OpenCV实例(八)车牌字符识别技术(二)字符识别

news2025/1/9 15:10:48

车牌字符识别技术(二)字符识别

  • 1.字符识别原理及其发展阶段
  • 2.字符识别方法
  • 3.英文、数字识别
  • 4.车牌定位实例

1.字符识别原理及其发展阶段

匹配判别是字符识别的基本思想,与其他模式识别的应用非常类似。字符识别的基本原理就是对字符图像进行预处理、模式表达、判别和字典学习。

字符识别一般可分为三个阶段:

第一阶段为初级阶段,主要是应用一维图像的处理方法实现对二维图像的识别。此阶段主要涉及相关函数的构造以及特征向量的抽取。目前,该阶段的字符识别方法仍然在匹配方法的庞大家族中扮演着很重要的角色。

第二阶段为对基础理论进行相关研究的阶段。细化思想、链码法以及对一些离散图形上的拓扑性研究在这一阶段进行,其中细化思想主要用于结构的分析,链码法主要用于边界的表示。本阶段实现了抽取大范围的孔、凹凸区域、连通性以及抽取局部特征等算法,同时还实现了对K-L展开法“特征抽取理论”作为核心相关工作的研究。

第三阶段为发展阶段。本阶段在依据实际系统的要求以及设备难以提供的条件的基础上提出更为复杂的技术,主要研究工作是将技术与实际结合起来。另外,在以构造解析法以及相关法为主的基础上,许多各具特色且不同类的实用系统得以研究出来。
在这里插入图片描述

2.字符识别方法

目前字符识别方法主要有基于神经网络的识别方法、基于特征分析的匹配方法和基于模板的匹配方法。

(1)基于神经网络的识别方法

基于神经网络的识别方法主要包括4个步骤:预处理样本字符、提取字符的特征、对神经网络进行训练、神经网络接受经过相关预处理和特征提取的字符并对这些字符进行识别。

(2)基于特征分析的匹配方法

基于特征分析的匹配方法,主要利用特征平面来进行字符匹配。与其他匹配方法进行比较可知,它不但对噪声具有不明显的反应,而且可以获得效果更好的字符特征。

(3)基于模板的匹配方法

基于模板的匹配方法也是字符识别的一种方法,主要权衡输入模式与标准模式之间的相似程度。因此,从结果来看,输入模式的类别其实也是标准模式,单从与输入模式相似度的程度来讲,这里提到的标准模式最高。对于离散输入模式分类的实现,此方法所起的作用非常明显也非常奏效。

组成汽车牌照的字符大约有50个汉字、20多个英文字符和10个阿拉伯数字,相对而言,字符数比较少,所以可以使用模板匹配法识别这些字符。其中,用于匹配的模板的标准形式可由前面所述的字符制作而成。与其他的字符识别的方法进行比较可知,模板匹配法具有相对来说较为简单的识别过程和较快的字符识别速度,只不过准确率不是很高。
在这里插入图片描述

3.英文、数字识别

目前,小波识别法、模板匹配法与神经网络法等常被作为汽车牌照字符识别的主要方法。数字字符是在汽车牌照的字符集中具有最小规模、最简单结构的子集。虽然字母字符相对于数字字符而言并不复杂,但是单从字符的结构上来讲,不难看出车牌字符集中的数字字符要相对简单一些。一般采用模板匹配法来识别字母字符以及数字字符,只是有时采用模板匹配法不一定能取得理想的识别效果,例如字符存在划伤破损、褪色、污迹等问题时。本章采用的匹配模式为两级模板匹配,首先通过一级模板实现对字母数字字符的匹配,然后基于边缘霍斯多夫距离对一级模板匹配不成功的字符进行匹配。

真实的汽车图像的采集主要通过CCD工业相机进行的,输入的汽车牌照的字符图像在经过汽车牌照的定位以及汽车牌照内字符的分割之后形成,其中约有50%的高质量的字符包含在3000个字符组成的字符集中,剩下的汽车牌照内的字符质量都有一定程度的降低。相较于传统的模板匹配法和基于细化图像霍斯多夫距离的模板匹配法,准确率在基于边缘霍斯多夫距离的模板匹配识别方法中表现得更高(为98%,字符的错误识别率只有2%)。

4.车牌定位实例

测试照片:
在这里插入图片描述

代码实例:

# -*- coding: utf-8 -*-
 
import cv2
import numpy as np


def stretch(img):
    '''
    图像拉伸函数
    '''
    maxi=float(img.max())
    mini=float(img.min())
    
    for i in range(img.shape[0]):
        for j in range(img.shape[1]):
            img[i,j]=(255/(maxi-mini)*img[i,j]-(255*mini)/(maxi-mini))
    
    return img

def dobinaryzation(img):
    '''
    二值化处理函数
    '''
    maxi=float(img.max())
    mini=float(img.min())
    
    x=maxi-((maxi-mini)/2)
    #二值化,返回阈值ret  和  二值化操作后的图像thresh
    ret,thresh=cv2.threshold(img,x,255,cv2.THRESH_BINARY)
    #返回二值化后的黑白图像
    return thresh

def find_rectangle(contour):
    '''
    寻找矩形轮廓
    '''
    y,x=[],[]
    
    for p in contour:
        y.append(p[0][0])
        x.append(p[0][1])
    
    return [min(y),min(x),max(y),max(x)]

def locate_license(img,afterimg):
    '''
    定位车牌号
    '''
    contours,hierarchy=cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    
    #找出最大的三个区域
    block=[]
    for c in contours:
        #找出轮廓的左上点和右下点,由此计算它的面积和长度比
        r=find_rectangle(c)
        a=(r[2]-r[0])*(r[3]-r[1])   #面积
        s=(r[2]-r[0])*(r[3]-r[1])   #长度比
        
        block.append([r,a,s])
    #选出面积最大的3个区域
    block=sorted(block,key=lambda b: b[1])[-3:]
    
    #使用颜色识别判断找出最像车牌的区域
    maxweight,maxindex=0,-1
    for i in range(len(block)):
        b=afterimg[block[i][0][1]:block[i][0][3],block[i][0][0]:block[i][0][2]]
        #BGR转HSV
        hsv=cv2.cvtColor(b,cv2.COLOR_BGR2HSV)
        #蓝色车牌的范围
        lower=np.array([100,50,50])
        upper=np.array([140,255,255])
        #根据阈值构建掩膜
        mask=cv2.inRange(hsv,lower,upper)
        #统计权值
        w1=0
        for m in mask:
            w1+=m/255
        
        w2=0
        for n in w1:
            w2+=n
            
        #选出最大权值的区域
        if w2>maxweight:
            maxindex=i
            maxweight=w2
            
    return block[maxindex][0]

def find_license(img):
    '''
    预处理函数
    '''
    m=400*img.shape[0]/img.shape[1]
    
    #压缩图像
    img=cv2.resize(img,(400,int(m)),interpolation=cv2.INTER_CUBIC)
    
    #BGR转换为灰度图像
    gray_img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    
    #灰度拉伸
    stretchedimg=stretch(gray_img)
    
    '''进行开运算,用来去除噪声'''
    r=16
    h=w=r*2+1
    kernel=np.zeros((h,w),np.uint8)
    cv2.circle(kernel,(r,r),r,1,-1)
    #开运算
    openingimg=cv2.morphologyEx(stretchedimg,cv2.MORPH_OPEN,kernel)
    #获取差分图,两幅图像做差  cv2.absdiff('图像1','图像2')
    strtimg=cv2.absdiff(stretchedimg,openingimg)
    
    #图像二值化
    binaryimg=dobinaryzation(strtimg)
    
    #canny边缘检测
    canny=cv2.Canny(binaryimg,binaryimg.shape[0],binaryimg.shape[1])
    
    '''消除小的区域,保留大块的区域,从而定位车牌'''
    #进行闭运算
    kernel=np.ones((5,19),np.uint8)
    closingimg=cv2.morphologyEx(canny,cv2.MORPH_CLOSE,kernel)
    
    #进行开运算
    openingimg=cv2.morphologyEx(closingimg,cv2.MORPH_OPEN,kernel)
    
    #再次进行开运算
    kernel=np.ones((11,5),np.uint8)
    openingimg=cv2.morphologyEx(openingimg,cv2.MORPH_OPEN,kernel)
    
    #消除小区域,定位车牌位置
    rect=locate_license(openingimg,img)
    
    return rect,img

def cut_license(afterimg,rect):
    '''
    图像分割函数
    '''
    #转换为宽度和高度
    rect[2]=rect[2]-rect[0]
    rect[3]=rect[3]-rect[1]
    rect_copy=tuple(rect.copy())
    rect=[0,0,0,0]
    #创建掩膜
    mask=np.zeros(afterimg.shape[:2],np.uint8)
    #创建背景模型  大小只能为13*5,行数只能为1,单通道浮点型
    bgdModel=np.zeros((1,65),np.float64)
    #创建前景模型
    fgdModel=np.zeros((1,65),np.float64)
    #分割图像
    cv2.grabCut(afterimg,mask,rect_copy,bgdModel,fgdModel,5,cv2.GC_INIT_WITH_RECT)
    mask2=np.where((mask==2)|(mask==0),0,1).astype('uint8')
    img_show=afterimg*mask2[:,:,np.newaxis]
    
    return img_show

def deal_license(licenseimg):
    '''
    车牌图片二值化
    '''
    #车牌变为灰度图像
    gray_img=cv2.cvtColor(licenseimg,cv2.COLOR_BGR2GRAY)
    
    #均值滤波  去除噪声
    kernel=np.ones((3,3),np.float32)/9
    gray_img=cv2.filter2D(gray_img,-1,kernel)
    
    #二值化处理
    ret,thresh=cv2.threshold(gray_img,120,255,cv2.THRESH_BINARY)
    
    return thresh


def find_end(start,arg,black,white,width,black_max,white_max):
    end=start+1
    for m in range(start+1,width-1):
        if (black[m] if arg else white[m])>(0.98*black_max if arg else 0.98*white_max):
            end=m
            break
    return end
                

if __name__=='__main__':
    img=cv2.imread('car.jpg',cv2.IMREAD_COLOR)
    #预处理图像
    rect,afterimg=find_license(img)
    
    #框出车牌号
    cv2.rectangle(afterimg,(rect[0],rect[1]),(rect[2],rect[3]),(0,255,0),2)
    cv2.imshow('afterimg',afterimg)
    
    #分割车牌与背景
    cutimg=cut_license(afterimg,rect)
    cv2.imshow('cutimg',cutimg)
    
    #二值化生成黑白图
    thresh=deal_license(cutimg)
    cv2.imshow('thresh',thresh)
    cv2.imwrite("cp.jpg",thresh)
    cv2.waitKey(0)
    
    #分割字符
    '''
    判断底色和字色
    '''
    #记录黑白像素总和
    white=[]
    black=[]
    height=thresh.shape[0]  #263
    width=thresh.shape[1]   #400
    #print('height',height)
    #print('width',width)
    white_max=0
    black_max=0
    #计算每一列的黑白像素总和
    for i in range(width):
        line_white=0
        line_black=0
        for j in range(height):
            if thresh[j][i]==255:
                line_white+=1
            if thresh[j][i]==0:
                line_black+=1
        white_max=max(white_max,line_white)
        black_max=max(black_max,line_black)
        white.append(line_white)
        black.append(line_black)
        print('white',white)
        print('black',black)
    #arg为true表示黑底白字,False为白底黑字
    arg=True
    if black_max<white_max:
        arg=False
    
    n=1
    start=1
    end=2
    while n<width-2:
        n+=1
        #判断是白底黑字还是黑底白字  0.05参数对应上面的0.95 可作调整
        if(white[n] if arg else black[n])>(0.02*white_max if arg else 0.02*black_max):
            start=n
            end=find_end(start,arg,black,white,width,black_max,white_max)
            n=end
            if end-start>5:
                cj=thresh[1:height,start:end]
                cv2.imshow('cutlicense',cj)
                cv2.waitKey(0)
    
    
    cv2.waitKey(0)
    cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/868134.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

iphone拷贝照片中间带E自动去重软件,以及java程序如何打包成jar和exe

文章目录 一、前提二、问题描述三、原始处理方式四、程序处理4.1 java程序如何打包exe4.1.1 首先打包jar4.1.2 开始生成exe软件使用方式 4.2 更换图标4.2.1 更换swing的打包jar图标4.2.2 更换exe图标 4.2 附件下载 一、前提 用苹果手机照相&#xff0c;有不使用默认的4:3拍照的…

【大数据之Kafka】一、Kafka定义消息队列及基础架构

1 定义 Kafka传统定义&#xff1a;Kafka是一个分布式的基于发布/订阅模式的消息队列&#xff08;Message Queue&#xff09;&#xff0c;主要应用于大数据实时处理领域。 发布/订阅&#xff1a;消息的发布者不会将消息直接发送给特定的订阅者&#xff0c;而是将发布的消息分为…

React 组件防止冒泡方法

背景 在使用 antd 组件库开发时&#xff0c;发现点击一个子组件&#xff0c;却触发了父组件的点击事件&#xff0c;比如&#xff0c;我在一个折叠面板里面放入一个下拉框或者对下拉框列表渲染做定制&#xff0c;每个下拉框候选项都有一个子组件… 解决 其实这就是 Javascri…

头条移动端项目Day02—— app端文章查看、静态化freemarker、分布式文件系统minIO

❤ 作者主页&#xff1a;欢迎来到我的技术博客&#x1f60e; ❀ 个人介绍&#xff1a;大家好&#xff0c;本人热衷于Java后端开发&#xff0c;欢迎来交流学习哦&#xff01;(&#xffe3;▽&#xffe3;)~* &#x1f34a; 如果文章对您有帮助&#xff0c;记得关注、点赞、收藏、…

Selenium之css怎么实现元素定位?

世界上最远的距离大概就是明明看到一个页面元素站在那里&#xff0c;但是我却定位不到&#xff01;&#xff01; Selenium定位元素的方法有很多种&#xff0c;像是通过id、name、class_name、tag_name、link_text等等&#xff0c;但是这些方法局限性太大&#xff0c; 随着自动…

《华为认证》L2TP VPN配置

配置接口ip地址&#xff0c;并且将防火墙的接口加入对应的安全区域 。 LNS的G1/0/0 IP为202.1.1.1 1、配置LNS的缺省路由&#xff1a; ip route-static 0.0.0.0 0.0.0.0 202.1.1.2 2、通过WEB 界面配置防火墙的 L2TP VPN 浏览器输入&#xff1a; https://202.1.1.1:8443/def…

fastApi基础

1、fastApi简介 官方文档&#xff1a;https://fastapi.tiangolo.com/ 源码&#xff1a; https://github.com/tiangolo/fastapi 2、环境准备 安装python 安装pycharm 安装fastAPI 安装 uvicorn 查看已经安装的第三方库&#xff1a;pip list 查看pip 配置信息&#xff1a;pip co…

大数据扫盲(1): 数据仓库与ETL的关系及ETL工具推荐

在数字化时代&#xff0c;数据成为了企业决策的关键支持。然而&#xff0c;随着数据不断增长&#xff0c;有效地管理和利用这些数据变得至关重要。数据仓库和ETL工具作为数据管理和分析的核心&#xff0c;将帮助企业从庞杂的数据中提取有价值信息。 一、ETL是什么&#xff1f; …

运维监控学习1

1、监控对象&#xff1a; 1、监控对象的理解&#xff1b;CPU是怎么工作的&#xff1b; 2、监控对象的指标&#xff1a;CPU使用率&#xff1b;上下文切换&#xff1b; 3、确定性能基准线&#xff1a;CPU负载多少才算高&#xff1b; 2、监控范围&#xff1a; 1、硬件监控&#x…

2023年淘宝京东直播方向,MCN机构申请入驻详细指南!

对于专注于孵化内容的直播主持人和在观望淘宝平台内容MCN的人来说&#xff0c;这是一个重大利好。尽管今后可能调整保证金标准&#xff0c;但目前看来&#xff0c;淘宝仍然有意引进和扶持更多的内容MCN机构。 随着《内容MCN机构管理规范》的推出&#xff0c;内容MCN机构、内容…

【Matlab智能算法】Elman神经网络-遗传算法(Elman-GA)函数极值寻优——非线性函数求极值

往期博客&#x1f449; 【Matlab】BP神经网络遗传算法(BP-GA)函数极值寻优——非线性函数求极值 【Matlab】GRNN神经网络遗传算法(GRNN-GA)函数极值寻优——非线性函数求极值 【Matlab】RBF神经网络遗传算法(RBF-GA)函数极值寻优——非线性函数求极值 本篇博客将主要介绍Elman神…

【C++深入浅出】初识C++上篇(关键字,命名空间,输入输出,缺省参数,函数重载)

目录 一. 前言 二. 什么是C 三. C关键字初探 四. 命名空间 4.1 为什么要引入命名空间 4.2 命名空间的定义 4.3 命名空间使用 五. C的输入输出 六. 缺省参数 6.1 缺省参数的概念 6.2 缺省参数的分类 七. 函数重载 7.1 函数重载的概念 7.2 函数重载的条件 7.3 C支…

【雕爷学编程】Arduino动手做(24)---水位传感器模块2

37款传感器与模块的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&#x…

阿里云服务器安装WordPress网站教程基于CentOS系统

阿里云百科分享使用阿里云服务器安装WordPress博客网站教程&#xff0c;WordPress是使用PHP语言开发的博客平台&#xff0c;在支持PHP和MySQL数据库的服务器上&#xff0c;您可以用WordPress架设自己的网站&#xff0c;也可以用作内容管理系统&#xff08;CMS&#xff09;。本教…

数据结构-带头双向循环链表的实现

前言 带头双向循环链表是一种重要的数据结构&#xff0c;它的结构是很完美的&#xff0c;它弥补了单链表的许多不足&#xff0c;让我们一起来了解一下它是如何实现的吧&#xff01; 1.节点的结构 它的节点中存储着数据和两个指针&#xff0c;一个指针_prev用来记录前一个节点…

C语言学习之大端小端的数据存储

小端的数据存储&#xff1a;数据低位存在地址低位&#xff0c;数据高位存在地址高位&#xff1b;大端的数据存储&#xff1a;数据低位存在地址高位&#xff0c;数据高位存在地址低位&#xff1b;图例显示&#xff1a; 验证PC是大端还是小端的代码&#xff1a; #include <st…

安全学习DAY145_主机服务器端口扫描蜜罐、WAF识别

信息打点-主机架构&蜜罐识别&WAF识别&端口扫描 文章目录 信息打点-主机架构&蜜罐识别&WAF识别&端口扫描概述-思维导图本节知识点&#xff1a;识别应用服务器&其他服务协议&#xff1a;端口扫描NmapMasscan意外环境&#xff1a; 识别WAF防火墙WAF解…

宝塔Linux面板升级“获取更新包失败”怎么解决?

宝塔Linux面板执行升级命令后失败&#xff0c;提示“获取更新包失败&#xff0c;请稍后更新或联系宝塔运维”如何解决&#xff1f;新手站长分享宝塔面板升级失败的解决方法&#xff1a; 宝塔面板升级失败解决方法 1、使用root账户登录到你的云服务器上&#xff0c;宝塔Linux面…

lab1 utilities

测试和运行 参考大佬 修改grade-lab-util文件中的python为python3xv6.out这个文件的所有者可能是root&#xff0c;需要修改为用户&#xff0c;sudo chown woaixiaoxiao xv6.out 每完成一个函数&#xff0c;执行下面的步骤在Makefile中加入新增的程序$U/_sleep\make qemu&…

git 使用远端代码强制覆盖本地

有时候会遇到这种情景&#xff0c;我们本地的代码不需要了&#xff0c;需要使用远端的代码强制覆盖&#xff0c;这时候可以使用下面的命令 git fetch --all然后再执行下面的命令&#xff0c;重置为远端的代码&#xff0c;即使用远端的代码将本地覆盖 origin/远端分之名 git re…