【Python机器学习】实验10 支持向量机

news2024/11/27 19:45:18

文章目录

  • 支持向量机
    • 实例1 线性可分的支持向量机
      • 1.1 数据读取
      • 1.2 准备训练数据
      • 1.3 实例化线性支持向量机
      • 1.4 可视化分析
    • 实例2 核支持向量机
      • 2.1 读取数据集
      • 2.2 定义高斯核函数
      • 2.3 创建非线性的支持向量机
      • 2.4 可视化样本类别
    • 实例3 如何选择最优的C和gamma
      • 3.1 读取数据
      • 3.2 利用数据集中的验证集做模型选择
    • 实例4 基于鸢尾花数据集的决策边界绘制
      • 4.1 读取鸢尾花数据集(特征选择花萼长度和花萼宽度)
      • 4.2 随机绘制几条决策边界可视化
      • 4.3 随机绘制几条决策边界可视化
      • 4.4 最大间隔决策边界可视化
    • 实例5 特征是否应该进行标准化?
      • 5.1 原始特征的决策边界可视化
      • 5.1 标准化特征的决策边界可视化
    • 实例6
    • 实例7 非线性可分的决策边界
      • 7.1 做一个新的数据
      • 7.2 绘制高高线表示预测结果
      • 7.3 绘制原始数据
      • 7.4 绘制不同gamma和C对应的
    • 实例8* 手写SVM
      • 8.1 创建数据
      • 8.2 定义支持向量机
      • 8.3 初始化支持向量机并拟合
      • 8.4 支持向量机得到分数
    • 实验1 采用以下数据作为数据集,分别基于线性和核支持向量机进行分类,对于线性核绘制决策边界
      • 1 获取数据
      • 2 可视化数据
      • 3 试试采用线性支持向量机来拟合
      • 4 试试采用核支持向量机
      • 5 绘制线性支持向量机的决策边界
      • 6 绘制非线性决策边界

支持向量机

在本练习中,我们将使用支持向量机(SVM)来构建垃圾邮件分类器。 我们将从一些简单的2D数据集开始使用SVM来查看它们的工作原理。 然后,我们将对一组原始电子邮件进行一些预处理工作,并使用SVM在处理的电子邮件上构建分类器,以确定它们是否为垃圾邮件。

我们要做的第一件事是看一个简单的二维数据集,看看线性SVM如何对数据集进行不同的C值(类似于线性/逻辑回归中的正则化项)。

实例1 线性可分的支持向量机

1.1 数据读取

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
import warnings
warnings.simplefilter("ignore")

我们将其用散点图表示,其中类标签由符号表示(+表示正类,o表示负类)。

data1 = pd.read_csv('data/svmdata1.csv')
data1.head()
X1X2y
01.96434.59571
12.27533.85891
22.97814.56511
32.93203.55191
43.57722.85601
positive=data1[data1["y"].isin([1])]
negative=data1[data1["y"].isin([0])]
negative
X1X2y
201.584103.35750
212.010303.20390
221.952702.78430
232.275302.71270
242.309902.95840
252.828302.63090
263.047302.29310
272.482702.03730
282.505702.38530
291.872102.05770
302.010302.35460
311.226902.32390
321.895102.91740
331.561003.07090
341.549502.69230
351.687802.40570
361.491902.02710
370.962002.68200
381.169302.92760
390.812202.99920
400.973503.38810
411.250003.19370
421.319103.51090
432.229202.20100
442.448202.64110
452.793801.96560
462.091001.61770
472.540302.88670
480.904403.01980
490.766152.58990
positive = data1[data1['y'].isin([1])]
negative = data1[data1['y'].isin([0])]
fig, ax = plt.subplots(figsize=(6,4))
ax.scatter(positive['X1'], positive['X2'], s=50, marker='x', label='Positive')
ax.scatter(negative['X1'], negative['X2'], s=50, marker='o', label='Negative')
ax.legend()
plt.show()

1

请注意,还有一个异常的正例在其他样本之外。
这些类仍然是线性分离的,但它非常紧凑。 我们要训练线性支持向量机来学习类边界。 在这个练习中,我们没有从头开始执行SVM的任务,所以用scikit-learn。

1.2 准备训练数据

在这里,我们不准备测试数据,直接用所有数据训练,然后查看训练完成后,每个点属于这个类别的置信度

X_train=data1[["X1","X2"]].values
y_train=data1["y"].values

1.3 实例化线性支持向量机

#建立第一个支持向量机对象,C=1
from sklearn import svm
svc1=svm.LinearSVC(C=1,loss="hinge",max_iter=1000)
svc1.fit(X_train,y_train)
svc1.score(X_train,y_train)
0.9803921568627451
from sklearn.model_selection import cross_val_score
cross_val_score(svc1,X_train,y_train,cv=5).mean()
0.9800000000000001

让我们看看如果C的值越大,会发生什么

#建立第二个支持向量机对象C=100
svc2=svm.LinearSVC(C=100,loss="hinge",max_iter=1000)
svc2.fit(X_train,y_train)
svc2.score(X_train,y_train)
0.9411764705882353
from sklearn.model_selection import cross_val_score
cross_val_score(svc2,X_train,y_train,cv=5).mean()
0.96
X_train.shape
(51, 2)
svc1.decision_function(X_train).shape
(51,)
#建立两个支持向量机的决策函数
data1["SV1 decision function"]=svc1.decision_function(X_train)
data1["SV2 decision function"]=svc2.decision_function(X_train)
data1
X1X2ySV1 decision functionSV2 decision function
01.9643004.595710.7984134.490754
12.2753003.858910.3808092.544578
22.9781004.565111.3730255.668147
32.9320003.551910.5185622.396315
43.5772002.856010.3320071.000000
54.0150003.193710.8666422.621549
63.3814003.429110.6840952.571736
73.9113004.176111.6073625.607368
82.7822004.043110.8309913.766091
92.5518004.616211.1626165.294331
103.3698003.910111.0699334.082890
113.1048003.070910.2280631.087807
121.9182004.053410.3284032.712621
132.2638004.370610.7917714.153238
142.6555003.500810.3133121.886635
153.1855004.288811.2701115.052445
163.6579003.869211.2069334.315328
173.9113003.429110.9974963.237878
183.6002003.122110.5628601.872985
193.0357003.316510.3877081.779986
201.5841003.35750-0.4373420.085220
212.0103003.20390-0.3106760.133779
221.9527002.78430-0.687313-1.269605
232.2753002.71270-0.554972-1.091178
242.3099002.95840-0.333914-0.268319
252.8283002.63090-0.294693-0.655467
263.0473002.29310-0.440957-1.451665
272.4827002.03730-0.983720-2.972828
282.5057002.38530-0.686002-1.840056
291.8721002.05770-1.328194-3.675710
302.0103002.35460-1.004062-2.560208
311.2269002.32390-1.492455-3.642407
321.8951002.91740-0.612714-0.919820
331.5610003.07090-0.684991-0.852917
341.5495002.69230-1.000889-2.068296
351.6878002.40570-1.153080-2.803536
361.4919002.02710-1.578039-4.250726
370.9620002.68200-1.356765-2.839519
381.1693002.92760-1.033648-1.799875
390.8122002.99920-1.186393-2.021672
400.9735003.38810-0.773489-0.585307
411.2500003.19370-0.768670-0.854355
421.3191003.51090-0.4688330.238673
432.2292002.20100-1.000000-2.772247
442.4482002.64110-0.511169-1.100940
452.7938001.96560-0.858263-2.809175
462.0910001.61770-1.557954-4.796212
472.5403002.88670-0.256185-0.206115
480.9044003.01980-1.115044-1.840424
490.7661502.58990-1.547789-3.377865
500.0864054.10451-0.7132610.571946

采用决策函数的值作为颜色来看看每个点的置信度,比较两个支持向量机产生的结果的差异

1.4 可视化分析

#绘制图片
plt.figure(figsize=(12,4))
plt.subplot(1,2,1)
plt.scatter(data1["X1"],data1["X2"],marker="s",c=data1["SV1 decision function"],cmap='seismic')
plt.title("SVC1")
plt.subplot(1,2,2)
plt.scatter(data1["X1"],data1["X2"],marker="x",c=data1["SV2 decision function"],cmap='seismic')
plt.title("SVC2")
plt.show()

2

实例2 核支持向量机

现在我们将从线性SVM转移到能够使用内核进行非线性分类的SVM。 我们首先负责实现一个高斯核函数。 虽然scikit-learn具有内置的高斯内核,但为了实现更清楚,我们将从头开始实现。

2.1 读取数据集

data2 = pd.read_csv('data/svmdata2.csv')
data2
X1X2y
00.1071430.6030701
10.0933180.6498541
20.0979260.7054091
30.1555300.7843571
40.2108290.8662281
............
8580.9942400.5166671
8590.9642860.4728071
8600.9758060.4394741
8610.9896310.4254391
8620.9965440.4149121

863 rows × 3 columns

#可视化数据点
positive = data2[data2['y'].isin([1])]
negative = data2[data2['y'].isin([0])]
fig, ax = plt.subplots(figsize=(6,4))
ax.scatter(positive['X1'], positive['X2'], s=50, marker='x', label='Positive')
ax.scatter(negative['X1'], negative['X2'], s=50, marker='o', label='Negative')
ax.legend()
plt.show()

3

2.2 定义高斯核函数

def gaussian(x1,x2,sigma):
    return np.exp(-np.sum((x1-x2)**2)/(2*(sigma**2)))
x1=np.arange(1,5)
x2=np.arange(6,10)
gaussian(x1,x2,2)
3.726653172078671e-06
x1 = np.array([1.0, 2.0, 1.0])
x2 = np.array([0.0, 4.0, -1.0])
sigma = 2
gaussian(x1,x2,2)
0.32465246735834974
X2_train=data2[["X1","X2"]].values
y2_train=data2["y"].values
X2_train,y2_train
(array([[0.107143 , 0.60307  ],
        [0.093318 , 0.649854 ],
        [0.0979263, 0.705409 ],
        ...,
        [0.975806 , 0.439474 ],
        [0.989631 , 0.425439 ],
        [0.996544 , 0.414912 ]]),
 array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1], dtype=int64))

该结果与练习中的预期值相符。 接下来,我们将检查另一个数据集,这次用非线性决策边界。

对于该数据集,我们将使用内置的RBF内核构建支持向量机分类器,并检查其对训练数据的准确性。 为了可视化决策边界,这一次我们将根据实例具有负类标签的预测概率来对点做阴影。 从结果可以看出,它们大部分是正确的。

2.3 创建非线性的支持向量机

import sklearn.svm as svm
nl_svc=svm.SVC(C=100,gamma=10,probability=True)
nl_svc.fit(X2_train,y2_train)
SVC(C=100, gamma=10, probability=True)
nl_svc.score(X2_train,y2_train)
0.9698725376593279

2.4 可视化样本类别

#将样本属于正类的概率作为颜色来对两类样本进行可视化输出
plt.figure(figsize=(12,4))
plt.subplot(1,2,1)
positive = data2[data2['y'].isin([1])]
negative = data2[data2['y'].isin([0])]
plt.scatter(positive['X1'], positive['X2'], s=50, marker='x', label='Positive')
plt.scatter(negative['X1'], negative['X2'], s=50, marker='o', label='Negative')
plt.legend()
plt.subplot(1,2,2)
data2["probability"]=nl_svc.predict_proba(data2[["X1","X2"]])[:,1]
plt.scatter(data2["X1"],data2["X2"],s=30,c=data2["probability"],cmap="Reds")
plt.show()

4

对于第三个数据集,我们给出了训练和验证集,并且基于验证集性能为SVM模型找到最优超参数。 虽然我们可以使用scikit-learn的内置网格搜索来做到这一点,但是本着遵循练习的目的,我们将从头开始实现一个简单的网格搜索。

实例3 如何选择最优的C和gamma

3.1 读取数据

#读取文件,获取数据集
data3=pd.read_csv('data/svmdata3.csv')
#读取文件,获取验证集
data3val=pd.read_csv('data/svmdata3val.csv')
data3
X1X2y
0-0.1589860.4239771
1-0.3479260.4707601
2-0.5046080.3538011
3-0.5967740.1140351
4-0.518433-0.1725151
............
206-0.399885-0.6219301
207-0.124078-0.1266081
208-0.316935-0.2289471
209-0.294124-0.1347950
210-0.1531110.1845030

211 rows × 3 columns

data3val
X1X2yvaly
0-0.353062-0.67390200
1-0.2271260.44732011
20.092898-0.75352400
30.148243-0.71847300
4-0.0015120.16292800
...............
1950.005203-0.54444911
1960.176352-0.57245400
1970.127651-0.34093800
1980.248682-0.49750200
199-0.316899-0.42941300

200 rows × 4 columns

X = data3[['X1','X2']].values
Xval = data3val[['X1','X2']].values
y = data3['y'].values
yval = data3val['yval'].values

3.2 利用数据集中的验证集做模型选择

C_values = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]
gamma_values = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]

best_score = 0
best_params = {'C': None, 'gamma': None}

for C in C_values:
    for gamma in gamma_values:
        svc = svm.SVC(C=C, gamma=gamma)
        svc.fit(X, y)
        score = svc.score(Xval, yval)
        if score > best_score:
            best_score = score
            best_params['C'] = C
            best_params['gamma'] = gamma
best_score, best_params
(0.965, {'C': 0.3, 'gamma': 100})
from sklearn import svm, datasets
from sklearn.model_selection import GridSearchCV
parameters = {'gamma':[0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100], 'C': [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]}
svc = svm.SVC()
clf = GridSearchCV(svc, parameters)
clf.fit(X, y)
# sorted(clf.cv_results_.keys())
max_index=np.argmax(clf.cv_results_['mean_test_score'])
clf.cv_results_["params"][max_index]
{'C': 30, 'gamma': 3}

实例4 基于鸢尾花数据集的决策边界绘制

4.1 读取鸢尾花数据集(特征选择花萼长度和花萼宽度)

from sklearn.svm import SVC
from sklearn import datasets
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)
iris = datasets.load_iris()
X = iris["data"][:, (2, 3)]  # petal length, petal width
y = iris["target"]

setosa_or_versicolor = (y == 0) | (y == 1)
X = X[setosa_or_versicolor]
y = y[setosa_or_versicolor]

# SVM Classifier model
svm_clf = SVC(kernel="linear", C=5)
svm_clf.fit(X, y)
SVC(C=5, kernel='linear')
np.max(X[:,0])
5.1

4.2 随机绘制几条决策边界可视化

# Bad models
x0 = np.linspace(0, 5.5, 200)
pred_1 = 5 * x0 - 20
pred_2 = x0 - 1.8
pred_3 = 0.1 * x0 + 0.5
#基于随机绘制的决策边界来叠加图
plt.figure(figsize=(6,4))
plt.plot(x0, pred_1, "g--", linewidth=2)
plt.plot(x0, pred_2, "r--", linewidth=2)
plt.plot(x0, pred_3, "b--", linewidth=2)
plt.scatter(X[:,0][y==0],X[:,1][y==0],marker="s")
plt.scatter(X[:,0][y==1],X[:,1][y==1],marker="*")
plt.axis([0, 5.5, 0, 2])
plt.show()
plt.show()

5

4.3 随机绘制几条决策边界可视化

svm_clf.coef_[0]
array([1.29411744, 0.82352928])
svm_clf.intercept_[0]
-3.7882347112962464
svm_clf.support_vectors_
array([[1.9, 0.4],
       [3. , 1.1]])
np.max(X[:,0]),np.min(X[:,0])
(5.1, 1.0)

4.4 最大间隔决策边界可视化

def plot_svc_decision_boundary(svm_clf, xmin, xmax):
    
    w = svm_clf.coef_[0]
    b = svm_clf.intercept_[0]

    # At the decision boundary, w0*x0 + w1*x1 + b = 0
    # => x1 = -w0/w1 * x0 - b/w1
    x0 = np.linspace(xmin, xmax, 200)
    decision_boundary = -w[0]/w[1] * x0 - b/w[1]

    # margin = 1/np.sqrt(w[1]**2+w[0]**2)
    margin = 1/0.9
    
    margin = 1/w[1]
    
    gutter_up = decision_boundary + margin
    gutter_down = decision_boundary - margin

    svs = svm_clf.support_vectors_
    plt.scatter(svs[:, 0], svs[:, 1], s=180, facecolors='#FFAAAA')
    plt.plot(x0, decision_boundary, "k-", linewidth=2)
    plt.plot(x0, gutter_up, "k--", linewidth=2)
    plt.plot(x0, gutter_down, "k--", linewidth=2)
plt.figure(figsize=(6,4))
plot_svc_decision_boundary(svm_clf, 0, 5.5)
plt.plot(X[:, 0][y == 1], X[:, 1][y == 1], "bs")
plt.plot(X[:, 0][y == 0], X[:, 1][y == 0], "yo")
plt.xlabel("Petal length", fontsize=14)
plt.axis([0, 5.5, 0, 2])

plt.show()

6

实例5 特征是否应该进行标准化?

5.1 原始特征的决策边界可视化

#准备数据
Xs = np.array([[1, 50], [5, 20], [3, 80], [5, 60]]).astype(np.float64)
ys = np.array([0, 0, 1, 1])
#实例化模型
svm_clf = SVC(kernel="linear", C=100)
svm_clf.fit(Xs, ys)
#绘制图形
plt.figure(figsize=(6,4))
plt.plot(Xs[:, 0][ys == 1], Xs[:, 1][ys == 1], "bo")
plt.plot(Xs[:, 0][ys == 0], Xs[:, 1][ys == 0], "ms")
plot_svc_decision_boundary(svm_clf, 0, 6)
plt.xlabel("$x_0$", fontsize=20)
plt.ylabel("$x_1$  ", fontsize=20, rotation=0)
plt.title("Unscaled", fontsize=16)
plt.axis([0, 6, 0, 90])
(0.0, 6.0, 0.0, 90.0)

7

5.1 标准化特征的决策边界可视化

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(Xs)
svm_clf.fit(X_scaled, ys)
plt.plot(X_scaled[:, 0][ys == 1], X_scaled[:, 1][ys == 1], "bo")
plt.plot(X_scaled[:, 0][ys == 0], X_scaled[:, 1][ys == 0], "ms")
plot_svc_decision_boundary(svm_clf, -2, 2)
plt.xlabel("$x_0$", fontsize=20)
plt.title("Scaled", fontsize=16)
plt.axis([-2, 2, -2, 2])
plt.show()

8

实例6

#回到鸢尾花数据集
X = iris["data"][:, (2, 3)]  # petal length, petal width
y = iris["target"]
X_outliers = np.array([[3.4, 1.3], [3.2, 0.8]])
y_outliers = np.array([0, 0])

Xo1 = np.concatenate([X, X_outliers[:1]], axis=0)
yo1 = np.concatenate([y, y_outliers[:1]], axis=0)
Xo2 = np.concatenate([X, X_outliers[1:]], axis=0)
yo2 = np.concatenate([y, y_outliers[1:]], axis=0)

svm_clf1= SVC(kernel="linear", C=10**9)
svm_clf1.fit(Xo1, yo1)


plt.figure(figsize=(12, 4))

plt.subplot(121)
plt.plot(Xo1[:, 0][yo1 == 1], Xo1[:, 1][yo1 == 1], "bs")
plt.plot(Xo1[:, 0][yo1 == 0], Xo1[:, 1][yo1 == 0], "yo")
plt.text(0.3, 1.0, "Impossible!", fontsize=24, color="red")
plot_svc_decision_boundary(svm_clf1, 0, 5.5)
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.annotate(
    "Outlier",
    xy=(X_outliers[0][0], X_outliers[0][1]),
    xytext=(2.5, 1.7),
    ha="center",
    arrowprops=dict(facecolor='black', shrink=0.1),
    fontsize=16,
)
plt.axis([0, 5.5, 0, 2])


svm_clf2 = SVC(kernel="linear", C=10**9)
svm_clf2.fit(Xo2, yo2)

plt.subplot(122)
plt.plot(Xo2[:, 0][yo2 == 1], Xo2[:, 1][yo2 == 1], "bs")
plt.plot(Xo2[:, 0][yo2 == 0], Xo2[:, 1][yo2 == 0], "yo")
plot_svc_decision_boundary(svm_clf2, 0, 5.5)
plt.xlabel("Petal length", fontsize=14)
plt.annotate(
    "Outlier",
    xy=(X_outliers[1][0], X_outliers[1][1]),
    xytext=(3.2, 0.08),
    ha="center",
    arrowprops=dict(facecolor='black', shrink=0.1),
    fontsize=16,
)
plt.axis([0, 5.5, 0, 2])

plt.show()
plt.show()

9

实例7 非线性可分的决策边界

7.1 做一个新的数据

from sklearn.pipeline import Pipeline
from sklearn.datasets import make_moons
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
np.min(X[:,0]),np.max(X[:,0])
(-1.2720155884887554, 2.4093807207967215)
np.min(X[:,1]),np.max(X[:,1])
(-0.6491427462708279, 1.2711135917248466)
x0s = np.linspace(2, 15, 2)
x1s = np.linspace(3,12,2)
x0, x1 = np.meshgrid(x0s, x1s)
x0s ,x1s ,x0, x1
(array([ 2., 15.]),
 array([ 3., 12.]),
 array([[ 2., 15.],
        [ 2., 15.]]),
 array([[ 3.,  3.],
        [12., 12.]]))
x1.ravel()
array([ 3.,  3., 12., 12.])
x0.ravel()
array([ 2., 15.,  2., 15.])
X = np.c_[x0.ravel(), x1.ravel()]
X.shape,X
((4, 2),
 array([[ 2.,  3.],
        [15.,  3.],
        [ 2., 12.],
        [15., 12.]]))
y_pred=np.array([[1,0],[0,1]])
 np.meshgrid(x0s, x1s)
[array([[ 2., 15.],
        [ 2., 15.]]),
 array([[ 3.,  3.],
        [12., 12.]])]
X = np.c_[x0.ravel(), x1.ravel()]
X.shape,x0.shape
((4, 2), (2, 2))
x0
array([[ 2., 15.],
       [ 2., 15.]])

7.2 绘制高高线表示预测结果

def plot_predictions(clf, axes):
    x0s = np.linspace(axes[0], axes[1], 100)
    x1s = np.linspace(axes[2], axes[3], 100)
    x0, x1 = np.meshgrid(x0s, x1s)
    X = np.c_[x0.ravel(), x1.ravel()]
    y_pred = clf.predict(X).reshape(x0.shape)
    y_decision = clf.decision_function(X).reshape(x0.shape)

    plt.contourf(x0, x1, y_pred, cmap=plt.cm.brg, alpha=0.2)
    plt.contourf(x0, x1, y_decision, cmap=plt.cm.brg, alpha=0.1)

7.3 绘制原始数据

def plot_dataset(X, y, axes):
    plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs")
    plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^")
    plt.axis(axes)
    plt.grid(True, which='both')
    plt.xlabel(r"$x_1$", fontsize=20)
    plt.ylabel(r"$x_2$", fontsize=20, rotation=0)

7.4 绘制不同gamma和C对应的

from sklearn.svm import SVC

X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
gamma1, gamma2 = 0.1, 5
C1, C2 = 0.001, 1000
hyperparams = (gamma1, C1), (gamma1, C2), (gamma2, C1), (gamma2, C2)

svm_clfs = []
for gamma, C in hyperparams:
    rbf_kernel_svm_clf = Pipeline([("scaler", StandardScaler()),
                                   ("svm_clf",SVC(kernel="rbf", gamma=gamma, C=C))])
    rbf_kernel_svm_clf.fit(X, y)
    svm_clfs.append(rbf_kernel_svm_clf)

plt.figure(figsize=(6,4))

for i, svm_clf in enumerate(svm_clfs):
    plt.subplot(221 + i)
    plot_predictions(svm_clf, [-1.5, 2.5, -1, 1.5])
    plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])

    gamma, C = hyperparams[i]
    plt.title(r"$\gamma = {}, C = {}$".format(gamma, C), fontsize=12)

plt.show()

10

实例8* 手写SVM

8.1 创建数据

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import  train_test_split
import matplotlib.pyplot as plt
%matplotlib inline
# data
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, [0, 1, -1]])
    for i in range(len(data)):
        if data[i,-1] == 0:
            data[i,-1] = -1
    return data[:,:2], data[:,-1]
X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
plt.scatter(X[:50,0],X[:50,1], label='0')
plt.scatter(X[50:,0],X[50:,1], label='1')
plt.legend()
<matplotlib.legend.Legend at 0x1c516838670>

11

8.2 定义支持向量机

class SVM:
    def __init__(self, max_iter=100, kernel='linear'):
        self.max_iter = max_iter
        self._kernel = kernel

    def init_args(self, features, labels):
        self.m, self.n = features.shape
        self.X = features
        self.Y = labels
        self.b = 0.0

        # 将Ei保存在一个列表里
        self.alpha = np.ones(self.m)
        self.E = [self._E(i) for i in range(self.m)]
        # 松弛变量
        self.C = 1.0

    def _KKT(self, i):
        y_g = self._g(i) * self.Y[i]
        if self.alpha[i] == 0:
            return y_g >= 1
        elif 0 < self.alpha[i] < self.C:
            return y_g == 1
        else:
            return y_g <= 1

    # g(x)预测值,输入xi(X[i])
    def _g(self, i):
        r = self.b
        for j in range(self.m):
            r += self.alpha[j] * self.Y[j] * self.kernel(self.X[i], self.X[j])
        return r

    # 核函数
    def kernel(self, x1, x2):
        if self._kernel == 'linear':
            return sum([x1[k] * x2[k] for k in range(self.n)])
        elif self._kernel == 'poly':
            return (sum([x1[k] * x2[k] for k in range(self.n)]) + 1)**2

        return 0

    # E(x)为g(x)对输入x的预测值和y的差
    def _E(self, i):
        return self._g(i) - self.Y[i]

    def _init_alpha(self):
        # 外层循环首先遍历所有满足0<a<C的样本点,检验是否满足KKT
        index_list = [i for i in range(self.m) if 0 < self.alpha[i] < self.C]
        # 否则遍历整个训练集
        non_satisfy_list = [i for i in range(self.m) if i not in index_list]
        index_list.extend(non_satisfy_list)

        for i in index_list:
            if self._KKT(i):
                continue

            E1 = self.E[i]
            # 如果E2是+,选择最小的;如果E2是负的,选择最大的
            if E1 >= 0:
                j = min(range(self.m), key=lambda x: self.E[x])
            else:
                j = max(range(self.m), key=lambda x: self.E[x])
            return i, j

    def _compare(self, _alpha, L, H):
        if _alpha > H:
            return H
        elif _alpha < L:
            return L
        else:
            return _alpha

    def fit(self, features, labels):
        self.init_args(features, labels)

        for t in range(self.max_iter):
            # train
            i1, i2 = self._init_alpha()

            # 边界
            if self.Y[i1] == self.Y[i2]:
                L = max(0, self.alpha[i1] + self.alpha[i2] - self.C)
                H = min(self.C, self.alpha[i1] + self.alpha[i2])
            else:
                L = max(0, self.alpha[i2] - self.alpha[i1])
                H = min(self.C, self.C + self.alpha[i2] - self.alpha[i1])

            E1 = self.E[i1]
            E2 = self.E[i2]
            # eta=K11+K22-2K12
            eta = self.kernel(self.X[i1], self.X[i1]) + self.kernel(
                self.X[i2],
                self.X[i2]) - 2 * self.kernel(self.X[i1], self.X[i2])
            if eta <= 0:
                # print('eta <= 0')
                continue

            alpha2_new_unc = self.alpha[i2] + self.Y[i2] * (
                E1 - E2) / eta  #此处有修改,根据书上应该是E1 - E2,书上130-131页
            alpha2_new = self._compare(alpha2_new_unc, L, H)

            alpha1_new = self.alpha[i1] + self.Y[i1] * self.Y[i2] * (
                self.alpha[i2] - alpha2_new)

            b1_new = -E1 - self.Y[i1] * self.kernel(self.X[i1], self.X[i1]) * (
                alpha1_new - self.alpha[i1]) - self.Y[i2] * self.kernel(
                    self.X[i2],
                    self.X[i1]) * (alpha2_new - self.alpha[i2]) + self.b
            b2_new = -E2 - self.Y[i1] * self.kernel(self.X[i1], self.X[i2]) * (
                alpha1_new - self.alpha[i1]) - self.Y[i2] * self.kernel(
                    self.X[i2],
                    self.X[i2]) * (alpha2_new - self.alpha[i2]) + self.b

            if 0 < alpha1_new < self.C:
                b_new = b1_new
            elif 0 < alpha2_new < self.C:
                b_new = b2_new
            else:
                # 选择中点
                b_new = (b1_new + b2_new) / 2

            # 更新参数
            self.alpha[i1] = alpha1_new
            self.alpha[i2] = alpha2_new
            self.b = b_new

            self.E[i1] = self._E(i1)
            self.E[i2] = self._E(i2)
        return 'train done!'

    def predict(self, data):
        r = self.b
        for i in range(self.m):
            r += self.alpha[i] * self.Y[i] * self.kernel(data, self.X[i])

        return 1 if r > 0 else -1

    def score(self, X_test, y_test):
        right_count = 0
        for i in range(len(X_test)):
            result = self.predict(X_test[i])
            if result == y_test[i]:
                right_count += 1
        return right_count / len(X_test)

    def _weight(self):
        # linear model
        yx = self.Y.reshape(-1, 1) * self.X
        self.w = np.dot(yx.T, self.alpha)
        return self.w

8.3 初始化支持向量机并拟合

svm = SVM(max_iter=100)
svm.fit(X_train, y_train)
'train done!'

8.4 支持向量机得到分数

svm.score(X_test, y_test)
0.72

实验1 采用以下数据作为数据集,分别基于线性和核支持向量机进行分类,对于线性核绘制决策边界

1 获取数据

from sklearn.svm import SVC
from sklearn import datasets
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)
iris = datasets.load_iris()
X = iris["data"][:, (2, 3)]  # petal length, petal width
y = iris["target"]
X,y
(array([[1.4, 0.2],
        [1.4, 0.2],
        [1.3, 0.2],
        [1.5, 0.2],
        [1.4, 0.2],
        [1.7, 0.4],
        [1.4, 0.3],
        [1.5, 0.2],
        [1.4, 0.2],
        [1.5, 0.1],
        [1.5, 0.2],
        [1.6, 0.2],
        [1.4, 0.1],
        [1.1, 0.1],
        [1.2, 0.2],
        [1.5, 0.4],
        [1.3, 0.4],
        [1.4, 0.3],
        [1.7, 0.3],
        [1.5, 0.3],
        [1.7, 0.2],
        [1.5, 0.4],
        [1. , 0.2],
        [1.7, 0.5],
        [1.9, 0.2],
        [1.6, 0.2],
        [1.6, 0.4],
        [1.5, 0.2],
        [1.4, 0.2],
        [1.6, 0.2],
        [1.6, 0.2],
        [1.5, 0.4],
        [1.5, 0.1],
        [1.4, 0.2],
        [1.5, 0.2],
        [1.2, 0.2],
        [1.3, 0.2],
        [1.4, 0.1],
        [1.3, 0.2],
        [1.5, 0.2],
        [1.3, 0.3],
        [1.3, 0.3],
        [1.3, 0.2],
        [1.6, 0.6],
        [1.9, 0.4],
        [1.4, 0.3],
        [1.6, 0.2],
        [1.4, 0.2],
        [1.5, 0.2],
        [1.4, 0.2],
        [4.7, 1.4],
        [4.5, 1.5],
        [4.9, 1.5],
        [4. , 1.3],
        [4.6, 1.5],
        [4.5, 1.3],
        [4.7, 1.6],
        [3.3, 1. ],
        [4.6, 1.3],
        [3.9, 1.4],
        [3.5, 1. ],
        [4.2, 1.5],
        [4. , 1. ],
        [4.7, 1.4],
        [3.6, 1.3],
        [4.4, 1.4],
        [4.5, 1.5],
        [4.1, 1. ],
        [4.5, 1.5],
        [3.9, 1.1],
        [4.8, 1.8],
        [4. , 1.3],
        [4.9, 1.5],
        [4.7, 1.2],
        [4.3, 1.3],
        [4.4, 1.4],
        [4.8, 1.4],
        [5. , 1.7],
        [4.5, 1.5],
        [3.5, 1. ],
        [3.8, 1.1],
        [3.7, 1. ],
        [3.9, 1.2],
        [5.1, 1.6],
        [4.5, 1.5],
        [4.5, 1.6],
        [4.7, 1.5],
        [4.4, 1.3],
        [4.1, 1.3],
        [4. , 1.3],
        [4.4, 1.2],
        [4.6, 1.4],
        [4. , 1.2],
        [3.3, 1. ],
        [4.2, 1.3],
        [4.2, 1.2],
        [4.2, 1.3],
        [4.3, 1.3],
        [3. , 1.1],
        [4.1, 1.3],
        [6. , 2.5],
        [5.1, 1.9],
        [5.9, 2.1],
        [5.6, 1.8],
        [5.8, 2.2],
        [6.6, 2.1],
        [4.5, 1.7],
        [6.3, 1.8],
        [5.8, 1.8],
        [6.1, 2.5],
        [5.1, 2. ],
        [5.3, 1.9],
        [5.5, 2.1],
        [5. , 2. ],
        [5.1, 2.4],
        [5.3, 2.3],
        [5.5, 1.8],
        [6.7, 2.2],
        [6.9, 2.3],
        [5. , 1.5],
        [5.7, 2.3],
        [4.9, 2. ],
        [6.7, 2. ],
        [4.9, 1.8],
        [5.7, 2.1],
        [6. , 1.8],
        [4.8, 1.8],
        [4.9, 1.8],
        [5.6, 2.1],
        [5.8, 1.6],
        [6.1, 1.9],
        [6.4, 2. ],
        [5.6, 2.2],
        [5.1, 1.5],
        [5.6, 1.4],
        [6.1, 2.3],
        [5.6, 2.4],
        [5.5, 1.8],
        [4.8, 1.8],
        [5.4, 2.1],
        [5.6, 2.4],
        [5.1, 2.3],
        [5.1, 1.9],
        [5.9, 2.3],
        [5.7, 2.5],
        [5.2, 2.3],
        [5. , 1.9],
        [5.2, 2. ],
        [5.4, 2.3],
        [5.1, 1.8]]),
 array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]))
X_train=X[(y==1) | (y==2)]
y_train=y[(y==1) | (y==2)]
y_train
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

2 可视化数据

plt.scatter(X_train[:50,0],X_train[:50,1],marker='x',label='Positive')
plt.scatter(X_train[50:,0],X_train[50:,1],marker='o',label='Negative')
plt.legend()
<matplotlib.legend.Legend at 0x1c515115610>

12

3 试试采用线性支持向量机来拟合

from sklearn.svm import SVC
svm_clf = SVC(kernel="linear", C=10,max_iter=1000)
svm_clf.fit(X_train,y_train)
SVC(C=10, kernel='linear', max_iter=1000)
svm_clf.score(X_train,y_train)
0.95

4 试试采用核支持向量机

import sklearn.svm as svm
nl_svc=svm.SVC(C=1,gamma=1,probability=True)
nl_svc.fit(X_train,y_train)
nl_svc.score(X_train,y_train)
0.95

5 绘制线性支持向量机的决策边界

def plot_svc_decision_boundary(svm_clf, xmin, xmax):
    
    w = svm_clf.coef_[0]
    b = svm_clf.intercept_[0]

    # At the decision boundary, w0*x0 + w1*x1 + b = 0
    # => x1 = -w0/w1 * x0 - b/w1
    x0 = np.linspace(xmin, xmax, 200)
    decision_boundary = -w[0]/w[1] * x0 - b/w[1]

    # margin = 1/np.sqrt(w[1]**2+w[0]**2)
    margin = 1/0.9
    
    margin = 1/w[1]
    
    gutter_up = decision_boundary + margin
    gutter_down = decision_boundary - margin

    svs = svm_clf.support_vectors_
    plt.scatter(svs[:, 0], svs[:, 1], s=180, facecolors='#FFAAAA')
    plt.plot(x0, decision_boundary, "k-", linewidth=2)
    plt.plot(x0, gutter_up, "k--", linewidth=2)
    plt.plot(x0, gutter_down, "k--", linewidth=2)
np.min(X_train[:,0]),np.max(X_train[:,0])
(3.0, 6.9)
plt.figure(figsize=(6,4))
plot_svc_decision_boundary(svm_clf,3,7)
plt.plot(X[:, 0][y == 1], X[:, 1][y == 1], "bs")
plt.plot(X[:, 0][y == 2], X[:, 1][y == 2], "yo")
plt.xlabel("Petal length", fontsize=14)
plt.axis([3,7,0,2])
plt.show()

13

6 绘制非线性决策边界

def plot_predictions(clf, axes):
    x0s = np.linspace(axes[0], axes[1], 100)
    x1s = np.linspace(axes[2], axes[3], 100)
    x0, x1 = np.meshgrid(x0s, x1s)
    X = np.c_[x0.ravel(), x1.ravel()]
    y_pred = clf.predict(X).reshape(x0.shape)
    y_decision = clf.decision_function(X).reshape(x0.shape)

    plt.contourf(x0, x1, y_pred, cmap=plt.cm.brg, alpha=0.2)
    plt.contourf(x0, x1, y_decision, cmap=plt.cm.brg, alpha=0.1)
def plot_dataset(X, y, axes):
    plt.plot(X[:, 0][y==1], X[:, 1][y==1], "bs")
    plt.plot(X[:, 0][y==2], X[:, 1][y==2], "g^")
    plt.axis(axes)
    plt.grid(True, which='both')
    plt.xlabel(r"$x_1$", fontsize=20)
    plt.ylabel(r"$x_2$", fontsize=20, rotation=0)
np.min(X_train[:,0]),np.max(X_train[:,0]),
(3.0, 6.9)
np.min(X_train[:,1]),np.max(X_train[:,1])
(1.0, 2.5)
plot_predictions(nl_svc, [2.5,7,1,3])
plot_dataset(X, y, [2.5,7,1,3])

14

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/867017.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

大数据Flink(六十一):Flink流处理程序流程和项目准备

文章目录 Flink流处理程序流程和项目准备 一、Flink流处理程序的一般流程

使用jasypt对Spring Boot配置文件中的配置项加密

在Spring Boot中&#xff0c;有很多口令需要加密&#xff0c;如数据库连接密码、访问第三方接口的Token等。常见的方法就是用jasypt对口令进行加密。 实际上&#xff0c;jasypt可以对配置文件中任意配置项的值进行加密&#xff0c;不局限于对密码的加密。 1.在pom.xml中添加ja…

21 | 朝阳医院数据分析

朝阳医院2018年销售数据为例,目的是了解朝阳医院在2018年里的销售情况,通过对朝阳区医院的药品销售数据的分析,了解朝阳医院的患者的月均消费次数,月均消费金额、客单价以及消费趋势、需求量前几位的药品等。 import numpy as np from pandas import Series,DataFrame impo…

友善之臂NanoPi NEO利用fbtft驱动点亮1.69寸ST7789V2屏幕

屏幕介绍 本文以中景园1.69寸LCD&#xff0c;驱动芯片ST7789V2该款屏幕示例&#xff0c;屏幕的分辨率为240*280 屏幕引脚说明 NanoPi NEO IO介绍 屏幕与板子的IO连接关系 屏幕NanoPi NEOGNDGNDVCC3.3VSCLPC2SDAPC0RESPG11DCPA1CSPC3BLKPA0 下载交叉编译器和linux内核源码并按教…

c语言——完数的计算

完数即所有因子之和等于其本身值 列入&#xff0c;28124714&#xff0c;28所有的因子为1&#xff0c;2&#xff0c;4&#xff0c;7&#xff0c;14 而这五个因子之和恰好也是28. //完数的计算 /*完数即所有因子之和等于其本身值 列入&#xff0c;28124714&#xff0c;28所有的…

LeetCode700. 二叉搜索树中的搜索

700. 二叉搜索树中的搜索 文章目录 [700. 二叉搜索树中的搜索](https://leetcode.cn/problems/search-in-a-binary-search-tree/)一、题目二、题解方法一&#xff1a;迭代方法二&#xff1a;递归 带main函数测试用例 一、题目 给定二叉搜索树&#xff08;BST&#xff09;的根节…

在线状态监测如何使冷却塔维保管理受益

工业冷却塔作为关键的热交换装置&#xff0c;在许多生产流程中发挥着重要作用。为了保持其高效稳定的运行&#xff0c;实施连续的冷却塔状态监测变得至关重要。本文将以PreMaint设备数字化平台为例&#xff0c;探讨为什么建议采用远程冷却塔状态监测&#xff0c;以及如何借助振…

PHP证券交易员学习网站mysql数据库web结构apache计算机软件工程网页wamp

一、源码特点 PHP证券交易员学习网站 是一套完善的web设计系统&#xff0c;对理解php编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 下载地址https://download.csdn.net/download/qq_41221322/88205549 PHP证券交易员…

Python爬虫的requests(学习于b站尚硅谷)

目录 一、requests  1. requests的基本使用  &#xff08;1&#xff09;文档  &#xff08;2&#xff09;安装  &#xff08;3&#xff09;响应response的属性以及类型  &#xff08;4&#xff09;代码演示 2.requests之get请求  3. requests之post请求  &#x…

emqx-5.1.4开源版使用记录

emqx-5.1.4开源版使用记录 windows系统安装eqmx 去官网下载 emqx-5.1.4-windows-amd64.zip&#xff0c;然后找个目录解压 进入bin目录,执行命令启动emqx 执行命令 emqx.cmd start使用emqx 访问内置的web管理页面 浏览器访问地址 http://localhost:18083/#/dashboard/overv…

什么是P2P?

P2P (Peer-to-Peer) 是一种分布式的网络架构&#xff0c;其中各个节点&#xff08;通常被称为“peers”或“节点”&#xff09;直接进行数据共享和交换&#xff0c;而无需依赖中央服务器。P2P 网络强调平等的参与和共享&#xff0c;每个节点既可以是数据的消费者&#xff08;下…

从MySQL到金蝶云星空通过接口配置打通数据

从MySQL到金蝶云星空通过接口配置打通数据 对接系统&#xff1a;MySQL MySQL是一个关系型数据库管理系统&#xff0c;由瑞典MySQLAB公司开发&#xff0c;属于Oracle旗下产品。MySQL是最流行的关系型数据库管理系统之一&#xff0c;在WEB应用方面&#xff0c;MySQL是最好的RDBMS…

C++模板,STL(Standard Template Library)

这篇文章的主要内容是C中的函数模板、类模板、STL的介绍。 希望对C爱好者有所帮助&#xff0c;内容充实且干货&#xff0c;点赞收藏防止找不到&#xff01; 再次感谢每个读者和正在学习编程的朋友莅临&#xff01; 更多优质内容请点击移驾&#xff1a; C收录库&#xff1a;重生…

重复delete 对象指针后的 异常调用栈怪异 解析

Release版VC6 MFC程序 程序正常退出时得到一个如下异常调用栈&#xff1a;​ 0:000> kb# ChildEBP RetAddr Args to Child WARNING: Frame IP not in any known module. Following frames may be wrong. 00 0019eb94 76124f2f 00c3afc8 0019ebdc 001…

k8部署安装

1 环境初始化 1.1 检查操作系统的版本 此方式下安装kubernetes集群要求Centos版本要在7.5或之上 [rootmaster ~]# cat /etc/redhat-release Centos Linux 7.5.1804 (Core)1.2主机名成解析 三台服务器的/etc/hosts文件 192.168.90.100 master 192.168.90.106 node1 192.168.…

【雕爷学编程】Arduino动手做(09)---火焰传感器模块5

37款传感器与模块的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&#x…

ASP.NET Core - 缓存之分布式缓存

分布式缓存是由多个应用服务器共享的缓存&#xff0c;通常作为访问它的应用服务器的外部服务进行维护。 分布式缓存可以提高 ASP.NET Core 应用的性能和可伸缩性&#xff0c;尤其是当应用由云服务或服务器场托管时。 与其他将缓存数据存储在单个应用服务器上的缓存方案相比&am…

【深度学习】再谈向量化

前言 向量化是一种思想&#xff0c;不仅体现在可以将任意实体用向量来表示&#xff0c;更为突出的表现了人工智能的发展脉络。向量的演进过程其实都是人工智能向前发展的时代缩影。 1.为什么人工智能需要向量化 电脑如何理解一门语言&#xff1f;电脑的底层是二进制也就是0和1&…

vmware克隆虚拟机后没有ip地址的问题

克隆虚拟机后&#xff0c;发现新克隆出来的虚拟机&#xff0c;有ens33网卡&#xff0c;但是没有192.168开头的ip&#xff0c;如下&#xff1a; 那是因为克隆后的虚拟机与之前的虚拟机ip重复导致&#xff0c;解决办法如下&#xff1a; 进入如下目录 cd /etc/sysconfig/networ…

优思学院|6西格玛标准值水平是多少?

在质量管理和统计学领域&#xff0c;"6西格玛" 是一个重要的概念&#xff0c;它与产品和流程的质量有着密切的关系。本文将解释"6西格玛"标准值水平是什么&#xff0c;以及它在各个行业中的应用。 什么是6西格玛标准值水平&#xff1f; 理解西格玛 西格…