面部表情识别4:C++实现表情识别(含源码,可实时检测)

news2024/11/25 16:03:04

面部表情识别4:C++实现表情识别(含源码,可实时检测)

目录

面部表情识别4:C++实现表情识别(含源码,可实时检测)

 1.面部表情识别方法

2.人脸检测方法

3.面部表情识别模型(Python)

(1) 面部表情识别模型的训练

(2) 将Pytorch模型转换ONNX模型

(3) 将ONNX模型转换为TNN模型

4.面部表情识别模型C/C++部署

(1)项目结构

 (2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

(3)部署TNN模型

(4)CMake配置

(5)main源码

(6)源码编译和运行

(7)Demo测试效果 

5.项目源码下载


这是项目《面部表情识别》系列之《C++实现表情识别(含源码,可实时检测)》,主要分享将Python训练后的面部表情识别模型(mobilenet_v2)部署到C/C++平台。我们将开发一个简易的、可实时运行的面部表情识别的C/C++ Demo。准确率还挺高的,采用轻量级mobilenet_v2模型的面部表情识别准确率也可以高达94.72%左右,基本满足业务性能需求。C/C ++版本表情识别模型推理支持CPU和GPU加速,开启GPU(OpenCL)加速,可以达到实时的检测识别效果,基本满足业务的性能需求。

先展示一下,C/C++版本的面部表情识别Demo效果(不同表情用不同的颜色框标注了)

尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/129467023


 更多项目《面部表情识别》系列文章请参考:

  1. 面部表情识别1:表情识别数据集(含下载链接)
  2. 面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)
  3. 面部表情识别3:Android实现表情识别(含源码,可实时检测)
  4. 面部表情识别4:C++实现表情识别(含源码,可实时检测)


 1.面部表情识别方法

面部表情识别方法有多种实现方案,这里采用最常规的方法:基于人脸检测+面部表情分类识别方法,即先采用通用的人脸检测模型,进行人脸检测,然后裁剪人脸区域,再训练一个面部表情分类器,完成对面部表情识别;

这样做的好处,是可以利用现有的人脸检测模型,而无需重新训练人脸检测模型,可减少人工标注成本低;而人脸数据相对而言比较容易采集,分类模型可针对性进行优化。


2.人脸检测方法

本项目人脸检测训练代码请参考:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB 

这是一个基于SSD改进且轻量化后人脸检测模型,很slim,整个模型仅仅1.7M左右,在普通Android手机都可以实时检测。人脸检测方法在网上有一大堆现成的方法可以使用,完全可以不局限我这个方法。

​​​

关于人脸检测的方法,可以参考我的另一篇博客:

行人检测和人脸检测和人脸关键点检测(C++/Android源码)


3.面部表情识别模型(Python)

(1) 面部表情识别模型的训练

本篇博文不含python版本的面部表情模型以及相关训练代码,关于面部表情识别模型的训练方法,请参考本人另一篇博文《面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)》:面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)

(2) 将Pytorch模型转换ONNX模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行C/C++端上部署。部署流程可分为四步:训练模型->将模型转换ONNX模型->将ONNX模型转换为TNN模型->C/C++部署TNN模型。

训练好Pytorch模型后,我们需要先将模型转换为ONNX模型,以便后续模型部署。

  • 原始项目提供转换脚本,你只需要修改model_file为你模型路径即可
  •  convert_torch_to_onnx.py实现将Pytorch模型转换ONNX模型的脚本
python libs/convert/convert_torch_to_onnx.py
"""
This code is used to convert the pytorch model into an onnx format model.
"""
import sys
import os

sys.path.insert(0, os.getcwd())
import torch.onnx
import onnx
from classifier.models.build_models import get_models
from basetrainer.utils import torch_tools


def build_net(model_file, net_type, input_size, num_classes, width_mult=1.0):
    """
    :param model_file: 模型文件
    :param net_type: 模型名称
    :param input_size: 模型输入大小
    :param num_classes: 类别数
    :param width_mult:
    :return:
    """
    model = get_models(net_type, input_size, num_classes, width_mult=width_mult, is_train=False, pretrained=False)
    state_dict = torch_tools.load_state_dict(model_file)
    model.load_state_dict(state_dict)
    return model


def convert2onnx(model_file, net_type, input_size, num_classes, width_mult=1.0, device="cpu", onnx_type="default"):
    model = build_net(model_file, net_type, input_size, num_classes, width_mult=width_mult)
    model = model.to(device)
    model.eval()
    model_name = os.path.basename(model_file)[:-len(".pth")] + ".onnx"
    onnx_path = os.path.join(os.path.dirname(model_file), model_name)
    # dummy_input = torch.randn(1, 3, 240, 320).to("cuda")
    dummy_input = torch.randn(1, 3, input_size[1], input_size[0]).to(device)
    # torch.onnx.export(model, dummy_input, onnx_path, verbose=False,
    #                   input_names=['input'],output_names=['scores', 'boxes'])
    do_constant_folding = True
    if onnx_type == "default":
        torch.onnx.export(model, dummy_input, onnx_path, verbose=False, export_params=True,
                          do_constant_folding=do_constant_folding,
                          input_names=['input'],
                          output_names=['output'])
    elif onnx_type == "det":
        torch.onnx.export(model,
                          dummy_input,
                          onnx_path,
                          do_constant_folding=do_constant_folding,
                          export_params=True,
                          verbose=False,
                          input_names=['input'],
                          output_names=['scores', 'boxes', 'ldmks'])
    elif onnx_type == "kp":
        torch.onnx.export(model,
                          dummy_input,
                          onnx_path,
                          do_constant_folding=do_constant_folding,
                          export_params=True,
                          verbose=False,
                          input_names=['input'],
                          output_names=['output'])
    onnx_model = onnx.load(onnx_path)
    onnx.checker.check_model(onnx_model)
    print(onnx_path)


if __name__ == "__main__":
    net_type = "mobilenet_v2"
    width_mult = 1.0
    input_size = [128, 128]
    num_classes = 2
    model_file = "work_space/mobilenet_v2_1.0_CrossEntropyLoss/model/best_model_022_98.1848.pth"
    convert2onnx(model_file, net_type, input_size, num_classes, width_mult=width_mult)

(3) 将ONNX模型转换为TNN模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行C/C++端上部署

TNN转换工具:

  • (1)将ONNX模型转换为TNN模型,请参考TNN官方说明:TNN/onnx2tnn.md at master · Tencent/TNN · GitHub
  • (2)一键转换,懒人必备:一键转换 Caffe, ONNX, TensorFlow 到 NCNN, MNN, Tengine   (可能存在版本问题,这个工具转换的TNN模型可能不兼容,建议还是自己build源码进行转换,2022年9约25日测试可用)

​​​

4.面部表情识别模型C/C++部署

项目IDE开发工具使用CLion,相关依赖库主要有OpenCV,base-utils以及TNN和OpenCL(可选),其中OpenCV必须安装,OpenCL用于模型加速,base-utils以及TNN已经配置好,无需安装;

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置好开发环境。

(1)项目结构

 (2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

项目IDE开发工具使用CLion,相关依赖库主要有OpenCV,base-utils以及TNN和OpenCL(可选),其中OpenCV必须安装,OpenCL用于模型加速,base-utils以及TNN已经配置好,无需安装;

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置和编译

  • 安装OpenCV:图像处理

图像处理(如读取图片,图像裁剪等)都需要使用OpenCV库进行处理

安装教程:Ubuntu18.04安装opencv和opencv_contrib_AI吃大瓜的博客-CSDN博客_opencv opencv_contrib ubuntu

OpenCV库使用opencv-4.3.0版本,opencv_contrib库暂时未使用,可不安装

  • 安装OpenCL:模型加速

 安装教程:Ubuntu16.04 安装OpenCV&OpenCL_xiaozl_284的博客-CSDN博客_clinfo源码下载

OpenCL用于模型GPU加速,若不使用OpenCL进行模型推理加速,纯C++推理模型,速度会特别特别慢

  • base-utils:C++库

GitHub:https://github.com/PanJinquan/base-utils (无需安装,项目已经配置了)

base_utils是个人开发常用的C++库,集成了C/C++ OpenCV等常用的算法

  • TNN:模型推理

GitHub:https://github.com/Tencent/TNN (无需安装,项目已经配置了)

由腾讯优图实验室开源的高性能、轻量级神经网络推理框架,同时拥有跨平台、高性能、模型压缩、代码裁剪等众多突出优势。TNN框架在原有Rapidnet、ncnn框架的基础上进一步加强了移动端设备的支持以及性能优化,同时借鉴了业界主流开源框架高性能和良好拓展性的特性,拓展了对于后台X86, NV GPU的支持。手机端 TNN已经在手机QQ、微视、P图等众多应用中落地,服务端TNN作为腾讯云AI基础加速框架已为众多业务落地提供加速支持。

(3)部署TNN模型

项目实现了C/C++版本的车牌检测和车牌识别,车牌检测模型YOLOv5和车牌识别模型PlateNet,模型推理采用TNN部署框架(支持多线程CPU和GPU加速推理);图像处理采用OpenCV库,模型加速采用OpenCL,在普通设备即可达到实时处理。

如果你想在这个 Demo部署你自己训练的车牌检测模型YOLOv5和车牌识别模型PlateNet,你可将训练好的Pytorch模型转换ONNX ,再转换成TNN模型,然后把原始的模型替换成你自己的TNN模型即可。

(4)CMake配置

这是CMakeLists.txt,其中主要配置OpenCV+OpenCL+base-utils+TNN这四个库,Windows系统下请自行配置和编译

cmake_minimum_required(VERSION 3.5)
project(Detector)

add_compile_options(-fPIC) # fix Bug: can not be used when making a shared object
set(CMAKE_CXX_FLAGS "-Wall -std=c++11 -pthread")
#set(CMAKE_CXX_FLAGS_RELEASE "-O2 -DNDEBUG")
#set(CMAKE_CXX_FLAGS_DEBUG "-g")

if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
    # -DCMAKE_BUILD_TYPE=Debug
    # -DCMAKE_BUILD_TYPE=Release
    message(STATUS "No build type selected, default to Release")
    set(CMAKE_BUILD_TYPE "Release" CACHE STRING "Build type (default Debug)" FORCE)
endif ()

# opencv set
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS} ./src/)
#MESSAGE(STATUS "OpenCV_INCLUDE_DIRS = ${OpenCV_INCLUDE_DIRS}")

# base_utils
set(BASE_ROOT 3rdparty/base-utils) # 设置base-utils所在的根目录
add_subdirectory(${BASE_ROOT}/base_utils/ base_build) # 添加子目录到build中
include_directories(${BASE_ROOT}/base_utils/include)
include_directories(${BASE_ROOT}/base_utils/src)
MESSAGE(STATUS "BASE_ROOT = ${BASE_ROOT}")


# TNN set
# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake buil ds it for you.
# Gradle automatically packages shared libraries with your APK.
# build for platform
# set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)
if (CMAKE_SYSTEM_NAME MATCHES "Android")
    set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_ARM_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)
    set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread
    #set(TNN_HUAWEI_NPU_ENABLE OFF CACHE BOOL "" FORCE)
    add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPU
    add_definitions(-DTNN_ARM_ENABLE)              # for Android CPU
    add_definitions(-DDEBUG_ANDROID_ON)            # for Android Log
    add_definitions(-DPLATFORM_ANDROID)
elseif (CMAKE_SYSTEM_NAME MATCHES "Linux")
    set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_X86_ENABLE OFF CACHE BOOL "" FORCE)
    set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)
    set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread
    add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPU
    add_definitions(-DDEBUG_ON)                    # for WIN/Linux Log
    add_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Log
    add_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV show
    add_definitions(-DPLATFORM_LINUX)
elseif (CMAKE_SYSTEM_NAME MATCHES "Windows")
    set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_X86_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)
    set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread
    add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPU
    add_definitions(-DDEBUG_ON)                    # for WIN/Linux Log
    add_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Log
    add_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV show
    add_definitions(-DPLATFORM_WINDOWS)
endif ()
set(TNN_ROOT 3rdparty/TNN)
include_directories(${TNN_ROOT}/include)
include_directories(${TNN_ROOT}/third_party/opencl/include)
add_subdirectory(${TNN_ROOT}) # 添加外部项目文件夹
set(TNN -Wl,--whole-archive TNN -Wl,--no-whole-archive)# set TNN library
MESSAGE(STATUS "TNN_ROOT = ${TNN_ROOT}")


# Detector
include_directories(src)
set(SRC_LIST
        src/object_detection.cpp
        src/classification.cpp
        src/Interpreter.cpp)
add_library(dmcv SHARED ${SRC_LIST})
target_link_libraries(dmcv ${OpenCV_LIBS} base_utils)
MESSAGE(STATUS "DIR_SRCS = ${SRC_LIST}")

add_executable(Detector src/main.cpp)
#add_executable(Detector src/main_for_detect.cpp)
#add_executable(Detector src/main_for_yolov5.cpp)
target_link_libraries(Detector dmcv ${TNN} -lpthread)


(5)main源码

主程序中函数main实现提供了面部表情识别的使用方法,支持图片,视频和摄像头测试

  •     test_image_file();   // 测试图片文件
  •     test_video_file();   // 测试视频文件
  •     test_camera();       //测试摄像头
//
// Created by Pan on 2020/6/24.
//

#include "object_detection.h"
#include "classification.h"
#include <iostream>
#include <string>
#include <vector>
#include "file_utils.h"
#include "image_utils.h"

using namespace dl;
using namespace vision;
using namespace std;


const int num_thread = 1; // 开启CPU线程数目
DeviceType device = GPU;  // 选择运行设备CPU/GPU
// 人脸检测模型
const char *det_model_file = (char *) "../data/tnn/face/rfb-face-mask-320-320_sim.opt.tnnmodel";
const char *det_proto_file = (char *) "../data/tnn/face/rfb-face-mask-320-320_sim.opt.tnnproto";
ObjectDetectionParam model_param = FACE_MODEL;//模型参数
// 分类模型
const char *cls_model_file = (char *) "../data/tnn/emotion/mobilenet_v2_112_112.tnnmodel";
const char *cls_proto_file = (char *) "../data/tnn/emotion/mobilenet_v2_112_112.tnnproto";
ClassificationParam ClassParam = EMOTION_MODEL;//模型参数

// 设置检测阈值
const float scoreThresh = 0.5;
const float iouThresh = 0.3;
ObjectDetection *detector = new ObjectDetection(det_model_file,
                                                det_proto_file,
                                                model_param,
                                                num_thread,
                                                device);

Classification *classifier = new Classification(cls_model_file,
                                                cls_proto_file,
                                                ClassParam,
                                                num_thread,
                                                device);

/***
 * 测试图片文件
 */
void test_image_file() {
    //测试图片的目录
    string image_dir = "../data/test_image";
    std::vector<string> image_list = get_files_list(image_dir);
    for (string image_path:image_list) {
        cv::Mat bgr_image = cv::imread(image_path);
        bgr_image = image_resize(bgr_image, 960);
        if (bgr_image.empty()) continue;
        FrameInfo resultInfo;
        // 进行人脸检测
        detector->detect(bgr_image, &resultInfo, scoreThresh, iouThresh);
        // 进行图像分类
        classifier->detect(bgr_image, &resultInfo);
        // 可视化检测结果
        classifier->visualizeResult(bgr_image, &resultInfo);
    }
    delete detector;
    detector = nullptr;
    delete classifier;
    classifier = nullptr;
    printf("FINISHED.\n");
}

/***
 * 测试视频文件
 * @return
 */
int test_video_file() {
    //测试视频文件
    string video_file = "../data/video/video-test.mp4";
    cv::VideoCapture cap;
    bool ret = get_video_capture(video_file, cap);
    cv::Mat frame;
    while (ret) {
        cap >> frame;
        if (frame.empty()) break;
        FrameInfo resultInfo;
        // 进行人脸检测
        detector->detect(frame, &resultInfo, scoreThresh, iouThresh);
        // 进行图像分类
        classifier->detect(frame, &resultInfo);
        // 可视化检测结果
        classifier->visualizeResult(frame, &resultInfo, 20);
    }
    cap.release();
    delete detector;
    detector = nullptr;
    delete classifier;
    classifier = nullptr;
    printf("FINISHED.\n");
    return 0;

}


/***
 * 测试摄像头
 * @return
 */
int test_camera() {
    int camera = 0; //摄像头ID号(请修改成自己摄像头ID号)
    cv::VideoCapture cap;
    bool ret = get_video_capture(camera, cap);
    cv::Mat frame;
    while (ret) {
        cap >> frame;
        if (frame.empty()) break;
        FrameInfo resultInfo;
        // 进行人脸检测
        detector->detect(frame, &resultInfo, scoreThresh, iouThresh);
        // 进行图像分类
        classifier->detect(frame, &resultInfo);
        // 可视化检测结果
        classifier->visualizeResult(frame, &resultInfo, 20);
    }
    cap.release();
    delete detector;
    detector = nullptr;
    delete classifier;
    classifier = nullptr;
    printf("FINISHED.\n");
    return 0;

}


int main() {
    test_image_file();   // 测试图片文件
    //test_video_file();   // 测试视频文件
    //test_camera();       //测试摄像头
    return 0;
}

(6)源码编译和运行

编译脚本,或者直接:bash build.sh

#!/usr/bin/env bash
if [ ! -d "build/" ];then
  mkdir "build"
else
  echo "exist build"
fi
cd build
cmake ..
make -j4
sleep 1
./demo

  • 如果你要测试CPU运行的性能,请修改src/main.cpp

DeviceType device = CPU;

  • 如果你要测试GPU运行的性能,请修改src/main.cpp (需配置好OpenCL) 

DeviceType device = GPU;

PS:纯CPU C++推理模式比较耗时,需要几秒的时间,而开启OpenCL加速后,GPU模式耗时仅需十几毫秒,性能极大的提高。

(7)Demo测试效果 

 C++版本与Python版本的结果几乎是一致,下面是面部表情识别效果展示(其中不同表情用不同颜色表示了)


5.项目源码下载

C++实现表情识别项目源码下载地址:面部表情识别4:C++实现表情识别(含源码,可实时检测)

整套项目源码内容包含:

  1. 提供C/C++版本的人脸检测模型
  2. 提供C/C++版本的面部表情分类模型
  3. C++源码支持CPU和GPU,开启GPU(OpenCL)可以实时检测和识别(纯CPU推理速度很慢,模型加速需要配置好OpenCL,GPU推理约15ms左右)
  4. 项目配置好了base-utils和TNN,而OpenCV和OpenCL需要自行编译安装
  5. C/C++ Demo支持图片,视频,摄像头测试

 Android面部表情识别APP Demo体验:https://download.csdn.net/download/guyuealian/87575425

或者链接: https://pan.baidu.com/s/16OOi-qCENP4WbIeSzO5e9g 提取码: cs5g 

如果你需要面部表情识别的训练代码,请参考:《面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)》面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)_AI吃大瓜的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/865408.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Astro 搭建博客系列:添加 giscus 评论系统

Astro 支持动态插入 script&#xff0c;所以为集成 giscus 提供了便利。我们需要探究两个问题&#xff1a; 选用什么作为 页面 -> discussion 的映射&#xff1f;如何做到动态切换主题&#xff1f; 我们的文章详情链接是 http://127.0.0.1:3000/posts/[post-title] 的形式&…

03 - 通过git log可以查看版本演变历史

通过git log可以查看版本演变历史 主要包括&#xff1a; commit 哈希id提交的Author信息提交的日期和时间commit info信息 git log本人常用&#xff0c;显示简洁&#xff1a; git log --oneline当log条数很多的时候&#xff0c;可以如下指定显示的数量&#xff1a; git log…

Mass Adoption调研

MPC钱包 MPC是什么&#xff1f; MPC定义&#xff1a;Multi-Party Computation 多方计算 技术原理&#xff1a;MPC 钱包通过使用阈值签名方案 (TSS) 消除了单点问题 开源项目tss-lib: GitHub - bnb-chain/tss-lib: Threshold Signature Scheme, for ECDSA and EDDSA 和智能合约钱…

一个概率论例题引发的思考

浙江大学版《概率论与梳理统计》一书中的&#xff0c;第13章第1节例2如下&#xff1a; 这个解释和模型比较简单易懂。接下来&#xff0c;第2节的例2是一个关于此模型的题目&#xff1a; 在我自己的理解中&#xff0c;此题的解法跟上一个题目一样&#xff0c;第二级传输后&…

在SpringMVC环境下json字符串与对象转化 配置和对象方法

目录 1..json的使用 字符串与对象转化 2.通过spring配置的形式直接接受json格式字符串转化 1..json的使用 字符串与对象转化 1.导入一个json的jar坐标 <dependency><groupId>com.fasterxml.jackson.core</groupId><artifactId>jackson-databind</…

超分任务中常见的上采样方式

文章目录 1. 线性插值方法1.1 最近邻算法 (Nearest Neighbor Interpolation)1.2 线性插值 (Linear Interpolation)1.3 双线性插值算法 (Bilinear Interpolation)1.4 双三次插值算法(Bicubic Interpolation) 2. 深度学习2.1 反卷积/转置卷积 (Deconvolution/Transposed Convolut…

猿辅导2023学习新主张:原来生活的答案藏在课堂里

妈妈让我贴春联&#xff0c;上下联要怎么看&#xff1f;井盖为什么是圆形的&#xff1f;妈妈让我买三斤土豆&#xff0c;要花多少钱&#xff1f;爬山后的第二天&#xff0c;为什么会腿酸&#xff1f;为什么冬天脱毛衣会“噼里啪啦”直响&#xff1f;……这些问题是不是似曾相识…

【C++初阶】string类的常见基本使用

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前学习C和算法 ✈️专栏&#xff1a;C航路 &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章对你有帮助的话 欢迎 评论&#x1f4ac; 点赞&#x1…

组学知识速递(五)|ChIP-seq知多少?

近段时间来&#xff0c;我们合作的ChIP-Seq技术发表的高分成功案例一篇接一篇&#xff0c;您是否心动了呢&#xff1f;本篇文章&#xff0c;总结了ChIP-Seq实验部分重点知识点&#xff0c;开启ChIP-Seq的你绝不要错过&#xff01; Q1 什么是ChIP-Seq&#xff1f; ChIP-Seq即染…

基础堆排序

目录 基础堆排序 一、概念及其介绍 二、适用说明 三、过程图示 基础堆排序

qiankun-微前端--vue2

项目结构 主应用技术&#xff1a; vue2 子应用技术&#xff1a;vue2 项目目录 这里是特意将主子项目分开来的&#xff0c;方便管理 主应用 安装 qiankun npm install qiankun重新定义一个启动端口&#xff0c;防止和其它子应用共用同一个端口&#xff08;vue.config.js&…

激光与光电子学进展, 2023 | 非视域成像技术研究进展

注1&#xff1a;本文系“计算成像最新论文速览”系列之一&#xff0c;致力于简洁清晰地介绍、解读非视距成像领域最新的顶会/顶刊论文(包括但不限于 Nature/Science及其子刊; CVPR, ICCV, ECCV, SIGGRAPH, TPAMI; Light‑Science & Applications, Optica 等)。 本次介绍的论…

UI美工设计的主要职责(合集)

UI美工设计的主要职责1 职责&#xff1a; 1、执行公司的规章制度及专业管理办法; 2、 负责重点项目的原型设计和产品流程设计、视觉设计&#xff0c;优化网站和移动端的设计流程和规范&#xff0c;制定产品 UI/UE规范及文档编写; 3、负责使用PS、AI、illustrator、MarkMan、…

2005-2020年280个地级市绿色全要素生产率测算原始数据

2005-2020年280个地级市绿色全要素生产率测算原始数据 1、时间&#xff1a;2005-2020年 2、来源&#xff1a;中国城市统计年鉴、中国区域统计年鉴、中国能源年鉴、中国环境年鉴等 3、范围&#xff1a;280个地级市 4、指标&#xff1a;年末单位从业人员数、规模以上工业企业…

Django-配置邮箱功能(一):使用django自带的发送邮件功能

一、获取邮箱授权码 以QQ邮箱为例子&#xff1a; 1、进入到设置&#xff0c;找到账户 2、开启POP3等服务&#xff0c;点击管理服务 3、进入管理服务&#xff0c;生成授权码 4、按照要求发送短信就可以了 5、将授权码复制保存&#xff0c;离开界面就看不到了 二、django项目中…

【小曾同学赠书活动】开始啦—〖测试设计思想〗

文章目录 ❤️ 赠书 —《测试设计思想》&#x1f31f; 书籍介绍&#x1f31f; 作者简介图书链接❤️ 活动介绍 — 赠送 3 本 ❤️ 赠书 —《测试设计思想》 首先提问 你知道测试设计思想有哪几类吗&#xff1f;你想奠定扎实的测试理论基础吗&#xff1f;你想改变关于你当前测试…

音视频 vs2017配置FFmpeg

vs2017 ffmpeg4.2.1 一、首先我把FFmpeg整理了一下&#xff0c;放在C盘 二、新建空项目 三、添加main.cpp&#xff0c;将bin文件夹下dll文件拷贝到cpp目录下 #include<stdio.h> #include<iostream>extern "C" { #include "libavcodec/avcodec.h&…

opencv实战项目 手势识别-手势控制鼠标

手势识别系列文章目录 手势识别是一种人机交互技术&#xff0c;通过识别人的手势动作&#xff0c;从而实现对计算机、智能手机、智能电视等设备的操作和控制。 1. opencv实现手部追踪&#xff08;定位手部关键点&#xff09; 2.opencv实战项目 实现手势跟踪并返回位置信息&…

vivo手机如何设置一周后的闹钟提醒?

在日常生活和工作中&#xff0c;每个人都要面临各种各样的事情需要去处理&#xff0c;有一些事情是需要当天去完成的&#xff0c;还有一些任务是需要提前知晓&#xff0c;做好准确&#xff0c;在未来的指定日期去完成的。例如一周后交付项目资料、10天后提交月度工作总结&#…

高忆管理:股票买了后怎么卖?

股票作为一种出资东西&#xff0c;招引了许多出资者的爱好。然而&#xff0c;关于许多新手出资者来说&#xff0c;他们可能会犯一个常见的过错&#xff0c;就是在购买股票后不知道怎么卖出。本文将从多个视点剖析这个问题&#xff0c;为出资者供给一些有用的建议和指导。 首要&…