概率论与数理统计:第二、三章:一维~n维随机变量及其分布

news2024/11/27 10:38:05

文章目录

  • Ch2. 一维随机变量及其分布
    • 1.一维随机变量
    • 2.一维离散型随机变量及其概率分布(分布律)
    • 3.一维连续型随机变量及其概率分布(概率密度)
    • 4.一般类型(混合型)随机变量及其分布
    • 5.常见的随机变量分布类型:八大分布
      • 1.离散型 (5种)
        • ①0-1分布
        • 二项分布 X~B(n,p)
        • 泊松分布
        • ④几何分布
        • ⑤超几何分布
      • 2. 连续型 (3种)
        • 均匀分布
        • 指数分布
        • 正态分布
          • 独立可加性 (XY独立且同类型分布)
    • 6.一维随机变量函数的分布
  • Ch3. 多维随机变量及其分布
    • 1.二维(n维)随机变量
      • 1.多维随机变量
      • 2.多维随机变量的分布函数
        • (1)联合分布函数
        • (2)边缘分布函数
    • 2.二维离散型随机变量及其分布
      • (1)联合分布律
      • (2)边缘分布律
      • (3)条件分布律
    • 3.二维连续型随机变量及其分布
      • (1)二维随机变量的概率密度 f(x,y):联合概率密度
        • (1)定义
        • (2)性质
      • (2)边缘分布
        • 1.边缘概率分布
        • 2.边缘概率密度
      • (3)条件分布
        • 1.条件概率密度
        • 2.条件分布函数
      • (4)二维均匀分布
      • (5)二维正态分布
    • 4.独立性 【随机变量的独立性
      • (1)定义 (相互独立的充要条件)
      • (2)独立的性质
    • 5.二维随机变量 函数的分布
      • (1)(离散型,离散型)→离散型
      • (2)(连续型,连续型)→连续型
        • ①分布函数法
        • ②卷积公式
      • (3)(离散型,连续型)→连续型
        • 离散+连续:全概率公式

Ch2. 一维随机变量及其分布

1.一维随机变量

1.随机变量

①X=X(ω)
②一般用大写字母表示

在这里插入图片描述

在这里插入图片描述


2.分布函数 F ( x ) F(x) F(x)

(1)定义

1.定义:
称函数 F ( x ) = P { X ≤ x }   ( − ∞ < x < + ∞ ) F(x)=P\{ X≤x\} \ (-∞<x<+∞) F(x)=P{Xx} (<x<+) 为随机变量X的分布函数,或称 X服从F(x)分布,记为X~F(x)


(2)分布函数的性质 (充要条件)

0 ≤ F ( x ) ≤ 1 0≤F(x)≤1 0F(x)1:分布函数是事件的概率,满足有界性
F ( x ) 单调不减 F(x)单调不减 F(x)单调不减:x从-∞取到+∞的过程中,F(x)单调不减,从0逐渐变大到1
F ( x ) 右连续 F(x)右连续 F(x)右连续:F(a+0)=F(a)
lim ⁡ x → − ∞ F ( x ) = F ( − ∞ ) = 0 , lim ⁡ x → + ∞ F ( x ) = F ( + ∞ ) = 1 \lim\limits_{x→-∞}F(x)=F(-∞)=0,\lim\limits_{x→+∞}F(x)=F(+∞)=1 xlimF(x)=F()=0x+limF(x)=F(+)=1

若函数F(x)满足性质②-④,则F(x)必为某个随机变量的分布函数。

f ( x ) = F ′ ( x ) f(x)=F'(x) f(x)=F(x)

在这里插入图片描述


(3)分布函数的应用——求概率

1.一元分布函数:
P { X ≤ a } = F ( a ) P\{X≤a\}=F(a) P{Xa}=F(a)

P { X < a } = F ( a − ) P\{X<a\}=F(a^-) P{X<a}=F(a)

P { X = a } = P { X ≤ a } − P { X < a } = F ( a ) − F ( a − ) P\{X=a\}=P\{X≤a\}-P\{X<a\}=F(a)-F(a^-) P{X=a}=P{Xa}P{Xa}=F(a)F(a)
【一点处的概率,用于离散型、混合型随机变量】

P { X = a } = 0 ,即 F ( a ) − F ( a − ) P\{X=a\}=0,即F(a)-F(a^-) P{X=a}=0,即F(a)F(a),即要求左连续。

P { X > a } = 1 − P { X ≤ a } = 1 − F ( a ) P\{X>a\}=1-P\{X≤a\}=1-F(a) P{X>a}=1P{Xa}=1F(a)


因为分布函数统一用F字母,所以不同分布函数是用F的不同角标来区分,如X和Y不同分布,则分布函数为 F X ( z ) 、 F Y ( z F_X(z)、F_Y(z FX(z)FY(z)


2.二元分布函数:
F Z ( z ) = P { Z ≤ z } = P { Z ( X , Y ) ≤ z } F_Z(z) = P\{Z≤z\}=P\{Z(X,Y)≤z\} FZ(z)=P{Zz}=P{Z(X,Y)z}


3.最大最小值函数

P { m a x { X , Y } ≤ a } = P { X ≤ a , Y ≤ a } P\{max\{X,Y\}≤a\}=P\{X≤a,Y≤a\} P{max{X,Y}a}=P{XaYa}

P { m i n { X , Y } ≥ a } = P { X ≥ a , Y ≥ a } P\{min\{X,Y\}≥a\}=P\{X≥a,Y≥a\} P{min{X,Y}a}=P{XaYa}

P { a < m a x { X , Y } ≤ b } = P { a < U ≤ b } = P { U ≤ b } − P { U ≤ a } = P { X ≤ b , Y ≤ b } − P { X ≤ a , Y ≤ a } P\{a<max\{X,Y\}≤b\}=P\{a<U≤b\}=P\{U≤b\}-P\{U≤a\}=P\{X≤b,Y≤b\}-P\{X≤a,Y≤a\} P{a<max{X,Y}b}=P{a<Ub}=P{Ub}P{Ua}=P{XbYb}P{XaYa}



例题1:08年7.   Z=max{X,Y}与Z=min{X,Y}的分布函数
在这里插入图片描述

分析:
在这里插入图片描述

F 2 ( x ) : Z = m a x { X , Y } F²(x):Z=max\{X,Y\} F2(x)Z=max{X,Y},独立,同分布
F ( x ) F ( y ) : Z = m a x { X , Y } F(x)F(y):Z=max\{X,Y\} F(x)F(y)Z=max{X,Y},独立,不同分布
1 − [ 1 − F ( x ) ] 2 : Z = m i n { X , Y } 1-[1-F(x)]²:Z=min\{X,Y\} 1[1F(x)]2Z=min{X,Y},独立,同分布
1 − [ 1 − F ( x ) ] [ 1 − F ( y ) ] : Z = m i n { X , Y } 1-[1-F(x)][1-F(y)]:Z=min\{X,Y\} 1[1F(x)][1F(y)]Z=min{X,Y},独立,不同分布

答案:A


例题1变式——将Z改为 Z = m i n { X , Y } Z=min\{X,Y\} Z=min{X,Y},再求Z的分布函数

分析:主要是看①max还是min,②是否同分布。就看这两个。最大值是乘积,最小值是 1-[ ],同分布无角标,不同分布有角标

①分布函数的定义:分布函数F与概率P的关系
②最大值最小值的定义
③独立:P的乘积可拆为乘积的P,同理F可拆
④同分布:角标可以抹去了,合并。

答案:
在这里插入图片描述



4.习题


习题1:10年7.
在这里插入图片描述

分析: P X = 1 = F ( 1 ) − F ( 1 − 0 ) = 1 − e − 1 − 1 2 = 1 2 − e − 1 P{X=1}=F(1)-F(1-0)=1-e^{-1}-\dfrac{1}{2}=\dfrac{1}{2}-e^{-1} PX=1=F(1)F(10)=1e121=21e1

答案:C


习题2:19年14.   分类讨论、数学期望
在这里插入图片描述

分析:
在这里插入图片描述

答案: 2 3 \dfrac{2}{3} 32


习题3:09年8.
在这里插入图片描述
分析:
在这里插入图片描述

答案:B


习题4:23李林四(一)9.
在这里插入图片描述
分析:
在这里插入图片描述
答案:D


习题5:16年22(3)



常见的两类随机变量——离散型随机变量、连续型随机变量

2.一维离散型随机变量及其概率分布(分布律)

1.离散型随机变量:如果随机变量X只能取有限个或可列个值 x 1 , x 2 , . . . x_1,x_2,... x1,x2,...,则称X为离散型随机变量


2.分布律
(1)分布律的定义
P { X = x i } = p i , i = 1 , 2 , . . . P\{X=x_i\}=p_i,i=1,2,... P{X=xi}=pii=1,2,...为离散型随机变量X的分布律 或 X的概率分布,记为 X ∼ p i X \sim p_i Xpi。其函数图形为“步步高的阶梯函数”。

离散型随机变量的概率分布分布律。可用矩阵或表格表示。

在这里插入图片描述


(2)分布律的性质(充要条件)
p k ≥ 0 p_k≥0 pk0
②规范性(归一性): ∑ i = 1 + ∞ p i = 1 \sum\limits_{i=1}^{+∞}p_i=1 i=1+pi=1


3.特点
(1)分布函数 F ( x ) = ∑ x i ≤ x p i F(x)=\sum\limits_{x_i≤x}p_i F(x)=xixpi,即F(x) = x扫过的离散点的概率之和。F(x)是“步步高的阶梯函数”。
(2)归一性: ∑ i = 1 n p i = 1 \sum\limits_{i=1}^np_i=1 i=1npi=1
(3)概率:
①一点处概率: P { X = a } = F ( a ) − F ( a − 0 ) P\{X=a\}=F(a)-F(a-0) P{X=a}=F(a)F(a0)
②区间上概率: P { X ∈ B } = ∑ x i ∈ B p i P\{X∈B\}=\sum\limits_{x_i∈B}p_i P{XB}=xiBpi


4.离散型随机变量的概率分布(分布律

①先求该离散型随机变量的取值范围,一一列举
Z=XY的取值范围:-1,0,1

求每一个取值的概率
P{XY=-1}=…
P{XY=0}=…
P{XY=1}=…

列分布律

Z=XY-101
P


例题1:23李林四(一)16.   数学期望+分布律
在这里插入图片描述

分析:

答案: 3 − 3 2 \dfrac{3-\sqrt{3}}{2} 233



3.一维连续型随机变量及其概率分布(概率密度)

1.定义:
若随机变量X的分布函数可表示为 F ( x ) = ∫ − ∞ x f ( t ) d t   ( − ∞ < x < + ∞ ) F(x)=\int_{-∞}^xf(t)dt \ (-∞<x<+∞) F(x)=xf(t)dt (<x<+)
其中f(x)是非负可积函数,则称X为连续型随机变量,称f(x)为连续型随机变量X的概率密度函数,简称概率密度,记为 X~f(x)


2.概率密度f(x)的性质、充要条件:
①非负性: f ( x ) ≥ 0 f(x)≥0 f(x)0

归一性: ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-∞}^{+∞}f(x){\rm d}x=1 +f(x)dx=1

P { a < X ≤ b } = F ( b ) − F ( a ) = ∫ a b f ( x ) d x P\{a<X≤b\} = F(b) - F(a)= \int_{a}^{b}f(x){\rm d}x P{a<Xb}=F(b)F(a)=abf(x)dx

④在f(x)的连续点x处, F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x)

其中①② 非负性和归一性,是f(x)成为概率密度的充要条件

已知f(x)为概率密度,则 f ( a x + b ) 为概率密度 ⇔ a = ± 1 f(ax+b)为概率密度\Leftrightarrow a=±1 f(ax+b)为概率密度a=±1
【若|a|≠1,或f(x²) 或f²(x)均不是概率密度】


在这里插入图片描述


F 1 ( x ) F 2 ( x ) F_1(x)F_2(x) F1(x)F2(x) m a x { X 1 , X 2 } max\{X₁,X₂\} max{X1,X2}的分布函数, f 1 ( x ) F 2 ( x ) + F 1 ( x ) f 2 ( x ) f_1(x)F_2(x)+F_1(x)f_2(x) f1(x)F2(x)+F1(x)f2(x)为它的概率密度
在这里插入图片描述


3.求解f(x)
①F(x)求导:先求F(x),则 f ( x ) = F ′ ( x ) f(x)=F'(x) f(x)=F(x)
②由二维概率密度求边缘概率密度:已知f(x,y)表达式,则 f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f_X(x)=\int_{-∞}^{+∞}f(x,y)dy fX(x)=+f(x,y)dy


4.特点
(1)分布函数 F ( x ) = P { X ≤ x } = ∫ − ∞ x f ( t ) d t F(x)=P\{X≤x\}=\int_{-∞}^xf(t)dt F(x)=P{Xx}=xf(t)dt,记为 X ∼ f ( x ) X\sim f(x) Xf(x)。F(x)是连续函数。
(2)f(x)非负、可积,且有归一性: ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-∞}^{+∞}f(x){\rm d}x=1 +f(x)dx=1
(3)概率:
①一点处概率: P { X = a } = 0 P\{X=a\}=0 P{X=a}=0 。(即<、≤的概率相等)
②区间上概率: P { X ∈ B } = ∫ B f ( x ) d x P\{X∈B\}=\int_Bf(x){\rm d}x P{XB}=Bf(x)dx


5.概率P分布函数F概率密度f的关系
P { X ≤ a } = F ( a ) = ∫ − ∞ a f ( x ) d x P\{X≤a\}=F(a)=\int_{-∞}^af(x)dx P{Xa}=F(a)=af(x)dx
P { X > a } P\{X>a\} P{X>a} = 1 − P { X ≤ a } = 1 − F ( a ) =1-P\{X≤a\}=1-F(a) =1P{Xa}=1F(a) = ∫ a + ∞ f ( x ) d x =\int_a^{+∞}f(x)dx =a+f(x)dx
P P P{ a < X ≤ b a<X≤b a<Xb } = F ( b ) − F ( a ) = ∫ a b f ( x ) d x = F(b)-F(a) =\int_a^bf(x)dx =F(b)F(a)=abf(x)dx

F ( x ) = ∫ − ∞ x f ( t ) d t F(x)=\int_{-∞}^xf(t)dt F(x)=xf(t)dt
f ( x ) = F ′ ( x ) f(x)=F'(x) f(x)=F(x)

f可以唯一确定F,但F不能推出f。如U(a,b)和U[a,b],f的x一个开区间,一个闭区间,都能得到同样的F(x)



例题1:02年10.
在这里插入图片描述

分析:
在这里插入图片描述

A. ∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ + ∞ ( f 1 ( x ) + f 2 ( x ) ) d x = ∫ − ∞ + ∞ f 1 ( x ) d x + ∫ − ∞ + ∞ f 2 ( x ) d x = 2 ≠ 1 ∴ f 1 ( x ) + f 2 ( x ) \int_{-∞}^{+∞}f(x)dx=\int_{-∞}^{+∞}(f_1(x)+f_2(x))dx=\int_{-∞}^{+∞}f_1(x)dx+\int_{-∞}^{+∞}f_2(x)dx=2≠1 \quad ∴f_1(x)+f_2(x) +f(x)dx=+(f1(x)+f2(x))dx=+f1(x)dx++f2(x)dx=2=1f1(x)+f2(x)不是概率密度
B. ∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ + ∞ f 1 ( x ) f 2 ( x ) d x ≠ 1 ∴ f 1 ( x ) f 2 ( x ) \int_{-∞}^{+∞}f(x)dx=\int_{-∞}^{+∞}f_1(x)f_2(x)dx≠1\quad ∴f_1(x)f_2(x) +f(x)dx=+f1(x)f2(x)dx=1f1(x)f2(x)不是概率密度
C. F ( + ∞ ) = F 1 ( + ∞ ) + F 2 ( + ∞ ) = 2 ≠ 1 ∴ F 1 ( x ) + F 2 ( x ) F(+∞)=F_1(+∞)+F_2(+∞)=2≠1 \quad ∴F_1(x)+F_2(x) F(+)=F1(+)+F2(+)=2=1F1(x)+F2(x)不是分布函数

D.① 0 ≤ F 1 ( x ) F 2 ( x ) ≤ 1 0≤F_1(x)F_2(x)≤1 0F1(x)F2(x)1
F 1 ( x ) F 2 ( x ) F_1(x)F_2(x) F1(x)F2(x)单调不减
F 1 ( x ) F 2 ( x ) F_1(x)F_2(x) F1(x)F2(x)右连续
F ( + ∞ ) = F 1 ( + ∞ ) F 2 ( + ∞ ) = 1 , F ( − ∞ ) = F 1 ( − ∞ ) F 2 ( − ∞ ) = 0 F(+∞)=F_1(+∞)F_2(+∞)=1,F(-∞)=F_1(-∞)F_2(-∞)=0 F(+)=F1(+)F2(+)=1F()=F1()F2()=0
F 1 ( x ) F 2 ( x ) F_1(x)F_2(x) F1(x)F2(x)必为某个随机变量的分布函数。

答案:D


例题2:11年7.
在这里插入图片描述

分析:
①如果对乘法的求导法则熟悉,则会发现D的 f 1 ( x ) F 2 ( x ) + f 2 ( x ) F 1 ( x ) = [ F 1 ( x ) F 2 ( x ) ] ′ f_1(x)F_2(x)+f_2(x)F_1(x) = [F_1(x)F_2(x)]' f1(x)F2(x)+f2(x)F1(x)=[F1(x)F2(x)]
②验证性质: ∫ − ∞ + ∞ f 1 ( x ) F 2 ( x ) + f 2 ( x ) F 1 ( x ) d x = F 1 ( x ) F 2 ( x ) ∣ − ∞ + ∞ = 1 × 1 − 0 × 0 = 1 \int_{-∞}^{+∞}f_1(x)F_2(x)+f_2(x)F_1(x)\rm dx=F_1(x)F_2(x)|_{-∞}^{+∞}=1×1-0×0=1 +f1(x)F2(x)+f2(x)F1(x)dx=F1(x)F2(x)+=1×10×0=1
满足 f ( x ) ≥ 0 f(x)≥0 f(x)0 ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-∞}^{+∞}f(x){\rm d}x=1 +f(x)dx=1,为概率密度

答案:D



6.习题


习题1:2016年23.

求概率密度,先求分布函数,再求导。

在这里插入图片描述

答案:
(1)FT(t) = P{T≤t} = P{ max{X1,X2,X3}≤t } = P{ X1≤t,X2≤t,X3≤t } = P{X1≤t}·P{X2≤t}·P{X3≤t} = P3{X≤t} = F3X(t)

(2)aT为θ的无偏估计 ⇦⇨ E(aT)=θ


在这里插入图片描述



4.一般类型(混合型)随机变量及其分布

1.定义
在这里插入图片描述

2.解题
只能用定义 F ( X ) = P { X ≤ x } F(X)=P\{X≤x\} F(X)=P{Xx},分区间讨论。最好画图。注意自变量取遍(-∞,+∞)

3.类型
①离散型→离散型
②连续型→连续型 或 混合型

在这里插入图片描述


5.常见的随机变量分布类型:八大分布

1.离散型 (5种)

①0-1分布

0-1分布的概率分布为:
P { X = 1 } = p , P { X = 0 } = 1 − p P\{X=1\}=p,P\{X=0\}=1-p P{X=1}=pP{X=0}=1p

或 ② P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 P\{X=k\}=p^k(1-p)^{1-k},k=0,1 P{X=k}=pk(1p)1kk=0,1

在这里插入图片描述


二项分布 X~B(n,p)

n重伯努利实验:干一件事,要么成功,要么失败。成功概率为p,失败概率为1-p。则干这件事n次,成功了k次的概率为

P { X = k } = C n k p k ( 1 − p ) n − k ( k = 0 , 1 , 2 , . . . , n ) P\{X=k\}={\rm C}_n^kp^k(1-p)^{n-k} \qquad (k=0,1,2,...,n) P{X=k}=Cnkpk(1p)nk(k=0,1,2,...,n)
其中, C n k = n ⋅ ( n − 1 ) ⋅ . . . ⋅ ( n − k + 1 ) k ! {\rm C}_n^k=\dfrac{n·(n-1)·...·(n-k+1)}{k!} Cnk=k!n(n1)...(nk+1)



习题1:09年14.   二项分布的期望与方差、E(S²)=D(X)、无偏估计
在这里插入图片描述

分析:

答案:-1


习题2:16年8.
在这里插入图片描述
分析:

答案:A


习题3:01年19.    考点:二项分布、泊松分布、条件概率



泊松分布

若随机变量X的概率分布为
P { X = k } = λ k k ! e − λ ( k = 0 , 1 , 2 , . . . ; λ > 0 ) P\{X=k\}=\dfrac{λ^k}{k!}e^{-λ} \qquad (k=0,1,2,...;λ>0) P{X=k}=k!λkeλ(k=0,1,2,...;λ>0)
则称X服从参数为λ的泊松分布(Poisson),记作 X ∼ P ( λ ) X\sim P(λ) XP(λ)。E(X)=λ,D(X)=λ。

λ称为强度。泊松分布的数学期望 E(X)=λ。


应用:
①某场合下,单位时间内源源不断的质点来流的数量
②稀有事件发生的概率


泊松分布由二项分布近似而来。




习题1:01年19.    考点:二项分布、泊松分布、条件概率
在这里插入图片描述

分析:
X服从泊松分布,X~P(λ)
Y服从二项分布,Y~B(n,p)



④几何分布

【几何分布 G ( p ) G(p) G(p),首中即停止的伯努利试验。】

若X的概率分布为 P { X = k } = ( 1 − p ) k − 1 p ( k = 1 , 2 , . . . ; 0 < p < 1 ) P\{X=k\}=(1-p)^{k-1}p \qquad (k=1,2,...;0<p<1) P{X=k}=(1p)k1p(k=1,2,...;0<p<1),则称X服从参数为p的几何分布,记为 X ∼ G ( p ) X\sim G(p) XG(p)

在这里插入图片描述

几何分布是离散型的等待分布



例题1:  几何分布推广,首二中即停止: P = C k − 1 1 ( 1 − p ) k − 2 p 2 P=C_{k-1}^1(1-p)^{k-2}p^2 P=Ck11(1p)k2p2

在这里插入图片描述

答案:
在这里插入图片描述



⑤超几何分布

超几何分布 H ( n , N , M ) H(n,N,M) H(n,N,M)

P { X = k } = C M k C N − M n − k C N n P\{X=k\}=\dfrac{C_M^kC_{N-M}^{n-k}}{C_N^n} P{X=k}=CNnCMkCNMnk

在这里插入图片描述


2. 连续型 (3种)

均匀分布

在这里插入图片描述
在这里插入图片描述

均匀分布,是一维的几何概型


指数分布

在这里插入图片描述

1.指数分布的概率密度
若连续型 随机变量X的概率密度为
f ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 f(x)=\begin{cases} λe^{-λx}, & x>0\\ 0, & x≤0 \end{cases} f(x)={λeλx,0,x>0x0
其中λ>0为常数,则称X服从参数为λ的指数分布,记为X~E(λ)


2.指数分布的分布函数
F ( x ) = { 1 − e − λ x , x > 0 0 , x ≤ 0 F(x)=\begin{cases} 1-e^{-λx}, & x>0\\ 0, & x≤0 \end{cases} F(x)={1eλx,0,x>0x0

指数分布是连续型等待分布。
指数分布的λ是失效率,指数分布的数学期望 E ( X ) = 1 λ E(X)=\dfrac{1}{λ} E(X)=λ1


3.指数分布的无记忆性
P { X > s + t ∣ X > t } = P { X > s + t } P { X > t } = e − λ ( s + t ) e − λ t = e − λ s = P { X > s } P\{X>s+t|X>t\}=\dfrac{P\{X>s+t\}}{P\{X>t\}}=\dfrac{e^{-λ(s+t)}}{e^{-λt}}=e^{-λs}=P\{X>s\} P{X>s+tX>t}=P{X>t}P{X>s+t}=eλteλ(s+t)=eλs=P{X>s}

P { X > X 1 ∣ X > X 2 } = P { X > X 1 − X 2 } P\{X>X_1|X>X_2\}=P\{X>X_1-X_2\} P{X>X1X>X2}=P{X>X1X2}
②指数分布的λ是失效率,在失效率λ不变的情况下,该理想元件是无损耗的。因此工作1年失效的概率和工作2年失效的概率相等,因此有无记忆性。



习题1:19年22(1)
在这里插入图片描述

分析:Z = 指数分布×两点分布

答案:
(1) E(X)~1,∴ F ( x ) = { 1 − e − x , x > 0 0 , x ≤ 0 F(x)=\begin{cases} 1-e^{-x}, & x>0\\ 0, & x≤0 \end{cases} F(x)={1ex,0,x>0x0

f Z ( z ) = F Z ′ ( z ) f_Z(z)=F_Z'(z) fZ(z)=FZ(z)

对于FZ(z):
FZ(z) = P{Z≤z} = P{XY≤z} = P{Y=-1}·P{XY≤z|Y=-1} + P{Y=1}·P{XY≤z|Y=1} = p·P{-X≤z} + (1-p)·P{X≤z}

对于P{-X≤z} :
P{-X≤z} = P{-z≤X} = P{X≥-z} = 1-P{X≤-z} =1-FX(-z) [连续型随机变量,某一点的概率为0]

∴FZ(z) =p·[1-FX(-z)] + (1-p)·FX(z)

对z的取值进行分类讨论:
当z>0时,FZ(z) =p·[1-0] + (1-p)·(1-e-z) = p+(1-p)·(1-e-z)
当z≤0时,FZ(z) =p·[1-(1-ez)] + (1-p)·0 = pez

F Z ( z ) = { p + ( 1 − p ) ⋅ ( 1 − e − z ) , z > 0 p e z , z ≤ 0 F_Z(z) =\begin{cases} p+(1-p)·(1-e^{-z}) , & z>0\\ pe^z, & z≤0 \end{cases} FZ(z)={p+(1p)(1ez),pez,z>0z0

f Z ( z ) = F Z ′ ( z ) { ( 1 − p ) ⋅ e − z , z > 0 p e z , z ≤ 0 f_Z(z) =F_Z'(z)\begin{cases} (1-p)·e^{-z} , & z>0\\ pe^z, & z≤0 \end{cases} fZ(z)=FZ(z){(1p)ez,pez,z>0z0



正态分布

若X的概率密度为:
f ( x ) = 1 2 π σ e − 1 2 ( x − μ σ ) 2 = 1 2 π σ e − ( x − μ ) 2 2 σ 2 ( − ∞ < x < + ∞ ) f(x)=\dfrac{1}{\sqrt{2π}σ}e^{-\frac{1}{2}(\frac{x-μ}{σ})^2}=\dfrac{1}{\sqrt{2π}σ}e^{-\frac{{(x-μ^)}^2}{2σ^2}} \quad(-∞<x<+∞) f(x)=2π σ1e21(σxμ)2=2π σ1e2σ2(xμ)2(<x<+)
其中-∞<μ<+∞,σ>0,则称X服从参数为N(μ,σ²)的正态分布,或称X为正态变量,记为 X ∼ N ( μ , σ 2 ) X\sim N(μ,σ²) XN(μ,σ2)

①f(x)关于x=μ对称。
x = μ x=μ x=μ时,f(x)取最大值 f ( μ ) = 1 2 π σ f(μ)=\dfrac{1}{\sqrt{2π}σ} f(μ)=2π σ1,只与 σ σ σ有关。

在这里插入图片描述

1.标准正态分布
X~N(0,1),则标准正态分布的概率密度φ(x)为:
φ ( x ) = 1 2 π e − x 2 2 , ( − ∞ < x < + ∞ ) Ф ( x ) = ∫ − ∞ x 1 2 π e − x 2 2 d x ∫ − ∞ + ∞ φ ( x ) d x = ∫ − ∞ + ∞ 1 2 π e − x 2 2 d x = 1 φ(x)=\dfrac{1}{\sqrt{2π}}e^{-\frac{x^2}{2}},\quad (-∞<x<+∞)\\[5mm] Ф(x)=\int_{-∞}^x\dfrac{1}{\sqrt{2π}}e^{-\frac{x^2}{2}}dx\\[5mm] \int_{-∞}^{+∞}φ(x)dx=\int_{-∞}^{+∞}\frac{1}{\sqrt{2π}}e^{-\frac{x^2}{2}}{\rm d}x = 1 φ(x)=2π 1e2x2(<x<+)Ф(x)=x2π 1e2x2dx+φ(x)dx=+2π 1e2x2dx=1

在这里插入图片描述

上α分位点
若X~N(0,1),点 μ α μ_α μα右侧概率为α ( P { X > μ α } = α P\{X>μ_α\}=α P{X>μα}=α),则称 μ α μ_α μα为标准正态分布的上α分位点(上侧α分位数)

公式:
在这里插入图片描述
推论:
Ф ( 0 ) = 1 2 Ф(0)=\dfrac{1}{2} Ф(0)=21
Ф ( x ) + Ф ( − x ) = 1 Ф(x)+Ф(-x)=1 Ф(x)+Ф(x)=1


结论:对于标准正态分布 X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1)
P = ∫ − ∞ + ∞ φ ( x ) d x = 1 P=\int_{-∞}^{+∞}φ(x)dx=1 P=+φ(x)dx=1
E ( X ) = ∫ − ∞ + ∞ x φ ( x ) d x = 0 E(X)=\int_{-∞}^{+∞}xφ(x)dx=0 E(X)=+xφ(x)dx=0
(理解1:φ(x)是偶函数,xφ(x)为奇函数,在对称区间上积分为0. 理解2: ∫ − ∞ + ∞ x φ ( x ) d x \int_{-∞}^{+∞}xφ(x)dx +xφ(x)dx即为标准正态分布的数学期望,X~N(0,1),则期望为0)


2.正态分布的独立可加性
若X与Y分别服从正态分布 N ( μ 1 , σ 1 2 ) N(μ_1,σ_1^2) N(μ1,σ12) N ( μ 2 , σ 2 2 ) N(μ_2,σ_2^2) N(μ2,σ22),且X与Y相互独立。
Z = X − Y Z=X-Y Z=XY也服从正态分布, Z ∼ N ( μ 1 − μ 2 , σ 1 2 + σ 2 2 ) Z\sim N( μ_1-μ_2, σ_1^2+σ_2^2) ZN(μ1μ2,σ12+σ22)

独立可加性 (XY独立且同类型分布)

若X与Y独立,且满足以下5种同类型分布,则具有独立可加性.

分布X,Y独立⇨ 独立可加性
①二项分布X~B(m,p), Y~B(n,p)X+Y~ B(m+n,p)
②泊松分布X~P(λ₁), Y~P(λ₂)X+Y~ P(λ₁+λ₂)
③正态分布X~N(μ₁,σ₁²), Y~N(μ₂,σ₂²) X ± Y ∼ N ( μ 1 ± μ 2 , σ 1 2 + σ 2 2 ) X±Y\sim N(μ₁±μ₂,σ²₁+σ₂²) X±YN(μ1±μ2σ12+σ22)
④卡方分布X~χ²(m), Y~χ²(n)X+Y~ χ²(m+n)
⑤指数分布X~E(λ₁), X~E(λ₂) m i n { X , Y } min\{X,Y\} min{X,Y} ∼ E ( λ 1 + λ 2 ) \sim E(λ₁+λ₂) E(λ1+λ2)

3.正态分布 μ,σ 对图像的影响
期望μ:对称轴位置
方差σ:方差越大,越分散(越不集中,在均值附近的面积越小)



习题1:17年14.   标准正态分布
在这里插入图片描述

分析:

答案:2


习题2:19年23(1)
在这里插入图片描述


习题3:12年23.   正态分布的独立可加性
在这里插入图片描述

分析:
(3)注意样本与总体独立同分布

答案:
(1)∵X与Y相互独立且分别服从正态分布
∴由正态分布的独立可加性知 Z=X-Y 也服从正态分布,Z~N(0,3σ2)

(3) E ( σ ^ 2 ) = E ( ∑ i = 1 n Z i 2 3 n ) = 1 3 n E ( ∑ i = 1 n Z i 2 ) = 1 3 n ∑ i = 1 n E ( Z i 2 ) = 1 3 n ∑ i = 1 n E ( Z 2 ) = 1 3 n × n × [ D ( Z ) + E 2 ( Z ) ] = 1 3 × ( 3 σ 2 + 0 ) = σ 2 E(\hat{σ}^2)=E(\dfrac{{\sum\limits_{i=1}^n}Z_i^2}{3n})=\dfrac{1}{3n}E(\sum\limits_{i=1}^n{Z_i^2})=\dfrac{1}{3n}\sum\limits_{i=1}^nE({Z_i^2})=\dfrac{1}{3n}\sum\limits_{i=1}^nE({Z^2})=\dfrac{1}{3n}×n×[D(Z)+E^2(Z)]=\dfrac{1}{3}×(3σ^2+0)=σ^2 E(σ^2)=E(3ni=1nZi2)=3n1E(i=1nZi2)=3n1i=1nE(Zi2)=3n1i=1nE(Z2)=3n1×n×[D(Z)+E2(Z)]=31×(3σ2+0)=σ2
σ ^ 2 \hat{σ}^2 σ^2是σ2的无偏估计


习题4:13年07.   正态分布 μ,σ 对图像的影响
在这里插入图片描述

答案:A


习题5:06年14.   正态分布 μ,σ 对图像的影响

在这里插入图片描述

答案:A


习题6:16年7.   正态分布 μ,σ 对图像的影响
在这里插入图片描述

分析:将X标准化为标准正态分布

答案:B



6.一维随机变量函数的分布





Ch3. 多维随机变量及其分布

多维随机变量:联合、边缘、条件、独立性、函数分布

1.二维(n维)随机变量

1.多维随机变量

X:一维随机变量
(X,Y):二维随机变量
(X₁,X₂,…,Xn):n维随机变量

在这里插入图片描述


2.多维随机变量的分布函数

(1)联合分布函数

(1)概念
F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X≤x,Y≤y\} F(x,y)=P{Xx,Yy} (-∞<x<+∞,-∞<y<+∞)

在这里插入图片描述


(2)性质
③二维规范性/归一性:若为二维连续型随机变量, F ( + ∞ , + ∞ ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = 1 F(+∞,+∞)=\int_{-∞}^{+∞}\int_{-∞}^{+∞}f(x,y){\rm d}x{\rm d}y = 1 F(+,+)=++f(x,y)dxdy=1

在这里插入图片描述



例题1:10年22.(1)



(2)边缘分布函数

F X ( x ) = P { X ≤ x , Y ≤ + ∞ } = F ( x , + ∞ ) F_X(x)=P\{X≤x,Y≤+∞\}=F(x,+∞) FX(x)=P{Xx,Y+}=F(x,+)
F Y ( y ) = P { X ≤ + ∞ , Y ≤ y } = F ( + ∞ , y ) F_Y(y)=P\{X≤+∞,Y≤y\}=F(+∞,y) FY(y)=P{X+,Yy}=F(+,y)

在这里插入图片描述
在这里插入图片描述

边缘分布函数,考试常考



常见的两类二维随机变量:离散型随机变量、连续型随机变量

2.二维离散型随机变量及其分布

(1)联合分布律

p i j = P { X = x i , Y = y j } i , j = 1 , 2 , . . . p_{ij}=P\{X=x_i,Y=y_j\} \quad i,j=1,2,... pij=P{X=xi,Y=yj}i,j=1,2,...
(X,Y)的分布律 或 X和Y的联合分布律,记为 ( X , Y ) ∼ p i j (X,Y)\sim p_{ij} (X,Y)pij

在这里插入图片描述

联合分布律的求法:求出每个P{ }的值,画分布律


例题1:09年22.(2)



(2)边缘分布律

联合分布律的右边缘 p i ⋅ p_{i·} pi、下边缘 p ⋅ j p_{·j} pj,称为X、Y的边缘分布律

联合分布律: p i j = P { X = x i , Y = y j } p_{ij}=P\{X=x_i,Y=y_j\} pij=P{X=xi,Y=yj}

边缘分布率:
p i ⋅ = P { X = x i } p_{i·}=P\{X=x_i\} pi=P{X=xi}
p ⋅ j = P { Y = y j } p_{·j}=P\{Y=y_j\} pj=P{Y=yj}


(3)条件分布律

条件 = 联合 边缘 条件=\dfrac{联合}{边缘} 条件=边缘联合

在这里插入图片描述


3.二维连续型随机变量及其分布

(1)二维随机变量的概率密度 f(x,y):联合概率密度

(1)定义

F(x,y)二维随机变量(X,Y)分布函数,若存在非负函数f(x,y),使得对于任意实数x、y,有 F ( x , y ) = ∫ − ∞ y ∫ − ∞ x f ( u , v ) d u d v F(x,y)=\int_{-∞}^y\int_{-∞}^xf(u,v)dudv F(x,y)=yxf(u,v)dudv
则称(X,Y)为二维连续型随机变量,称函数f(x,y)二维随机变量(X,Y)的概率密度随机变量X和Y的联合概率密度


(2)性质

1.非负性:f(x,y)≥0
2.规范性/归一性:
F ( x , y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = F ( + ∞ , + ∞ ) = 1 F(x,y)=\int_{-∞}^{+∞}\int_{-∞}^{+∞}f(x,y)dxdy=F(+∞,+∞)=1 F(x,y)=++f(x,y)dxdy=F(+,+)=1
3.设D是xOy平面上的一个区域,则(X,Y)落在D内的概率为
P { ( X , Y ) ∈ D } = ∬ D f ( x , y ) d x d y P\{(X,Y)∈D\}=\iint\limits_Df(x,y){\rm d}x{\rm d}y P{(X,Y)D}=Df(x,y)dxdy

举例: 若 Z = 2 X − Y ,则 F Z ( z ) = P { Z ≤ z } = P { 2 X − Y ≤ z } = ∬ 2 x − y ≤ z f ( x , y ) d x d y 若Z=2X-Y,则F_Z(z)=P\{Z≤z\}=P\{2X-Y≤z\}=\iint\limits_{2x-y≤z}f(x,y)dxdy Z=2XY,则FZ(z)=P{Zz}=P{2XYz}=2xyzf(x,y)dxdy

当(X,Y)服从二维均匀分布时, P { ( X , Y ) ∈ D } = ∬ D f ( x , y ) d x d y = S ( D ) S ( A ) P\{(X,Y)∈D\}=\iint\limits_Df(x,y){\rm d}x{\rm d}y=\dfrac{S(D)}{S(A)} P{(X,Y)D}=Df(x,y)dxdy=S(A)S(D)

4.偏导
在这里插入图片描述


例题1:03年5.   二维连续型随机变量的分布:f(x,y)的性质注意积分区域的限:D∩定义域
在这里插入图片描述

分析:设D是xOy平面上的一个区域,则(X,Y)落在D内的概率为 P { ( X , Y ) ∈ D } = ∬ D f ( x , y ) d x d y P\{(X,Y)∈D\}=\iint\limits_Df(x,y){\rm d}x{\rm d}y P{(X,Y)D}=Df(x,y)dxdy
在这里插入图片描述

答案: 1 4 \dfrac{1}{4} 41


例题2:12年07.   f(x,y)的性质: P { ( X , Y ) ∈ D } = ∬ D f ( x , y ) d x d y P\{(X,Y)∈D\}=\iint\limits_Df(x,y){\rm d}x{\rm d}y P{(X,Y)D}=Df(x,y)dxdy
在这里插入图片描述
分析:
在这里插入图片描述
答案:A


例题3:16年22.(2)



(2)边缘分布

1.边缘概率分布

F X ( x ) = F ( x , + ∞ ) = ∫ − ∞ x [ ∫ − ∞ + ∞ f ( u , v ) d v ] d u F_X(x)=F(x,+∞)=\int_{-∞}^x[\int_{-∞}^{+∞}f(u,v)dv]du FX(x)=F(x,+)=x[+f(u,v)dv]du
F Y ( y ) = F ( + ∞ , y ) F_Y(y)=F(+∞,y) FY(y)=F(+,y)

2.边缘概率密度

f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f_X(x) = \int_{-∞}^{+∞}f(x,y){\rm d}y fX(x)=+f(x,y)dy 【注意上下限是代y的取值,x是常数】

f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x f_Y(y) = \int_{-∞}^{+∞}f(x,y){\rm d}x fY(y)=+f(x,y)dx



例题1:由联合概率密度求边缘概率密度
口诀:求谁不积谁,后积先定限,限内画条线,先交写下限,后交写上限
在这里插入图片描述


例题2:10年22.(2)



(3)条件分布

1.条件概率密度

f X ∣ Y ( x   ∣   y ) = f ( x , y ) f Y ( y ) f_{X|Y}(x\ |\ y) = \dfrac{f(x,y)}{f_Y(y)} fXY(x  y)=fY(y)f(x,y)

f Y ∣ X ( y   ∣   x ) = f ( x , y ) f X ( x ) f_{Y|X}(y\ |\ x) = \dfrac{f(x,y)}{f_X(x)} fYX(y  x)=fX(x)f(x,y) 【条件= 联合/边缘】

概率密度乘法公式:
在这里插入图片描述


2.条件分布函数

在这里插入图片描述


例题1:07年10.   条件概率密度

在这里插入图片描述

分析:
∵ 随机变量(X,Y)服从二维正态分布,且X与Y不相关,则X与Y相互独立。
f X ∣ Y ( x   ∣   y ) = f ( x , y ) f Y ( y ) = f X ( x ) ⋅ f Y ( y ) f Y ( y ) = f X ( x ) f_{X|Y}(x\ |\ y) = \dfrac{f(x,y)}{f_Y(y)}=\dfrac{f_X(x)·f_Y(y)}{f_Y(y)}=f_X(x) fXY(x  y)=fY(y)f(x,y)=fY(y)fX(x)fY(y)=fX(x)

在这里插入图片描述
答案:A


例题2:22年10.
在这里插入图片描述

答案:D


例题3:10年22.(2)



(4)二维均匀分布

设D是坐标平面xOy上面积为A的有界区域D,若二维随机变量(X,Y)的概率密度为
f ( x , y ) = { 1 A , ( x , y ) ∈ D , 0 , ( x , y ) ∉ D f(x,y)= \left \{\begin{array}{cc} \dfrac{1}{A}, &(x,y)∈D,\\ 0, & (x,y)∉D \end{array}\right. f(x,y)={A1,0,(x,y)D(x,y)/D
则称(X,Y)在区域D上服从均匀分布,记为 (X,Y) ~ UD



例题1:16年22.
在这里插入图片描述

答案:查看李艳芳的讲解



(5)二维正态分布

1.定义:
若二维随机变量(X,Y)的概率密度为
在这里插入图片描述

则称(X,Y)为服从参数μ1212,ρ的二维正态分布,记作 ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 , σ 2 , ρ ) (X,Y)\sim N(μ_1,μ_2,σ_1,σ_2,ρ) (X,Y)N(μ1,μ2,σ1,σ2,ρ)


2.性质
二维正态分布:X与Y独立 ⇦⇨ X与Y不相关,ρXY=0



例题1:15年14.   二维正态分布, ρ = 0 ρ=0 ρ=0则X与Y独立

在这里插入图片描述
分析:

答案: 1 2 \dfrac{1}{2} 21


例题2:11年14.
在这里插入图片描述

分析:∵ρ=0 ∴X与Y相互独立 ∴E(XY²)=E(X)·E(Y²)=E(X)·[D(X)+E²(Y)]=μ(σ²+μ²)

答案:μ(σ²+μ²)


例题3:07年10.



4.独立性 【随机变量的独立性

(1)定义 (相互独立的充要条件)

对于(X,Y)是二维随机变量:

①普通:
P { X ≤ x , Y ≤ y } = P { X ≤ x } ⋅ P { Y ≤ y } ⇔ X , Y 独立 P\{X≤x,Y≤y\}=P\{X≤x\}·P\{Y≤y\}\Leftrightarrow X,Y独立 P{XxYy}=P{Xx}P{Yy}X,Y独立
F ( x , y ) = F X ( x ) ⋅ F Y ( y ) ⇔ X , Y 独立 F(x,y)=F_X(x)·F_Y(y)\Leftrightarrow X,Y独立 F(x,y)=FX(x)FY(y)X,Y独立

②离散: ∀ i , j ∀i,j i,j,有 p i j = p i ⋅ ⋅ p ⋅ j ⇔ X , Y 独立 p_{ij}=p_{i·}·p_{·j}\Leftrightarrow X,Y独立 pij=pipjX,Y独立
ョ i , j ョi,j i,j,使得 p i j ≠ p i ⋅ ⋅ p ⋅ j p_{ij}≠p_{i·}·p_{·j} pij=pipj,则X,Y不独立

③连续: f ( x , y ) = f X ( x ) ⋅ f Y ( y ) ⇔ X , Y 独立 f(x,y)=f_X(x)·f_Y(y)\Leftrightarrow X,Y独立 f(x,y)=fX(x)fY(y)X,Y独立


(2)独立的性质

两变量独立,则P{ }可拆:P{X≤a}·P{Y≤b} = P{X≤a,Y≤b}
注意,F要先转换为P,然后P可拆。

详情查看此文:https://blog.csdn.net/Edward1027/article/details/126604163



5.二维随机变量 函数的分布

常考三类多维随机变量

(1)(离散型,离散型)→离散型

比较简单


(2)(连续型,连续型)→连续型

①分布函数法

P { ( X , Y ) ∈ D } = ∬ D f ( x , y ) d x d y P\{(X,Y)∈D\}=\iint\limits_Df(x,y){\rm d}x{\rm d}y P{(X,Y)D}=Df(x,y)dxdy

F Z ( z ) = P { Z ≤ z } = P { g ( x , y ) ≤ z } = ∬ g ( x , y ) ≤ z f ( x , y ) d x d y F_Z(z)=P\{Z≤z\}=P\{g(x,y)≤z\}=\iint\limits_{g(x,y)≤z}f(x,y){\rm d}x{\rm d}y FZ(z)=P{Zz}=P{g(x,y)z}=g(x,y)zf(x,y)dxdy
f Z ( z ) = F Z ′ ( z ) f_Z(z)=F_Z'(z) fZ(z)=FZ(z)


②卷积公式

卷积公式:专门针对 加、减、乘、除
口诀:积谁不换谁,换完求偏导 (对z求偏导,乘其系数的绝对值)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


(3)(离散型,连续型)→连续型

离散+连续:全概率公式

X和Y,一格离散,一个连续:Z=XY,先用全概率公式,再用独立性



例题1:基础30讲 3.11   离散+连续:全概率公式 (“全集分解思想”)
在这里插入图片描述

答案:
在这里插入图片描述



习题1:09年8.   离散+连续:全概率公式
在这里插入图片描述

分析:
在这里插入图片描述

答案:B


习题2:23李林4套卷(二)22.(1)   离散+连续:全概率公式
在这里插入图片描述
答案:
在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/867218.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux基础篇(五)文件权限

目录 一、文件权限的概念 二、Linux命令ll的结果解析 三、Linux修改权限的两种方法 四、更改文件的拥有者和所属组 五、身份的判定 六、系统掩码 七、删除文件需要的权限 八、粘滞位 一、文件权限的概念 1.是什么&#xff1f; 简单地说就是什么身份的用户能对文件做什么事。 …

如何在CSS中水平居中一个元素?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 使用 margin: 0 auto⭐ 使用 Flexbox 布局⭐ 使用绝对定位和负边距⭐ 使用表格布局⭐ 使用网格布局⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅…

【密码学】密码棒密码

密码棒密码 大约在公元前700年,古希腊军队使用一种叫做scytale的圆木棍来进行保密通信。其使用方法是这样的:把长带子状羊皮纸缠绕在圆木棍上,然后在上面写字;解下羊皮纸后,上面只有杂乱无章的字符,只有再次以同样的方式缠绕到同样粗细的棍子上,才能看出所写的内容。快速且不容…

STM32定时器TIM控制

一、CubeMX的设置 1、新建工程&#xff0c;进行基本配置 2、配置定时器TIM2 1&#xff09;定时器计算公式&#xff1a;&#xff08;以下两条公式相同&#xff09; Tout ((ARR1) * PSC1)) / Tclk TimeOut ((Prescaler 1) * (Period 1)) / TimeClockFren Tout TimeOut&…

选读SQL经典实例笔记23_读后总结与感想兼导读

1. 基本信息 SQL经典实例 SQL Cookbook [美]安东尼莫利纳罗&#xff08;Anthony Molinaro&#xff09; / 人民邮电出版社 / 2018-07 / 其他 人民邮电出版社,2018年7月出版第1版&#xff0c;2021年12月出版第2版 1.1. 读薄率 1版书籍总字数827千字&#xff0c;笔记总字数30…

sharedPreferences的使用之按钮状态切换的保存

什么是sharedPreferences&#xff1f;有什么用 SharedPreference是Android开发中一个轻量级的数据存储的方式&#xff0c;除了它还有SQLite数据库。它可以将数据以键值对的形式存放到文件中&#xff0c;在需要的时候再取出来使用。相比于去操作数据库&#xff0c;对于一些简单…

缓存穿透,击穿,雪崩之间的区别与联系

1、缓存数据基本流程 通常来说,我们是从数据库将数据查询出来之后,如果数据不为空,则将数据存储在缓存中,下次查询时就直接从缓存查询了,只有查询不到才会从数据库查询。 2、缓存穿透 核心在穿透两个字,穿透了,就说明在查询数据时没有遇到阻碍,直接就查询到了数据库。…

Spring-Cloud-Loadblancer详细分析_2

LoadBalancerClients 终于分析到了此注解的作用&#xff0c;它是实现不同服务之间的配置隔离的关键 Configuration(proxyBeanMethods false) Retention(RetentionPolicy.RUNTIME) Target({ ElementType.TYPE }) Documented Import(LoadBalancerClientConfigurationRegistrar…

记录--浏览器渲染15M文本导致崩溃怎么办

这里给大家分享我在网上总结出来的一些知识&#xff0c;希望对大家有所帮助 最近&#xff0c;我刚刚完成了一个阅读器的txt文件阅读功能&#xff0c;但在处理大文件时&#xff0c;遇到了文本内容过多导致浏览器崩溃的问题。 一般情况下&#xff0c;没有任何样式渲染时不会出现什…

《全生命周期眼健康管理》助力健康科学用眼

8月8日下午&#xff0c;烟台正大光明眼科医院眼健康管理中心张提主任受邀来到烟台市残疾人事务综合服务中心&#xff0c;为残联康复训练教师及相关工作人员进行了《全生命周期眼健康管理》讲座。 烟台正大光明眼科医院眼健康管理中心张提主任 “全生命周期眼健康”这一理念其宗…

u盘为什么提示格式化?u盘提示格式化怎么办

U盘是一种便携式存储设备&#xff0c;在使用U盘的过程中&#xff0c;有时候会出现提示需要格式化的情况。这种情况通常会让人担心自己重要的数据是否会丢失。那么&#xff0c;U盘为什么提示格式化&#xff1f;U盘提示格式化怎么办&#xff1f;在本文中&#xff0c;我们将探讨U盘…

80. 删除有序数组中的重复项 II

题目链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 解题思路&#xff1a;因为数组有序&#xff0c;相等的元素一定相邻&#xff0c;所以可以使用一个变量num统计相等元素的个数&#xff0c;如果当前元素和前一个元素相等&#xff0c…

【雕爷学编程】Arduino动手做(09)---火焰传感器模块3

37款传感器与模块的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&#x…

【java面试题】不定义新变量的情况下交换两个Integer变量

题目&#xff1a; 不定义新变量的情况下交换两个Integer变量&#xff0c;完善swap&#xff08;&#xff09;方法&#xff1a; public class Main {public static void main(String[] args) {Integer a 10;Integer b 20;swap(a, b);System.out.printf("a is %d,b is %d&q…

TansUNet代码理解

首先通过论文中所给的图片了解网络的整体架构&#xff1a; vit_seg_modeling部分 模块引入和定义相关量&#xff1a; # codingutf-8 # __future__ 在老版本的Python代码中兼顾新特性的一种方法 from __future__ import absolute_import from __future__ import division fr…

制造业为什么要建设数字化供应链

数字化让越来越多的人走向了线上的世界&#xff0c;让那些拥有线上产品或提供线上服务的企业提供了更多流量。 但与此同时&#xff0c;传统制造业遭受了沉重的打击&#xff0c;考虑到防疫要求&#xff0c;很多工厂长期处于人手不足的状态&#xff0c;生产制造效率大幅降低&…

激活函数总结(六):ReLU系列激活函数补充(RReLU、CELU、ReLU6)

激活函数总结&#xff08;六&#xff09;&#xff1a;ReLU系列激活函数补充 1 引言2 激活函数2.1 RReLU激活函数2.2 CELU激活函数2.3 ReLU6 激活函数 3. 总结 1 引言 在前面的文章中已经介绍了介绍了一系列激活函数 (Sigmoid、Tanh、ReLU、Leaky ReLU、PReLU、Swish、ELU、SEL…

用python写一个简单的贪吃蛇游戏

入门教程、案例源码、学习资料、读者群 请访问&#xff1a; python666.cn 大家好&#xff0c;欢迎来到 Crossin的编程教室 &#xff01; 不知道有多少同学跟我一样&#xff0c;最初接触编程的动机就是为了自己做个游戏玩&#xff1f; Python 虽然并不是一个“为游戏而生”的语言…

给QT添加图片

给QT添加图片 第一步: 添加图片资源文件。

基于深度学习的3D城市模型增强【Mask R-CNN】

在这篇文章中&#xff0c;我们描述了一个为阿姆斯特丹 3D 城市模型自动添加门窗的系统&#xff08;可以在这里访问&#xff09;。 计算机视觉用于从城市全景图像中提取有关门窗位置的信息。 由于这种类型的街道级图像广泛可用&#xff0c;因此该方法可用于较大的地理区域。 推荐…