init failed, errorCode is %d", ret);
        return FAILED;
    }


    // data standardization
   float meanRgb[3] = {0, 0, 0};
    float stdRgb[3] = {1 / 255.0f, 1 / 255.0f, 1 / 255.0f};
    // create malloc of image, which is shape with NCHW
    //const float meanRgb[3] = {0.485f * 255.f, 0.456f * 255.f, 0.406f * 255.f};
    //const float stdRgb[3] = {(1 / 0.229f / 255.f), (1 / 0.224f / 255.f), (1 / 0.225f / 255.f)};



    int32_t channel = detect_image.channels();
    int32_t resizeHeight = detect_image.rows;
    int32_t resizeWeight = detect_image.cols;
    imageBytes = (float *) malloc(channel * image_target_w * image_target_h * sizeof(float));
    memset(imageBytes, 0, channel * image_target_h * image_target_w * sizeof(float));

    // image to bytes with shape HWC to CHW, and switch channel BGR to RGB

    for (int c = 0; c < channel; ++c) {
        for (int h = 0; h < resizeHeight; ++h) {
            for (int w = 0; w < resizeWeight; ++w) {
                int dstIdx = c * resizeHeight * resizeWeight + h * resizeWeight + w;

                imageBytes[dstIdx] = static_cast<float>(
                        (detect_image.at<cv::Vec3b>(h, w)[c] -
                         1.0f * meanRgb[c]) * 1.0f * stdRgb[c] );
            }
        }
    }


    std::vector <InferenceOutput> inferOutputs;
    ret = model_.CreateInput(static_cast<void *>(imageBytes),
                             channel * image_target_w * image_target_h * sizeof(float));
    if (ret == FAILED) {
        ACLLITE_LOG_ERROR("CreateInput failed, errorCode is %d", ret);
        return FAILED;
    }

    // inference
    ret = model_.Execute(inferOutputs);
    if (ret != ACL_SUCCESS) {
        ACLLITE_LOG_ERROR("execute model failed, errorCode is %d", ret);
        return FAILED;
    }

    // for()
    float *data = static_cast<float *>(inferOutputs[0].data.get());
    //输出维度
    int shape_d =1;
    int shape_c = 20;
    int shape_w = 64;
    int shape_h = 64;
    std::vector<float> vec_heap;
    for (int i = 0; i < shape_c * shape_h * shape_w; i++) {
        vec_heap.push_back(data[i]);
    }


    std::vector <Keypoints> all_preds;
    std::vector<int> idx;
    for (int i = 0; i < shape_c; i++) {
        auto begin = vec_heap.begin() + i * shape_w * shape_h;
        auto end = vec_heap.begin() + (i + 1) * shape_w * shape_h;
        float maxValue = *max_element(begin, end);
        int maxPosition = max_element(begin, end) - begin;
        all_preds.emplace_back(Keypoints(0, 0, maxValue));
        idx.emplace_back(maxPosition);
    }
    std::vector <cv::Point2f> vec_point;
    for (int i = 0; i < idx.size(); i++) {
        int x = idx[i] % shape_w;
        int y = idx[i] / shape_w;
        vec_point.emplace_back(cv::Point2f(x, y));
    }


    for (int i = 0; i < shape_c; i++) {
        int px = vec_point[i].x;
        int py = vec_point[i].y;
        if (px > 1 && px < shape_w - 1 && py > 1 && py < shape_h - 1) {
            float diff_0 = vec_heap[py * shape_w + px + 1] - vec_heap[py * shape_w + px - 1];
            float diff_1 = vec_heap[(py + 1) * shape_w + px] - vec_heap[(py - 1) * shape_w + px];
            vec_point[i].x += diff_0 == 0 ? 0 : (diff_0 > 0) ? 0.25 : -0.25;
            vec_point[i].y += diff_1 == 0 ? 0 : (diff_1 > 0) ? 0.25 : -0.25;
        }
    }
    std::vector <Box> all_boxes;
    if (heap_map) {
        all_boxes.emplace_back(Box(center[0], center[1], scale[0], scale[1], scale[0] * scale[1] * 400, bbox[4]));
    }
    transform_preds(vec_point, all_preds, center, scale, shape_w, shape_h);
    //0 L_Eye  1 R_Eye 2 L_EarBase 3 R_EarBase 4 Nose 5 Throat 6 TailBase 7 Withers 8 L_F_Elbow 9 R_F_Elbow 10 L_B_Elbow 11 R_B_Elbow
    // 12 L_F_Knee 13 R_F_Knee 14 L_B_Knee 15 R_B_Knee 16 L_F_Paw 17 R_F_Paw 18 L_B_Paw 19  R_B_Paw

    int skeleton[][2] = {{0,  1},
                         {0,  2},
                         {1,  3},
                         {0,  4},
                         {1,  4},
                         {4,  5},
                         {5,  7},
                         {5,  8},
                         {5,  9},
                         {6,  7},
                         {6,  10},
                         {6,  11},
                         {8,  12},
                         {9,  13},
                         {10, 14},
                         {11, 15},
                         {12, 16},
                         {13, 17},
                         {14, 18},
                         {15, 19}};

    cv::rectangle(bgr, cv::Point(bbox[0], bbox[1]), cv::Point(bbox[0] + bbox[2], bbox[1] + bbox[3]),
                  cv::Scalar(255, 0, 0));
    for (int i = 0; i < all_preds.size(); i++) {
        if (all_preds[i].score > keypoint_score) {
            cv::circle(bgr, cv::Point(all_preds[i].x, all_preds[i].y), 3, cv::Scalar(0, 255, 120), -1);//画点,其实就是实心圆
        }
    }
    for (int i = 0; i < sizeof(skeleton) / sizeof(sizeof(skeleton[1])); i++) {
        int x0 = all_preds[skeleton[i][0]].x;
        int y0 = all_preds[skeleton[i][0]].y;
        int x1 = all_preds[skeleton[i][1]].x;
        int y1 = all_preds[skeleton[i][1]].y;

        cv::line(bgr, cv::Point(x0, y0), cv::Point(x1, y1),
                 cv::Scalar(0, 255, 0), 1);

    }
    cv::imwrite("../image.jpg", bgr);


    model_.DestroyResource();
    imageProcess_.DestroyResource();
    aclResource_.Release();
    return SUCCESS;
}

测试结果

/root/sxj731533730/cmake-build-debug/untitled10
[0.7316863791031282, -0, 15.56737128098375;
 -4.62405306581973e-17, 0.7316863791031282, 35.08659815701316]
153.662 126.985 1.74938 1.74938
256 256
[INFO]  Acl init ok
[INFO]  Open device 0 ok
[INFO]  Use default context currently
[INFO]  dvpp init resource ok
[INFO]  Load model ../end2end.om success
[INFO]  Create model description success
[INFO]  Create model(../end2end.om) output success
[INFO]  Init model ../end2end.om success
[INFO]  Unload model ../end2end.om success
[INFO]  destroy context ok
[INFO]  Reset device 0 ok
[INFO]  Finalize acl ok

Process finished with exit code 0

参考自己的博客

48、mmpose中hrnet关键点识别模型转ncnn和mnn,并进行训练和部署_hrnet ncnn_sxj731533730的博客-CSDN博客

61、华为昇腾开发板Atlas 200I DK A2初步测试,yolov7_batchsize_1&yolov7_batchsize_3的python/c++推理测试_sxj731533730的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/875727.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

优测云服务平台|【压力测试功能升级】轻松完成压测任务

一、本次升级主要功能如下&#xff1a; 1.多份报告对比查看测试结果 2.报告新增多种下载格式 Word格式Excel格式 3.新增多种编排复杂场景的控制器 漏斗控制器并行控制器事务控制器仅一次控制器分组控制器集合点 4.新增概览页面&#xff0c;包含多种统计维度 二、报告对比…

智慧工地源码,互联网+建筑工地,基于微服务+Java+Spring Cloud +Vue+UniApp开发

基于微服务JavaSpring Cloud VueUniApp MySql开发的智慧工地云平台源码 智慧工地概念&#xff1a; 智慧工地就是互联网建筑工地&#xff0c;是将互联网的理念和技术引入建筑工地&#xff0c;然后以物联网、移动互联网技术为基础&#xff0c;充分应用BIM、大数据、人工智能、移…

DoorGym:开源的可拓展的开门仿真环境,用于域随机化的强化学习、深度强化学习

0.概述 目的&#xff1a;创建一个可以改变门把手形状、类型、位置、环境颜色、照明条件、机械臂结构的仿真环境&#xff0c;以训练出鲁棒性更高、更能关注到任务本质特征、容易迁移到现实的模型 网址&#xff1a;环境下载&#xff0c; 1.领域随机化DR 假设很难对目标域进…

在Visual Studio上,使用OpenCV实现人脸识别

1. 环境与说明 本文介绍了如何在Visual Studio上&#xff0c;使用OpenCV来实现人脸识别的功能 环境说明 : 操作系统 : windows 10 64位Visual Studio版本 : Visual Studio Community 2022 (社区版)OpenCV版本 : OpenCV-4.8.0 (2023年7月最新版) 实现效果如图所示&#xff0…

SAP SM30 自动带出描述实现

需求&#xff1a; 在SM30中维护销售订单类型的时候&#xff0c;根据维护的销售订单类型自动带出订单类型描述 事务码&#xff1a; SE11 进入表维护生成器中 创建事件 选择【维护事件】: 05 自定义子例程&#xff1a; SET_DESCRIPTION 点击编辑器按钮进行代码编辑 具体代码…

浅学实战:探索PySpark实践,解锁大数据魔法!

文章目录 Spark和PySpark概述1.1 Spark简介1.2 PySpark简介 二 基础准备2.1 PySpark库的安装2.2 构建SparkContext对象2.3 SparkContext和SparkSession2.4 构建SparkSession对象2.5 PySpark的编程模型 三 数据输入3.1 RDD对象3.2 Python数据容器转RDD对象3.3 读取文件转RDD对象…

【力扣每日一题】1572. 矩阵对角线元素的和 8.11打卡

文章目录 题目思路代码 题目 1572. 矩阵对角线元素的和 难度&#xff1a; 简单 描述&#xff1a; 给你一个正方形矩阵 mat&#xff0c;请你返回矩阵对角线元素的和。 请你返回在矩阵主对角线上的元素和副对角线上且不在主对角线上元素的和。 返回合并后的二叉树。 注意…

(leecode)密码检查

有点感觉&#xff0c;试试看~ 先贴解法&#xff0c;再说题目和思路 题解 #include <stdio.h> #include <string.h> #include <ctype.h>int main() {int N 0;scanf("%d",&N);getchar();while(N--) {char str[101] {0};scanf("%s&…

Android性能优化——内存优化

一、内存问题 内存抖动&#xff0c;锯齿状&#xff0c;GC导致卡顿内存泄漏&#xff0c;可用内存减少&#xff0c;频繁GC 内存溢出&#xff0c;OOM&#xff0c;程序异常 二、内存分析工具 Memory ProfilerMemory Analyzer LeakCanary Memory Profiler 实时图表展示应用内存使…

10分钟极速入门dash应用开发

大家好我是费老师&#xff0c;几天前我发布了由我开源维护的dash通用网页组件库fac的0.2.x全新版本&#xff0c;为大家介绍了其具有的诸多实用特性功能&#xff0c;也吸引了很多对基于dash的Python全栈应用开发感兴趣的朋友&#xff0c;为了方便更多对dash应用开发不甚了解的朋…

stable diffusion 电商应用技术(插图部分重绘)

1.下载inpaint anything插件 2.下载识别模型 3.使用全景分割 4.分割模版,获取蒙版 5.发送到图生图重绘制 6.固定姿势 7.clip反推提示词 8.生成重绘衣服

msvcr110.dll缺失的解决方法分享,多种方法教你修复msvcr110.dll

我们在使用电脑的时候会遇到各种各样的问题&#xff0c;特别是dll文件缺失的这一块更是经常可以看到的&#xff0c;如你在使用电脑的时候&#xff0c;突然弹出一个电脑缺失了msvcr110.dll文件&#xff0c;一些程序无法运行&#xff0c;这时候我们就要针对于这方面来进行一些解决…

【C++】vector容器

0.前言 1.vector构造函数 #include <iostream> using namespace std; #include <vector>void printVector(vector<int>& v) //此处&代表 引用 &#xff1b;若取地址&#xff0c;则是 数据类型* 变量名 {for (vector<int>::iterator it v.begi…

PLUS操作流程、应用与实践,多源不同分辨率数据的处理、ArcGIS的应用、PLUS模型的应用、InVEST模型的应用

PLUS模型是由中国地质大学&#xff08;武汉&#xff09;地理与信息工程学院高性能空间计算智能实验室开发&#xff0c;是一个基于栅格数据的可用于斑块尺度土地利用/土地覆盖(LULC)变化模拟的元胞自动机(CA)模型。PLUS模型集成了基于土地扩张分析的规则挖掘方法和基于多类型随机…

从LeakCanary看Fragment生命周期监控

前文中我们已经了解到LeakCanary中Service生命销毁的监听方式&#xff0c;那么Fragment的生命周期监听又是怎么实现的呢&#xff1f; Activity生命周期监听&#xff0c;在Application里面有ActivityLifecycleCallbacks&#xff0c;那么Fragment是否相似呢&#xff1f;我们的第…

Docker 本地镜像发布到私有仓库

1. 本地镜像发布到私有库流程 2. 是什么 1 官方Docker Hub地址&#xff1a;https://hub.docker.com/&#xff0c;中国大陆访问太慢了且准备被阿里云取代的趋势&#xff0c;不太主流。 2 Dockerhub、阿里云这样的公共镜像仓库可能不太方便&#xff0c;涉及机密的公司不可能提供镜…

使用 NLP 进行文本摘要

一、说明 文本摘要是为较长的文本文档生成简短、流畅且最重要的是准确摘要的过程。自动文本摘要背后的主要思想是能够从整个集合中找到最重要信息的一小部分&#xff0c;并以人类可读的格式呈现。随着在线文本数据的增长&#xff0c;自动文本摘要方法可能会非常有用&#xff0c…

激活函数总结(八):基于Gate mechanism机制的激活函数补充(GLU、SwiGLU、GTU、Bilinear、ReGLU、GEGLU)

激活函数总结&#xff08;八&#xff09;&#xff1a;基于Gate mechanism机制的激活函数补充 1 引言2 激活函数2.1 GLU激活函数2.2 SwiGLU激活函数2.3 GTU激活函数2.4 Bilinear激活函数2.5 ReGLU激活函数2.6 GEGLU激活函数 3. 总结 1 引言 在前面的文章中已经介绍了介绍了一系…

【多视重建】从Zero-123到One-2-3-45:多视角生成

文章目录 摘要一、引言二、相关工作三、Zero-1-to-33.1.学习如何控制照相机的视角3.2.视角作为条件的扩散3.3三维重构3.4 数据集 四、One-2-3-454.1 Zero123: 视角条件的 2D Diffusion4.2 NeRF优化&#xff1a;将多视图预测提升到三维图像4.3 基于不完美多视图的 神经表面重建*…

Linux下在qtcreator中创建qt程序

目录 1、新建项目 2、单工程项目创建 3、多工程项目创建 4、添加子工程&#xff08;基于多工程目录结构&#xff09; 5、 .pro文件 1、新建项目 切换到“编辑”界面&#xff0c;点击菜单栏中的“文件”-“新建文件或项目” 2、单工程项目创建 只有一个工程的项目&#…