基于灰狼优化(GWO)、帝国竞争算法(ICA)和粒子群优化(PSO)对梯度下降法训练的神经网络的权值进行了改进(Matlab代码实现)

news2024/11/27 18:30:32

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

在神经网络训练中,使用传统的梯度下降法可能会受到局部极值问题的影响,导致训练结果不够稳定或收敛速度较慢。为了改进神经网络的权值训练,考虑结合灰狼优化(GWO)、帝国竞争算法(ICA)和粒子群优化(PSO)等优化算法。下面是方法:

初始化神经网络: 首先,根据问题的特点和需求,设计并初始化神经网络的结构,包括神经元层、激活函数等。

梯度下降法训练: 使用传统的梯度下降法对神经网络进行初始训练,以获得一个基本的权值设置。

算法集成: 将灰狼优化(GWO)、帝国竞争算法(ICA)和粒子群优化(PSO)三种优化算法集成到神经网络的权值调整过程中。

多种算法运行: 为了充分利用这些算法的优势,可以采取以下策略:

在每次权值更新之前,使用三种算法分别对神经网络权值进行优化,得到三组不同的权值。

将这三组权值分别代入神经网络进行预测或训练,得到对应的损失函数值。

根据损失函数值的大小,选择其中表现最好的一组权值来更新神经网络。

参数调整: 每个优化算法都有一些参数需要调整,如迭代次数、种群大小等。您可以通过实验和交叉验证来选择最佳的参数组合,以达到更好的性能。

终止条件: 设置合适的终止条件,如达到一定的迭代次数或损失函数值足够小。

结果分析: 最后,比较集成了三种优化算法的权值训练方法与单独使用梯度下降法的效果。分析哪种方法在收敛速度、稳定性和精度方面表现更好。

📚2 运行结果

主函数部分代码:

clc;
clear;
close all;
​
%% Problem Definition
%% loading dataset %%
load('Weight_mat.mat')
load('trainset.mat')
load('testset.mat')
​
var_num=71;            
VarSize=[1 var_num];  
VarMin=-5;        
VarMax= 5;       
%% PSO Parameters
max_epoch=100;      
ini_pop=50;        
​
% Constriction Coefficients
phi1=2.1;
phi2=2.1;
phi=phi1+phi2;
khi=2/(phi-2+sqrt(phi^2-4*phi));
w=khi;          % Inertia Weight
wdamp=0.99;        % Inertia Weight Damping Ratio
c1=khi*phi1;    % Personal Learning Coefficient
c2=khi*phi2;    % Global Learning Coefficient
​
% Velocity Limits
VelMax=0.1*(VarMax-VarMin);
VelMin=-VelMax;
%% Initialization
​
empty_particle.Position=[];
empty_particle.Cost=[];
empty_particle.Velocity=[];
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];
​
particle=repmat(empty_particle,ini_pop,1);  
GlobalBest.Cost=inf;
Cost_Test= zeros(50,1);
for i=1:ini_pop
    
    % Initialize Position
    particle(i).Position= WEIGHTS(i ,:);
    
    % Initialize Velocity
    particle(i).Velocity=zeros(VarSize);
    
    % Evaluation
    particle(i).Cost=mape_calc(particle(i).Position,trainset);
    Cost_Test(i)=mape_calc(particle(i).Position,testset);
    % Update Personal Best
    particle(i).Best.Position=particle(i).Position;
    particle(i).Best.Cost=particle(i).Cost;
    
    % Update Global Best
    if particle(i).Best.Cost<GlobalBest.Cost
        
        GlobalBest=particle(i).Best;
        
    end
    
end
​
BestCost_Train=zeros(max_epoch,1);
BestCost_Test=zeros(max_epoch,1);
[~, SortOrder]=sort(Cost_Test);
Cost_Test =Cost_Test(SortOrder);
%% PSO Main Loop
for it=1:max_epoch
    for i=1:ini_pop
        % Update Velocity
        particle(i).Velocity = w*particle(i).Velocity ...
            +c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ...
            +c2*rand(VarSize).*(GlobalBest.Position-particle(i).Position);
        
        % Apply Velocity Limits
        particle(i).Velocity = max(particle(i).Velocity,VelMin);
        particle(i).Velocity = min(particle(i).Velocity,VelMax);
        
        % Update Position
        particle(i).Position = particle(i).Position + particle(i).Velocity;
        IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax);
        particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside);
        
        % Apply Position Limits
        particle(i).Position = max(particle(i).Position,VarMin);
        particle(i).Position = min(particle(i).Position,VarMax);
        
        % Evaluation
        particle(i).Cost = mape_calc(particle(i).Position,trainset);
        for l= 1:ini_pop
          Cost_Test(l)=mape_calc(particle(l).Position,testset);
        end
        [~, SortOrder]=sort(Cost_Test);
        Cost_Test =Cost_Test(SortOrder);
        BestCost_Test(it) = Cost_Test(1);
        % Update Personal Best
        if particle(i).Cost<particle(i).Best.Cost
            
            particle(i).Best.Position=particle(i).Position;
            particle(i).Best.Cost=particle(i).Cost;
            
            % Update Global Best
            if particle(i).Best.Cost<GlobalBest.Cost
                
                GlobalBest=particle(i).Best;
                
            end
            
        end
        
    end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

​[1]郭跃东,宋旭东.梯度下降法的分析和改进[J].科技展望,2016,26(15):115+117.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/867045.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【python】一文了解Python爬虫 | 文末送书

目录 引言 1. 爬虫基础知识 1.1 什么是爬虫 1.2 HTTP协议 1.2.1 HTTP请求方法 1.GET请求 1.2.2 请求头常见字段 1.2.3 响应状态码 1.3 HTML解析 1.3.1 Beautiful Soup 解析库 1.3.2 XPath xpath解析原理: xpath 表达式 2. 爬虫进阶技巧 2.1 防止被反爬虫 2.1.1 …

信息论基础知识

注意&#xff1a;本文只针对离散随机变量做出探讨&#xff0c;连续随机变量的情况不适用于本文探讨的内容&#xff01; &#xff08;一&#xff09;自信息 1. 自信息 I ( x ) − l o g n P ( x ) \color{blue}I(x) - log_{n}{P(x)} I(x)−logn​P(x) 注意&#xff1a; 若n …

用ChatGPT和六顶帽思考法帮助自己更好地决策和解决问题

当我们在解决复杂问题时&#xff0c;我们常常陷入单一视角的状态。创造性思维领域的先驱爱德华德博诺&#xff0c;提出了六顶帽思考法[1]&#xff0c;这意味着我们可以从六个不同的视角来思考一个问题&#xff0c;以实现高水平决策和解决问题。 每一顶“帽子”代表不同的视角。…

【Matlab】PSO优化(单隐层)BP神经网络算法

上一篇博客介绍了BP-GA&#xff1a;BP神经网络遗传算法(BP-GA)函数极值寻优——非线性函数求极值&#xff0c;本篇博客将介绍用PSO&#xff08;粒子群优化算法&#xff09;优化BP神经网络。 1.优化思路 BP神经网络的隐藏节点通常由重复的前向传递和反向传播的方式来决定&#…

UGUI源码深度剖析

源码下载后 直接嵌入工程&#xff0c;删除引擎extension里的&#xff1b; 自制UI&#xff0c;在一个空场景中显示一个图片&#xff0c;当鼠标点击图片&#xff0c;执行操作。 gameobject &#xff1a; mesh meshfilter meshrender maintexture meshcollider camera ray

基于SSM的智能商城购物系统

基于SSM的智能商城购物系统 项目简介项目获取开发环境项目技术运行截图 项目简介 该智能商城系统主要实现两大功能模块:前台管理和后台管理 前台管理包括五大模块:用户登录注册、商品信息、购物车信息、个人信息管理、下单与订单管理、订单物流设置。 (1)用户登录注册模块:该功…

【Python机器学习】实验10 支持向量机

文章目录 支持向量机实例1 线性可分的支持向量机1.1 数据读取1.2 准备训练数据1.3 实例化线性支持向量机1.4 可视化分析 实例2 核支持向量机2.1 读取数据集2.2 定义高斯核函数2.3 创建非线性的支持向量机2.4 可视化样本类别 实例3 如何选择最优的C和gamma3.1 读取数据3.2 利用数…

大数据Flink(六十一):Flink流处理程序流程和项目准备

文章目录 Flink流处理程序流程和项目准备 一、Flink流处理程序的一般流程

使用jasypt对Spring Boot配置文件中的配置项加密

在Spring Boot中&#xff0c;有很多口令需要加密&#xff0c;如数据库连接密码、访问第三方接口的Token等。常见的方法就是用jasypt对口令进行加密。 实际上&#xff0c;jasypt可以对配置文件中任意配置项的值进行加密&#xff0c;不局限于对密码的加密。 1.在pom.xml中添加ja…

21 | 朝阳医院数据分析

朝阳医院2018年销售数据为例,目的是了解朝阳医院在2018年里的销售情况,通过对朝阳区医院的药品销售数据的分析,了解朝阳医院的患者的月均消费次数,月均消费金额、客单价以及消费趋势、需求量前几位的药品等。 import numpy as np from pandas import Series,DataFrame impo…

友善之臂NanoPi NEO利用fbtft驱动点亮1.69寸ST7789V2屏幕

屏幕介绍 本文以中景园1.69寸LCD&#xff0c;驱动芯片ST7789V2该款屏幕示例&#xff0c;屏幕的分辨率为240*280 屏幕引脚说明 NanoPi NEO IO介绍 屏幕与板子的IO连接关系 屏幕NanoPi NEOGNDGNDVCC3.3VSCLPC2SDAPC0RESPG11DCPA1CSPC3BLKPA0 下载交叉编译器和linux内核源码并按教…

c语言——完数的计算

完数即所有因子之和等于其本身值 列入&#xff0c;28124714&#xff0c;28所有的因子为1&#xff0c;2&#xff0c;4&#xff0c;7&#xff0c;14 而这五个因子之和恰好也是28. //完数的计算 /*完数即所有因子之和等于其本身值 列入&#xff0c;28124714&#xff0c;28所有的…

LeetCode700. 二叉搜索树中的搜索

700. 二叉搜索树中的搜索 文章目录 [700. 二叉搜索树中的搜索](https://leetcode.cn/problems/search-in-a-binary-search-tree/)一、题目二、题解方法一&#xff1a;迭代方法二&#xff1a;递归 带main函数测试用例 一、题目 给定二叉搜索树&#xff08;BST&#xff09;的根节…

在线状态监测如何使冷却塔维保管理受益

工业冷却塔作为关键的热交换装置&#xff0c;在许多生产流程中发挥着重要作用。为了保持其高效稳定的运行&#xff0c;实施连续的冷却塔状态监测变得至关重要。本文将以PreMaint设备数字化平台为例&#xff0c;探讨为什么建议采用远程冷却塔状态监测&#xff0c;以及如何借助振…

PHP证券交易员学习网站mysql数据库web结构apache计算机软件工程网页wamp

一、源码特点 PHP证券交易员学习网站 是一套完善的web设计系统&#xff0c;对理解php编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 下载地址https://download.csdn.net/download/qq_41221322/88205549 PHP证券交易员…

Python爬虫的requests(学习于b站尚硅谷)

目录 一、requests  1. requests的基本使用  &#xff08;1&#xff09;文档  &#xff08;2&#xff09;安装  &#xff08;3&#xff09;响应response的属性以及类型  &#xff08;4&#xff09;代码演示 2.requests之get请求  3. requests之post请求  &#x…

emqx-5.1.4开源版使用记录

emqx-5.1.4开源版使用记录 windows系统安装eqmx 去官网下载 emqx-5.1.4-windows-amd64.zip&#xff0c;然后找个目录解压 进入bin目录,执行命令启动emqx 执行命令 emqx.cmd start使用emqx 访问内置的web管理页面 浏览器访问地址 http://localhost:18083/#/dashboard/overv…

什么是P2P?

P2P (Peer-to-Peer) 是一种分布式的网络架构&#xff0c;其中各个节点&#xff08;通常被称为“peers”或“节点”&#xff09;直接进行数据共享和交换&#xff0c;而无需依赖中央服务器。P2P 网络强调平等的参与和共享&#xff0c;每个节点既可以是数据的消费者&#xff08;下…

从MySQL到金蝶云星空通过接口配置打通数据

从MySQL到金蝶云星空通过接口配置打通数据 对接系统&#xff1a;MySQL MySQL是一个关系型数据库管理系统&#xff0c;由瑞典MySQLAB公司开发&#xff0c;属于Oracle旗下产品。MySQL是最流行的关系型数据库管理系统之一&#xff0c;在WEB应用方面&#xff0c;MySQL是最好的RDBMS…

C++模板,STL(Standard Template Library)

这篇文章的主要内容是C中的函数模板、类模板、STL的介绍。 希望对C爱好者有所帮助&#xff0c;内容充实且干货&#xff0c;点赞收藏防止找不到&#xff01; 再次感谢每个读者和正在学习编程的朋友莅临&#xff01; 更多优质内容请点击移驾&#xff1a; C收录库&#xff1a;重生…