目录
💥1 概述
📚2 运行结果
🎉3 参考文献
👨💻4 Matlab代码
💥1 概述
特征选择是当前信息领域,尤其是模式识别领域的研究热点。该代码演示了BGWO如何使用基准数据集Main解决特征选择问题。
📚2 运行结果
🎉3 参考文献
[1]童坤. 基于改进GWO算法的入侵检测特征选择研究[D].湖北工业大学,2019.
👨💻4 Matlab代码
主函数部分代码:
%% Binary Grey Wolf Optimization (Version 1)
clc, clear, close
% Benchmark data set
load ionosphere.mat;
% Set 20% data as validation set
ho = 0.2;
% Hold-out method
HO = cvpartition(label,'HoldOut',ho,'Stratify',false);
% Parameter setting
N = 10;
max_Iter = 100;
% Binary Grey Wolf Optimization
[sFeat,Sf,Nf,curve] = jBGWO1(feat,label,N,max_Iter,HO);
% Plot convergence curve
plot(1:max_Iter,curve);
xlabel('Number of Iterations');
ylabel('Fitness Value');
title('BGWO1'); grid on;
%% Binary Grey Wolf Optimization (Version 2)
clc, clear, close;
% Benchmark data set
load ionosphere.mat;
% Set 20% data as validation set
ho = 0.2;
% Hold-out method
HO = cvpartition(label,'HoldOut',ho,'Stratify',false);
% Parameter setting
N = 10;
max_Iter = 100;
% Binary Grey Wolf Optimization
[sFeat,Sf,Nf,curve] = jBGWO2(feat,label,N,max_Iter,HO);
% Plot convergence curve
plot(1:max_Iter,curve);
xlabel('Number of Iterations');
ylabel('Fitness Value');
title('BGWO2'); grid on;