tensorflow 1.14.0, 提供远程访问 tensorboard 服务的方法
第一步生成 events 文件:
在上一篇demo的基础上加了一句,如下,
tf.summary.FileWriter("./tmp/summary", graph=sess1.graph)
hello_tensorboard_remote.py
import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
def tf114_demo():
a = 3
b = 4
c = a + b
print("a + b in py =",c)
a_t = tf.constant(3)
b_t = tf.constant(4)
c_t = a_t + b_t
print("TensorFlow add a_t + b_t =", c_t)
with tf.Session() as sess:
c_t_value = sess.run(c_t)
print("c_t_value= ", c_t_value)
return None
def graph_demo():
a_t = tf.constant(3)
b_t = tf.constant(4)
c_t = a_t + b_t
print("TensorFlow add a_t + b_t =", c_t)
default_g = tf.get_default_graph()
print("default_g:\n",default_g)
print("a_t g:", a_t.graph)
print("c_t g:", c_t.graph)
with tf.Session() as sess:
c_t_value = sess.run(c_t)
print("c_t_value= ", c_t_value)
print("sess g:", sess.graph)
new_g = tf.Graph()
with new_g.as_default():
a_new = tf.constant(20)
b_new = tf.constant(30)
c_new = a_new + b_new
print("c_new:", c_new)
print("a_new g:",a_new.graph)
print("b_new g:",c_new.graph)
with tf.Session() as sess1:
c_t_value = sess1.run(c_t)
# print("c_new_value:", c_new_value)
print("sess1 g:", sess1.graph)
tf.summary.FileWriter("./tmp/summary", graph=sess1.graph)
with tf.Session(graph=new_g) as new_sess:
c_new_value = new_sess.run((c_new))
print("c_new_value:", c_new_value)
print("new_sess graph properties:", new_sess.graph)
# return None
if __name__ == "__main__":
# tf114_demo()
graph_demo()
运行 tensorflow1 的 app:
python3 hello_tensorboard_remote.py
ls ./tmp/summary/
启动 tensorboard 网络服务:
tensorboard --logdir="./tmp/summary" --port 6789
6789是自己选定的端口号,尝试任选;
运行状态如下:
远程访问tensorboard:
在同一个网络内的主机网页浏览器的地址栏中输入:
http://10.208.14.37:6789
效果如下,显示出来了示例中非常简单的一个计算图:
如果是本机访问,则在地址栏里输入
http://127.0.0.1:6006