上一篇博客介绍了BP-GA:BP神经网络遗传算法(BP-GA)函数极值寻优——非线性函数求极值,本篇博客将介绍用PSO(粒子群优化算法)优化BP神经网络。
1.优化思路
BP神经网络的隐藏节点通常由重复的前向传递和反向传播的方式来决定,通过修改或构造训练方式改隐藏的节点数,相应的初始权重和阈值也会随之变化,从而影响网络的收敛和学习效率。为了减少权重和阈值对模型的影响,采用粒子群算法对BP神经网络模型的权重和阈值进行优化,从而加快网络的收敛速度和提高网络的学习效率。
优化的重点在于如何构造关于模型权重和阈值的目标函数。将PSO(粒子群优化算法)的适应度函数设为预测效果和测试输出的误差绝对值,通过BP神经网络训练得到不同权重和阈值对应的适应度,当寻找的权重和阈值使得适应度最小,即误差最小时,则为最优权值和阈值,再将最优值返回用于构建BP神经网络。
2.测试函数
y
=
x
1
2
+
x
2
2
y = x_1^2+x_2^2
y=x12+x22
要求:拟合未知模型(预测)。
条件:已知模型的一些输入输出数据。
已知一些输入输出数据(用rand函数生成输入,然后代入表达式生成输出):
for i=1:4000
input(i,:)=10*rand(1,2)-5;
output(i)=input(i,1)^2+input(i,2)^2;
end
3.完整代码
data.m
for i=1:4000
input(i,:)=10*rand(1,2)-5;
output(i)=input(i,1)^2+input(i,2)^2;
end
output=output';
save data input output
PSO_BP_fun.m
function error = PSO_BP_fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)
%提取
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
%网络进化参数
net.trainParam.epochs=20;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00001;
net.trainParam.show=100;
net.trainParam.showWindow=0;
%网络权值赋值
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%网络训练
net=train(net,inputn,outputn);
an=sim(net,inputn);
error=sum(abs(an-outputn));
PSO_BP.m
%% 清空环境
clc
tic
%读取数据
load data input output
%节点个数
inputnum=2;
hiddennum=4;
outputnum=1;
opnum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;
% 需要优化的参数个数
%% 训练数据预测数据提取及归一化
%从1到4000间随机排序
k=rand(1,4000);
[m,n]=sort(k);
%划分训练数据和预测数据
input_train=input(n(1:3900),:)';
output_train=output(n(1:3900),:)';
input_test=input(n(3901:4000),:)';
output_test=output(n(3901:4000),:)';
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%构建网络
net=newff(inputn,outputn,hiddennum);
% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;
maxgen=100; % 进化次数
sizepop=30; %种群规模
%个体和速度最大最小值
Vmax=1;
Vmin=-1;
popmax=5;
popmin=-5;
for i=1:sizepop
pop(i,:)=5*rands(1,opnum);
V(i,:)=rands(1,opnum);
fitness(i)=PSO_BP_fun(pop(i,:),inputnum,hiddennum,outputnum,net,inputn,outputn);
end
% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:); %全局最佳
gbest=pop; %个体最佳
fitnessgbest=fitness; %个体最佳适应度值
fitnesszbest=bestfitness; %全局最佳适应度值
%% 迭代寻优
for i=1:maxgen
i;
for j=1:sizepop
%速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax))=Vmax;
V(j,find(V(j,:)<Vmin))=Vmin;
%种群更新
pop(j,:)=pop(j,:)+0.2*V(j,:);
pop(j,find(pop(j,:)>popmax))=popmax;
pop(j,find(pop(j,:)<popmin))=popmin;
%自适应变异
pos=unidrnd(opnum);
if rand>0.95
pop(j,pos)=5*rands(1,1);
end
%适应度值
fitness(j)=PSO_BP_fun(pop(j,:),inputnum,hiddennum,outputnum,net,inputn,outputn);
end
for j=1:sizepop
%个体最优更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end
%群体最优更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
end
yy(i)=fitnesszbest;
end
%% PSO结果分析
plot(yy)
title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');ylabel('适应度');
x=zbest;
%% 把最优初始阈值权值赋予网络预测
% %用PSO优化的BP网络进行值预测
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%% PSO-BP网络训练
%网络进化参数
net.trainParam.epochs=120;
net.trainParam.lr=0.005;
net.trainParam.goal=4e-8;
%网络训练
[net,per2]=train(net,inputn,outputn);
%% PSO-BP网络预测
%数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
inputn_train=mapminmax('apply',input_train,inputps);
an=sim(net,inputn_test);
an1=sim(net,inputn_train);
test_PSOBP=mapminmax('reverse',an,outputps);
train_PSOBP=mapminmax('reverse',an1,outputps);
%% PSO-BP误差
error_PSOBP=test_PSOBP-output_test;
disp('PSO-BP results:');
errorsum_PSOBP=sum(abs(error_PSOBP))
figure(1);
plot(test_PSOBP,':og');
hold on
plot(output_test,'-*');
legend('Predictive output','Expected output','fontsize',10.8);
title('PSO-BP network output','fontsize',12);
xlabel("samples",'fontsize',12);
figure(2);
plot(error_PSOBP,'-*');
title('PSO-BP Neural network prediction error');
xlabel("samples",'fontsize',12);
figure(3);
plot(100*(output_test-test_PSOBP)./output_test,'-*');
title('PSO-BP Neural network prediction error percentage (%)');
xlabel("samples",'fontsize',12);
figure(4);
plot(100*(output_train-train_PSOBP)./output_train,'-*');
title('PSO-BP Neural network training error percentage (%)');
xlabel("samples",'fontsize',12);
toc
4.运行效果
hiddennum = 4:
输出:
PSO-BP results:
errorsum_PSOBP =
1.2443
历时 109.578562 秒。
hiddennum = 5:
输出:
PSO-BP results:
errorsum_PSOBP =
0.3804
历时 303.508080 秒。