时序预测 | MATLAB实现基于GRU门控循环单元的时间序列预测-递归预测未来(多指标评价)

news2024/11/23 6:22:52

时序预测 | MATLAB实现基于GRU门控循环单元的时间序列预测-递归预测未来(多指标评价)

目录

    • 时序预测 | MATLAB实现基于GRU门控循环单元的时间序列预测-递归预测未来(多指标评价)
      • 预测结果
      • 基本介绍
      • 程序设计
      • 参考资料

预测结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现GRU门控循环单元时间序列预测未来;
2.运行环境Matlab2020及以上,data为数据集,单变量时间序列预测;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标。
运行环境Matlab2020及以上。

程序设计

  • 完整程序和数据获取方式1:私信博主回复MATLAB实现基于GRU门控循环单元的时间序列预测-递归预测未来(多指标评价),同等价值程序兑换;
  • 完整程序和数据下载方式2(资源处直接下载):MATLAB实现基于GRU门控循环单元的时间序列预测-递归预测未来(多指标评价);
  • 完整程序和数据下载方式3(订阅《GRU门控循环单元》专栏,同时可阅读《GRU门控循环单元》专栏内容,数据订阅后私信我获取):MATLAB实现基于GRU门控循环单元的时间序列预测-递归预测未来(多指标评价),专栏外只能获取该程序
%% 创建混合网络架构
% 输入特征维度
numFeatures  = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
%  创建"LSTM"模型
    layers = [...
        % 输入特征
        sequenceInputLayer([numFeatures 1 1],'Name','input')
        sequenceFoldingLayer('Name','fold')
        % 特征学习
        
        dropoutLayer(0.25,'Name','drop3')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');

%% 训练选项
% 批处理样本
MiniBatchSize =128;
% 最大迭代次数
MaxEpochs = 500;
    options = trainingOptions( 'adam', ...
        'MaxEpochs',500, ...
        'GradientThreshold',1, ...
        'InitialLearnRate',optVars.InitialLearnRate, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropPeriod',400, ...
        'LearnRateDropFactor',0.2, ...
        'L2Regularization',optVars.L2Regularization,...
        'Verbose',false, ...
        'Plots','none');

%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/875302.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue下载模板

<div class"el-upload__tip"><el-buttonstyle"margin-top: 2px"size"small"type"primary"click"downloadTemplate()">下载模板</el-button></div>/***todo 下载模板*/downloadTemplate() {getDownl…

WebStorm修改默认打开的浏览器

有两种方式第一种修改系统默认浏览器 我采用的是下面这种&#xff0c;在webstorm中修改 将浏览器设置为默认的浏览器即可

关于Java中synchronized的实现原理

并发编程的三个理念 原子性&#xff1a;一个操作要么全部完成&#xff0c;要么全部失败。可见性&#xff1a;当一个线程对共享变量进行修改后&#xff0c;其他线程也应立刻看到。有序性&#xff1a;程序按照顺序执行 synchronized基本使用 修饰静态方法&#xff0c;锁的是类…

mysql 笔记(二)-mysql存储引擎

存储引擎在mysql体系架构中位于第三层, 负责mysql中的数据存储和提取,根据mysql提供的文件访问层抽象接口定制的一种文件访问机制. 使用show engines命令可以查看当前数据库支持的引擎信息. 从截图可看到, mysql 默认的存储引擎是InnoDB,支持事务,行锁,外键,支持分布式事务(…

SSD是否可以提升游戏性能或帧数?

​在购买这种新型硬盘之前&#xff0c;你可能会有些疑问。在这篇文章中&#xff0c;我将解释什么是固态硬盘&#xff08;SSD&#xff09;&#xff0c;它是否能提升游戏性能&#xff0c;以及如何将你的旧硬盘替换为新的固态硬盘。​ 更换SSD可以让我的游戏运行更流畅吗&#xff…

TB/TM-商品详情

一、接口参数说明&#xff1a; item_get-获得商品详情&#xff0c;点击更多API调试&#xff0c;请移步注册API账号点击获取测试key和secret 公共参数 请求地址: https://api-gw.onebound.cn/taobao/item_get 名称类型必须描述keyString是调用key&#xff08;点击获取测试key…

ssm+vue医院住院管理系统源码和论文PPT

ssmvue医院住院管理系统源码和论文PPT012 开发工具&#xff1a;idea 数据库mysql5.7(mysql5.7最佳) 数据库链接工具&#xff1a;navcat,小海豚等 开发技术&#xff1a;java ssm tomcat8.5 摘 要 随着时代的发展&#xff0c;医疗设备愈来愈完善&#xff0c;医院也变成人们生…

解密Flink的状态管理:探索流处理框架的数据保留之道,释放流处理的无限潜能!

水善利万物而不争&#xff0c;处众人之所恶&#xff0c;故几于道&#x1f4a6; 文章目录 一、什么是状态二、应用场景三、Flink中状态的分类四、算子状态1. 列表状态&#xff08;List State&#xff09;2. 广播状态&#xff08;Broadcast State&#xff09; 五、键控状态1. Val…

基于Springboot+vue+elementUI+MySQL的学生信息管理系统(一)前端部分

源码在本人博客资源当中&#xff0c;本文为项目代码的详细介绍解释&#xff0c;供于大家学习使用 Vue项目的入口文件&#xff1a;mian.js //vue项目入口文件 //导入vue import Vue from vue //导入根组件app import App from ./App //导入路由文件 import router from ./rout…

Jsoup爬取简单信息

1. 豆瓣图书最受关注 1.1 创建SpringBoot项目或者Maven项目 1.2 引入jsoup <dependency><!-- jsoup HTML parser library https://jsoup.org/ --><groupId>org.jsoup</groupId><artifactId>jsoup</artifactId><version>1.15.3<…

全国区划代码数据筛选重组

你知道的越多&#xff0c;你不知道的越多 点赞再看&#xff0c;养成习惯 如果您有疑问或者见解&#xff0c;欢迎指教&#xff1a; 企鹅&#xff1a;869192208 文章目录 前言引入jar包实现思路代码实现验证 Guava工具类找出两个 Map 集合的差异数据筛选残联区划和全国区划差异组…

宇凡微电热毯方案开发,多档调节带定时

电热毯在1912年发明&#xff0c;到现在已有百年历史。现在的电热毯更有了许多智能化产品&#xff0c;这么多年来拯救了许多怕冷的小伙伴们&#xff0c;在寒冷的冬季靠它续命。宇凡微推出的电热毯方案&#xff0c;电热毯单片机使用54E&#xff0c;实现的功能有档位调节&#xff…

扬起的沙尘如何形成卷云

被气旋吹到空中的沙尘为冰云的形成提供了成核粒子。 卷云是由空气中的冰粒形成的。 卷云是由纯冰粒子组成的高云&#xff0c;主要在8-17 公里高空出现。 这些云通过散射入射的阳光和吸收地球发出的红外辐射&#xff0c;对地球的气候产生重要影响。 在一项最新的研究中&#xf…

保姆级SPSS图文安装教程

1.SPSS安装包下载 链接&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;rb0n 2.SPSS安装 1.上面压缩包解压后双击解压文件中的setup.exe 2.点击下图绿色框中内容进行安装 3.下一步 4.接受协议&#xff0c;下一步 5.是&#xff0c;下一步 6.接受协议&#xff0c;下一步…

python菱形问题

Python类分为两种&#xff0c;一种叫经典类&#xff0c;一种叫新式类。都支持多继承&#xff0c;但继承顺序不同。 新式类&#xff1a;从object继承来的类。&#xff08;如:class A(object)&#xff09;&#xff0c;采用广度优先搜索的方式继承&#xff08;即先水平搜索&#…

图分类,图机器学习最新进展

图分类&#xff0c;图机器学习最新进展 1.Flat_Pooling TitleVenueTaskCodeDatasetDMLAP: Multi-level attention pooling for graph neural networks: Unifying graph representations with multiple localitiesNeural Networks 20221. Graph ClassificationNonesynthetic, …

Tomcat日志中文乱码

修改安装目录下的日志配置 D:\ProgramFiles\apache-tomcat-9.0.78\conf\logging.properties java.util.logging.ConsoleHandler.encoding GBK

感受RFID服装门店系统的魅力

嘿&#xff0c;亲爱的时尚追随者们&#xff01;今天小编要给你们带来一股时尚新风潮&#xff0c;让你们感受一下什么叫做“RFID服装门店系统”&#xff0c;这个超酷的东西&#xff01; 别着急&#xff0c;先别翻白眼&#xff0c;小编来解释一下RFID是什么玩意儿。它是射频识别…

Android使用Gradle kotlin dsl 优雅配置构建项目

目录 概述1.Gradle Kotlin-DSL配置1.1 在根目录下建立一个buildSrc目录&#xff0c;1.2.新建build.gradle.kts文件并添加Kotlin dsl相关配置 2.Gradle Kotlin DSL 的编写2.1 定义项目的版本号信息2.2.定义Dependencies管理项目中需要使用的库依赖2.3 定义APK的打包脚本构建APK的…

R-Meta分析与【文献计量分析、贝叶斯、机器学习等】多技术融合

Meta分析是针对某一科研问题&#xff0c;根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法&#xff0c;对来源不同的研究成果进行收集、合并及定量统计分析的方法&#xff0c;最早出现于“循证医学”&#xff0c;现已广泛应用于农林生态&#xff0c;资源环境等方面。…