玩一玩通义千问Qwen开源版,Win11 RTX3060本地安装记录!

news2024/11/24 12:15:10

大概在两天前,阿里做了一件大事儿。

就是开源了一个低配版的通义千问模型--通义千问-7B-Chat。

这应该是国内第一个大厂开源的大语言模型吧。

虽然是低配版,但是在各类测试里面都非常能打。

官方介绍:

Qwen-7B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-7B的基础上,我们使用对齐机制打造了基于大语言模型的AI助手Qwen-7B-Chat。本仓库为Qwen-7B-Chat的仓库。

同时官方也给出了很多测试结果。

比如中文评测。

在C-Eval验证集上得分对比:

ModelAvg. Acc.
LLaMA2-7B-Chat31.9
LLaMA2-13B-Chat40.6
Chinese-Alpaca-2-7B41.3
Chinese-Alpaca-Plus-13B43.3
Baichuan-13B-Chat50.4
ChatGLM2-6B-Chat50.7
InternLM-7B-Chat53.2
Qwen-7B-Chat54.2

如果单看这个数据。说“吊打”同级别羊驼模型一点不夸张吧。比起热门的开源模型ChatGLM2也高出了不少。

除此之外还有:

英文测评(南玻王)

代码测评(南玻王)

数学测评(南玻王)

长序列测评(南玻王)

工具使用能力测评

全方位碾压同类70亿参数模型,在即将开源的、用于评估工具使用能力的自建评测基准上,居然K·O了GPT-4 哈哈。

ModelTool Selection (Acc.↑)Tool Input (Rouge-L↑)False Positive Error↓
GPT-495%0.9015%
GPT-3.585%0.8875%
Qwen-7B-Chat99%0.898.5%

我也不太懂,没研究过这个基准测试,反正就是看起来很厉害的样子。

不管怎么样,大厂开源的东西总不会太差。有可能真的是最好的小型中文大语言模型了。

阿里已经亮出态度了,接下来压力给到百度,讯飞,华为... 哈哈~~

既然阿里都开源了,那我们自然就笑纳了,接下就在本机跑一个试试。

下面是我在Win11 RTX3060 12G 上完整的安装记录。玩过的可以跳过,没玩过的可以当个参考。

我的安装思路完全来自官网指引:

官方的安装指引看起来非常简单。只要安装一下modelscope这个包,然后运行一段Python代码就可以了。当然,这个世界上看起来简单的东西,做起来往往都不那么简单。一步一坑是常态,踩过了,就简单了。

常规流程

1.创建并激活虚拟环境。

我们还是用常用的MiniConda来创建一个虚拟的Python环境。

conda create -n models python=3.10.6

激活激活虚拟环境:

conda activate  models

2. 安装modescope基础库

pip install modelscope

3. 编写Python代码

不需要自己编写啊,直接抄官方代码。

创建一个test.py文件,然后将代码粘贴到里面,Ctrl+S 保存代码。

4.运行代码

运行代码也非常简单。上面已经激活了虚拟环境。然后用cd命令,进入到代码所在目录。然后用Python运行就可以了。

E:cd 
E:\DEV\qwen
python test.py

运行代码之后,会自动联网下载一个14G的模型文件。

阿里毕竟是做服务器的,我又在杭州,这速度真的是真是相当给力。不用魔法,就能飞起,这是搞国外项目,永远享受不到的待遇啊。

按正常的节奏来说,下载完大模型,然后运行代码。通义千问大模型就会乖乖的回答我预设的两个问题了。

但是...不可能这么顺利。

其实还有很多包还没装完,我就按我出错的顺序和解决方法,一个个来记录吧。

踩坑记录

1.缺少transformers包

提示信息如下:

ImportError:modelscope.pipelines.nlp.text_generation_pipeline requires the transformers library but it was not found in your environment. You can install it with pip:pip install transformers

解决方法很简答,运行提示中的命令即可:

pip install transformers

2. 缺少tiktoken包

提示信息如下:

modelscope.models.nlp.qwen.tokenization requires the tiktoken library but it was not found in your environment. You can install it with pip:pip install tiktoken

解决方法:

pip install tiktoken

3.缺少accelerate包

提示信息如下:

ImportError: QWenChatPipeline: QWenForTextGeneration: Using low_cpu_mem_usage=True or a device_map requires Accelerate: pip install accelerate

解决方法:

pip install accelerate

4.爆显存了OutOfMemory

终于所有包都装完了。

再次运行test.py

软件有条不紊的运行,好像有戏。可惜,最终还是卡在硬件配置上了。

见到了熟悉的OutOfMemory。

torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.16 GiB (GPU 0; 12.00 GiB total capacity; 9.99 GiB already allocated; 200.79 MiB free; 9.99 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

在大语言模型面前,12G显存,啥都不是。

查了一下资料,BF16需要16.2G显存才可以运行...

PrecisionMMLUMemory
BF1656.716.2G
Int852.810.1G
NF448.97.4G

遇到这种情况,没啥办法,只能用量化。官方也提供了4bit量化的代码,直接拷贝过来,搞了一个test2.py文件。

5. 运行4bit量化代码出错

错误提示如下:

importlib.metadata.PackageNotFoundError: No package metadata was found for bitsandbytes

大概就是量化的时候需要用到一个叫bitsandbytes的依赖包。

那就安装一下呗:

pip install bitsandbytes

安装非常简单快速,没有任何问题。

6. 量化包不支持Windows

安装完依赖之后运行test2.py 很快就收到了如下错误:

CUDA Setup failed despite GPU being available. Please run the following command to get more information:          python -m bitsandbytes
    Inspect the output of the command and see if you can locate CUDA libraries. You might need to add them    to your LD_LIBRARY_PATH. If you suspect a bug, please take the information from python -m bitsandbytes    and open an issue at: https://github.com/TimDettmers/bitsandbytes/issues

这句话对于对于一个英语只过了4级的人有点难度啊。什么叫尽管有可用的GPU但是CUDA设置失败.... 你这句式是不是等价于,你有一个女朋友,但是不能用!

查了一下资料,bitsandbytes库目前仅支持Linux发行版,Windows目前不受支持。。。

还好上面的资料已经过时了,其实已经有大佬做了Windows版本。

7. Windows版量化包版本太低

为了解决上面一个的问题,找到了一个Windows版本的依赖包。

安装命令如下:

pip install git+https://github.com/Keith-Hon/bitsandbytes-windows.git

安装完成之后,本以为完事大吉了。

还是太年轻...

错误提示如下:

ValueError: 4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version

这个问题出在两个方面,一个是这个包好像只支持8bit量化,而我代码里有用的是4bit。另外一个问题就是错误日志中提到的版本太低。

没办法,又是一顿乱找,狂开N个网页。

最后最终找到了可以用的版本。

安装命令:

python -m pip install bitsandbytes --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui

终于安装成功0.41版本

8 缺少transformers_stream_generator包

习惯了,习惯了。上面的都搞完了,又出现缺包提示。

ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator`

解决方法:

pip install transformers_stream_generator

9. Numpy不可用。

所有包装完之后,运行test2.py,眼看这要成功了,又跳出一个“Numpy is not available” 。


Traceback (most recent call last):File "e:\DEV\qwen\test2.py", line 12, in <module>response, history = model.chat(tokenizer, "你好", history=None)File "C:\Users\tony/.cache\huggingface\modules\transformers_modules\Qwen-7B-Chat\modeling_qwen.py", line 1003, in chatresponse = decode_tokens(File "C:\Users\tony/.cache\huggingface\modules\transformers_modules\Qwen-7B-Chat\qwen_generation_utils.py", line 269, in decode_tokenstokens = tokens.cpu().numpy().tolist()RuntimeError: Numpy is not available

用pip list 查看了一下包列表,明明有这个包,怎么就不能用呢?

不管了,直接更新有一把看看。

把Numpy升级到最新版 :

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy --upgrade

安装过程出现红色提示:

ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.modelscope 1.8.1 requires numpy<=1.22.0, but you have numpy 1.25.2 which is incompatible.Successfully installed numpy-1.25.2

内心凉了一半。

提示里面说modelscope需要的是1.22, 但是我装了1.25.2... 最怕就是这种版本问题了...

我也不知道该怎么排查,想着就死马当活马医了。

最后...居然成功了,这是~~什么道理~~!

图片

通过日志可以看到,AI已经做出了回答。答案也正确且通顺。幸福来的太突然...

到这里,我就成功的在我的Rtx3060 12G上面把“通义千问”给跑起来了。理论上所有的8G N卡也能跑起来!

成功后,心态就平稳很多了,半天功夫没白费,美滋滋。

趁热打铁,抽个几分钟来测试一下运行速度。

start:2023-08-05 11:06:54.399781;
loaded:2023-08-05 11:09:05.583479;
hello:2023-08-05 11:09:21.236158;
where:2023-08-05 11:09:22.543629;
goood:2023-08-05 11:09:28.565053

加载模型用了好几分钟,回答问题大概只用了几秒钟。还不错啊,这速度基本能用了。

按上面的方式运行代码,AI只能回答预设的几个问题。这样搞起来就有点不爽,每次提问,还得改源代码,重新加载模型...

所以我又花了几分钟,写了一个WebUI。

界面如下:

写这个界面和功能,大概只用了23行Python代码。Gradio这东西用起来确实爽,怪不得那么多开源项目都用这个来做界面。

心满意足了!!!

有没有看到这里,还是一头雾水的人?哈哈!

那么我就提供一个无需配置,无需登录,直接可以体验的网址把:

https://modelscope.cn/studios/qwen/Qwen-7B-Chat-Demo/summary

通义千问官方主页:

https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary

有兴趣的可以去玩一玩!

收工!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/856865.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[JavaScript游戏开发] Q版地图上让英雄、地图都动起来

系列文章目录 第一章 2D二维地图绘制、人物移动、障碍检测 第二章 跟随人物二维动态地图绘制、自动寻径、小地图显示(人物红点显示) 第三章 绘制冰宫宝藏地图、人物鼠标点击移动、障碍检测 第四章 绘制Q版地图、键盘上下左右地图场景切换 第五章 Q版地图上让英雄、地图都动起来…

数据结构—图的遍历

6.3图的遍历 遍历定义&#xff1a; ​ 从已给的连通图中某一顶点出发&#xff0c;沿着一些边访问遍历图中所有的顶点&#xff0c;且使每个顶点仅被访问一次&#xff0c;就叫作图的遍历&#xff0c;它是图的基本运算。 遍历实质&#xff1a;找每个顶点的邻接点的过程。 图的…

数据结构笔记--链表经典高频题

前言 面经&#xff1a; 针对链表的题目&#xff0c;对于笔试可以不太在乎空间复杂度&#xff0c;以时间复杂度为主&#xff08;能过就行&#xff0c;对于任何题型都一样&#xff0c;笔试能过就行&#xff09;&#xff1b;对于面试&#xff0c;时间复杂度依然处在第一位&#xf…

量化交易可视化(9)-热力图

热力图的含义 热力图是一种用颜色编码数据密度的二维图表。它的含义是通过不同颜色的渐变来显示数据的相对密度或值的大小。 热力图通常用于可视化矩阵或二维表格数据&#xff0c;其中每个单元格的值被映射到一个颜色&#xff0c;从而形成一个色阶。较小的值通常用较浅的颜色表…

许多智能算法并不智能(续)

许多智能算法被认为并不智能&#xff0c;主要是因为它们在某些方面仍然存在一些限制。以下是一些常见的原因&#xff1a; 缺乏常识和理解能力&#xff1a;当前的智能算法主要依赖于大量的数据和模式识别来做出决策&#xff0c;但它们通常缺乏对世界的常识和深层理解。这意味着它…

视觉大模型的全面解析

前言 本文主要围绕Foundational Models&#xff0c;即基础模型&#xff08;通过自监督或半监督方式在大规模数据上训练的模型&#xff0c;可以适应其它多个下游任务。&#xff09;这个概念&#xff0c;向大家全面阐述一个崭新的视觉系统。例如&#xff0c;通过 SAM&#xff0c;…

nbcio-boot因升级mybatis-plus到3.5.3.1和JSQLParser 到4.6引起的online表单开发的数据库导入出错解决

更多功能看演示系统 gitee源代码地址 后端代码&#xff1a; https://gitee.com/nbacheng/nbcio-boot 前端代码&#xff1a;https://gitee.com/nbacheng/nbcio-vue.git 在线演示&#xff08;包括H5&#xff09; &#xff1a; http://122.227.135.243:9888 nbcio-boot因升级…

【雕爷学编程】Arduino动手做(01)---干簧管传感器模块2

37款传感器与模块的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&#x…

接龙序列(14届)

对于一个长度为 K 的整数数列&#xff1a;A1,A2,...,AK&#xff0c;我们称之为接龙数列当且仅当 Ai 的首位数字恰好等于 Ai−1的末位数字 (2≤i≤K2≤i≤K)。 例如 12,23,35,56,61,11 是接龙数列&#xff1b;12,23,34,56 不是接龙数列&#xff0c;因为 56 的首位数字不等于 34…

matplotlib 笔记:plot 折线图

1 基本用法 import numpy as np import matplotlib.pyplot as plt x np.linspace(0,10,50) y np.tan(x)**2 np.cos(x)plt.plot(x, y) plt.show() 2 linestyle 折线图类型 import numpy as np import matplotlib.pyplot as pltx np.linspace(0,10,50) y np.tan(x)**2 np…

node配置Web 服务器

1、什么是 Web 服务器 Web服务器一般指网站服务器&#xff0c;是指驻留于因特网上某种类型计算机的程序&#xff0c;Web服务器的基本功能就是提供Web信息浏览服务。 它只需支持HTTP协议、HTML文档格式及URL&#xff0c;与客户端的网络浏览器配合。 大多数 web 服务器都支持服…

如何优化测试用例?

在我们日常测试工作中&#xff0c;编写测试用例往往花费较多时间&#xff0c;而且设计的测试用例冗杂和不完整&#xff0c;从而造成用例执行检查不完整&#xff0c;效率低下&#xff0c;不能及时发现项目缺陷。 因此提高测试用例编写和执行效率迫在眉睫&#xff0c;一般来说&am…

Dubbo3.0 Demo

将SpringBoot工程集成Dubbo 1.创建父工程 2.创建子工程consumer&#xff0c;provider 3.初始化工程 4.引入依赖 在provider和consumer中引入dubbo依赖 <dependency><groupId>org.apache.dubbo</groupId><artifactId>dubbo-spring-boot-starter</a…

文心一言 VS 讯飞星火 VS chatgpt (73)-- 算法导论7.1 4题

四、如何修改 QUICKSORT&#xff0c;使得它能够以非递增序进行排序? 文心一言&#xff1a; 快速排序&#xff08;Quicksort&#xff09;是一种常用的排序算法&#xff0c;基于分治策略进行设计。默认情况下&#xff0c;快速排序会以递增序进行排序。若想修改快速排序以实现非…

基于星火和Gradio的聊天机器人

星火大模型官网&#xff1a;https://xinghuo.xfyun.cn/ 1 创建虚拟环境&#xff08;windows&#xff09; conda create -n Gradio python3.8 pip install gradio 中间遇到os报错&#xff0c;解决方案&#xff1a; pip install aiofiles23.2.1 2 代码 SparkDesk.py&#xff1a…

Android Studio跳过Haxm打开模拟器

由于公司权限限制无法安装Haxm&#xff0c;这个时候我们可以试试Arm相关的镜像去跳过Haxm运行模拟器。解决方案&#xff1a;安装API27以下的Arm Image. #ifdef __x86_64__if (sarch "arm64" && apiLevel >28) {APANIC("Avds CPU Architecture %s i…

linux_常用命令

一、日常使用命令/常用快捷键命令 开关机命令 1、shutdown –h now&#xff1a;立刻进行关机 2、shutdown –r now&#xff1a;现在重新启动计算机 3、reboot&#xff1a;现在重新启动计算机 4、su -&#xff1a;切换用户&#xff1b;passwd&#xff1a;修改用户密码 5、logou…

使用IIS服务器部署Flask python Web项目

参考文章 ""D:\Program Files (x86)\Python310\python310.exe"|"D:\Program Files (x86)\Python310\lib\site-packages\wfastcgi.py"" can now be used as a FastCGI script processor参考文章 请求路径填写*&#xff0c;模块选择FastCgiModule&…

web-xss-dvwa

目录 xss&#xff08;reflected&#xff09; low medium high xss(store) low medium high xss(dom) low medium high xss&#xff08;reflected&#xff09; low 没有什么过滤&#xff0c;直接用最普通的标签就可以了 http://127.0.0.1/DVWA-master/vulnerabili…

【神经网络手写数字识别-最全源码(pytorch)】

Torch安装的方法 学习方法 1.边用边学&#xff0c;torch只是一个工具&#xff0c;真正用&#xff0c;查的过程才是学习的过程2.直接就上案例就行&#xff0c;先来跑&#xff0c;遇到什么来解决什么 Mnist分类任务&#xff1a; 网络基本构建与训练方法&#xff0c;常用函数解析…