python接口自动化之正则用例参数化

news2024/11/24 20:47:05

前言

​ 我们在做接口自动化的时候,处理接口依赖的相关数据时,通常会使用正则表达式来进行提取相关的数据。

​ 正则表达式,又称正规表示式、正规表示法、正规表达式、规则表达式、常规表示法(Regular Expression,在代码中常简写为regex、regexp或RE) 。它是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。在很多文本编辑器里,正则表达式通常被用来检索、替换那些匹配某个模式的文本。而Python 自1.5版本起增加了re模块,它提供 Perl 风格的正则表达式模式。

正则表达式语法

表示单字符

​ 单字符:即表示一个单独的字符,比如匹配数字用\d,匹配非数字用\D

​ 除以下语法,也可以匹配指定的具体字符,可以是1个也可以是多个。

字符

功能说明

.

匹配任意1个字符(除了\n)

[2a]

匹配[]中括号中列举的字符,如这里就是匹配2或者a这两个字符其中的一个

\d

匹配数字,即0-9

\D

匹配非数字

\s

匹配空白,即空格、tab键(tab键为两个空格)

\S

匹配非空白

\w

匹配单词字符,即a-z、A-Z、0-9、_(数字、字母、下划线)

\W

匹配非单词字符

​ 实例如下,这里先说明一下findall(匹配规则,要匹配的字符串)这个方法是查找所有匹配的数据,以列表的形式返回,后面会在re模块进行详解:

import re


# .:匹配任意1个字符
re1 = r'.'
res1 = re.findall(re1, '\nj8?0\nbth\nihb')
print(res1)	# 运行结果:['j', '8', '?', '0', 'b', 't', 'h', 'i', 'h', 'b']

# []:匹配列举中的其中一个
re2 = r"[abc]"
res2 = re.findall(re2, '1iugfiSHOIFUOFGIDHFGFD2345a6a78b99cc')
print(res2)	# 运行结果:['a', 'a', 'b', 'c', 'c']

# \d:匹配一个数字
re3 = r"\d"
res3 = re.findall(re3, "dfghjkl32212dfghjk")
print(res3)	# 运行结果:['3', '2', '2', '1', '2']

# \D:匹配一个非数字
re4 = r"\D"
res4 = re.findall(re4, "d212dk?\n$%3;]a")
print(res4)	# 运行结果:['d', 'd', 'k', '?', '\n', '$', '%', ';', ']', 'a']

# \s:匹配一个空白键或tab键(tab键实际就是两个空白键)
re5 = r"\s"
res5 = re.findall(re5,"a s d a  9999")
print(res5)	# 运行结果:[' ', ' ', ' ', ' ', ' ']

# \S: 匹配非空白键
re6 = r"\S"
res6 = re.findall(re6, "a s d a  9999")
print(res6)	# 运行结果:['a', 's', 'd', 'a', '9', '9', '9', '9']

# \w:匹配一个单词字符(数字、字母、下划线)
re7 = r"\w"
res7 = re.findall(re7, "ce12sd@#a as_#$")
print(res7)	# 运行结果:['c', 'e', '1', '2', 's', 'd', 'a', 'a', 's', '_']

# \W:匹配一个非单词字符(不是数字、字母、下划线)
re8 = r"\W"
res8 = re.findall(re8, "ce12sd@#a as_#$")
print(res8)	# 运行结果:['@', '#', ' ', '#', '$']

# 匹配指定字符
re9 = r"python"
res9 = re.findall(re9, "cepy1thon12spython123@@python")
print(res9)	# 运行结果:['python', 'python']
PYTHON 复制 全屏

表示数量

​ 如果要匹配某个字符多次,就可以在字符后面加上数量进行表示,具体规则如下:

字符

功能说明

*

匹配前一个字符出现0次或者无限次,即可有可无

+

匹配前一个字符出现1次或无限次,即至少1次

?

匹配前一个字符出现0次或1次,即要么没有,要么只有1次

匹配前一个字符出现m次

匹配前一个字符至少出现m次

匹配前一个字符出现从m到n次

​ 实例如下:

import re


# *:表示前一个字符出现0次以上(包括0次)
re21 = r"\d*"   # 这里匹配的规则,前一个字符是数字
res21 = re.findall(re21, "343aa1112df345g1h6699")  # 如匹配到a时,属于符合0次,但因为没有值所以会为空
print(res21)	# 运行结果:['343', '', '', '1112', '', '', '345', '', '1', '', '6699', '']

# ? : 表示0次或者一次
re22 = r"\d?"
res22 = re.findall(re22, "3@43*a111")
print(res22)	# 运行结果:['3', '', '4', '3', '', '', '1', '1', '1', '']

# {m}:表示匹配一个字符m次
re23 = r"1[3456789]\d{9}" # 手机号:第1位为1,第2位匹配列举的其中1个数字,第3位开始是数字,且匹配9次
res23 = re.findall(re23,"sas13566778899fgh256912345678jkghj12788990000aaa113588889999")
print(res23)	# 运行结果:['13566778899', '13588889999']

# {m,}:表示匹配一个字符至少m次
re24 = r"\d{7,}"
res24 = re.findall(re24, "sas12356fgh1234567jkghj12788990000aaa113588889999")
print(res24)	# 运行结果:['1234567', '12788990000', '113588889999']

# {m,n}:表示匹配一个字符出现m次到n次
re25 = r"\d{3,5}"
res25 = re.findall(re25, "aaaaa123456ghj333yyy77iii88jj909768876")
print(res25)	# 运行结果:['12345', '333', '90976', '8876']

匹配分组

字符

功能说明

|

匹配左右任意一个表达式

(ab)

将括号中字符作为一个分组

​ 实例如下:

import re


# 同时定义多个规则,只要满足其中一个
re31 = r"13566778899|13534563456|14788990000"
res31 = re.findall(re31, "sas13566778899fgh13534563456jkghj14788990000")
print(res31)	# 运行结果:['13566778899', '13534563456', '14788990000']

# ():匹配分组:在匹配规则的数据中提取括号里的数据
re32 = r"aa(\d{3})bb"	# 如何数据符合规则,结果只会取括号中的数据,即\d{3}
res32 = re.findall(re32, "ggghjkaa123bbhhaa672bbjhjjaa@45bb")
print(res32)	# 运行结果:['123', '672']

表示边界

字符

功能说明

^

匹配字符串开头,只能匹配开头

$

匹配字符串结尾,只能匹配结尾

\b

匹配一个单词的边界(单词:字母、数字、下划线)

\B

匹配非单词的边界

​ 实例如下:

import re


# ^:匹配字符串的开头
re41 = r"^python"   # 字符串开头为python
res41 = re.findall(re41, "python999python")  # 只会匹配这个字符串的开头
res411 = re.findall(re41, "1python999python")  # 因为开头是1,第1位就不符合了
print(res41)	# 运行结果:['python']
print(res411)	# 运行结果:[]

# $:匹配字符串的结尾
re42=r"python$"	# 字符串以python结尾
res42 = re.findall(re42, "python999python")
print(res42)	# 运行结果:['python']

# \b:匹配单词的边界,单词即:字母、数字、下划线
re43 = r"\bpython"  # 即匹配python,且python的前一位是不是单词
res43 = re.findall(re43, "1python 999 python")  # 这里第1个python的前1位是单词,因此第1个是不符合的
print(res43)	# 运行结果:['python']

# \B:匹配非单词的边界
re44 = r"\Bpython"  # 即匹配python,且python的前一位是单词
res44 = re.findall(re44, "1python999python")
print(res44)	# 运行结果:['python', 'python']

贪婪模式

​ python里数量词默认是贪婪的,总是尝试匹配尽可能多的字符,而非贪婪模式则是尝试匹配尽可能少的字符,在表示数量的表达式后加上问号(?)就可以关闭贪婪模式。

​ 如下例子,匹配2个以上的数字,如果符合条件它会一直匹配到不符合才停止,如其中的34656fya,34656符合2个数字以上,那么它会一直匹配到6为止,如果关闭贪婪模式,那么在满足2个数字时就会停止,最后可以匹配到34、65。

python

import re


# 默认的贪婪模式下
test = 'aa123aaaa34656fyaa12a123d'
res = re.findall(r'\d{2,}', test)
print(res)	# 运行结果:['123', '34656', '12', '123']

# 关闭贪婪模式
res2 = re.findall(r'\d{2,}?', test)
print(res2)	# 运行结果:['12', '34', '65', '12', '12']

re模块

​ 在python中使用正则表达式,就会用到re模块来进行操作,提供的方法一般需要传入两个参数:

  • 📘参数1: 匹配的规则
  • 📒参数2:要进行匹配的字符串

re.findall()

​ 查找所有符合规范的字符串,以列表的形式返回。

import re


test = 'aa123aaaa34656fyaa12a123d'
res = re.findall(r'\d{2,}', test)
print(res)	# 运行结果:['123', '34656', '12', '123']

re.search()

​ 查找第一个符合规范的字符串,返回的是一个匹配对象,可以通过group()将匹配到的数据直接提取出来。

import re


s = "123abc123aaa123bbb888ccc"
res2 = re.search(r'123', s)
print(res2)  # 运行结果:<re.Match object; span=(0, 3), match='123'>

# 通过group将匹配到的数据提取出来,返回类型为str
print(res2.group())   # 运行结果:123

​ 返回的匹配对象中,span为匹配到的数据的下标范围,match则是匹配到的值。

group()参数说明

  • 🍊不传参数:获取的是匹配到的所有内容
  • 🍋传入数值:可以通过参数来指定,获取第几个分组中的内容(获取第1个分组,传入参数1,获取第2个分组,传入参数2,依次类推。)
import re


s = "123abc123aaa123bbb888ccc"
re4 = r"aaa(\d{3})bbb(\d{3})ccc"	# 这里分组就是前面说到的匹配语法:()
res4 = re.search(re4, s)
print(res4)
# group不传参数:获取的是匹配到的所有内容
# group通过参数指定,获取第几个分组中的内容(获取第1个分组,传入参数1,获取第2个分组,传入参数2,依次类推..
print(res4.group())
print(res4.group(1))
print(res4.group(2))

re.match()

​ 从字符串的起始位置进行匹配,匹配成功则返回匹配到的对象,如果开头的位置不符合匹配的规则,不会继续往后面去匹配,直接返回None。re.match()re.search()都是只匹配一个,不一样的是,前者只匹配字符串的开头,后者则是会匹配整个字符串,但只获取第一个符合的数据。

import re


s = "a123abc123aaa1234bbb888ccc"
# match:只匹配字符串的开头,开头不符合就返回None
res1 = re.match(r"a123", s)
res2 = re.match(r"a1234", s)
print(res1)  # 运行结果:<re.Match object; span=(0, 4), match='a123'>
print(res2)  # 运行结果:None

re.sub()

​ 检索和替换:用于替换字符串中的匹配项

re.sub()参数说明

  • 🍇参数1:待替换的字符串
  • 🍉参数2:目标字符串
  • 🍑参数3:要进行替换操作的字符串
  • 🍓参数4:可以指定最多替换的次数,非必填(默认替换所有符合规范的字符串)
import re


s = "a123abc123aaa123bbb888ccc"
# <font color="#FF0000">参数1:</font>待替换的字符串
# <font color="#FF0000">参数2:</font>目标字符串
# <font color="#FF0000">参数3:</font>要进行替换操作的字符串
# <font color="#FF0000">参数4:</font>可以指定最多替换的次数,非必填(默认替换所有符合规范的字符串)
res5 = re.sub(r'123', "666", s, 4)
print(res5)  # 运行结果:a666abc666aaa666bbb888ccc

用例参数化

​ 在接口自动化测试中,我们的测试数据都是保存在excel中的,有些参数如果写死一个数据,可能换个场景或者换个环境就不能用了,那么切换环境时就需要先把新环境的测试数据准备好,并且能支持去跑我们的脚本,或者把excel的数据修改为适合新环境的测试数据,维护的成本较高。因此就需要把我们的自动化脚本测试数据尽量地参数化,降低维护成本。

​ 我们先看简单版的参数化,以登录为例,登录时用到的账号、密码等信息都可以提取出来放到配置文件,修改数据或更换环境时直接在配置文件中统一修改就可以了。

​ 但如果有多个不同的数据需要参数化呢,每个参数都加个判断去替换数据吗?这样的代码既啰嗦又不好维护,这时re模块就可以用上了,直接看一个实例:

import re
from common.myconfig import conf


class TestData:
    """用于临时保存一些要替换的数据"""
    pass


def replace_data(data):
    r = r"#(.+?)#"	# 注意这个分组()内的内容
    # 判断是否有需要替换的数据
    while re.search(r, data):
        res = re.search(r, data)	# 匹配出第一个要替换的数据
        item = res.group()	# 提取要替换的数据内容
        key = res.group(1)	# 获取要替换内容中的数据项
        try:
            # 根据替换内容中的数据项去配置文件中找到对应的内容,进行替换
            data = data.replace(item, conf.get_str("test_data", key))
        except:
            # 如果在配置文件中找不到就在临时保存的数据中找,然后替换
            data = data.replace(item, getattr(TestData, key))
    return data

​ 注意这里的正则表达式是有使用?关闭贪婪模式的,因为测试数据中可能会需要参数化2个或以上的数据,如果不关闭贪婪模式,它就只能匹配搭配一个数据,举例如下:

import re


data = '{"mobile_phone":"#phone#","pwd":"#pwd#","user":#user#}'
r1 = "#(.+)#"
res1 = re.findall(r1, data)
print(res1)  # 运行结果:['phone#","pwd":"#pwd#","user":#user']	注意这里单引号只有一个数据
print(len(res1))      # 运行结果:1

r2 = "#(.+?)#"
res2 = re.findall(r2, data)
print(res2)  # 运行结果:['phone', 'pwd', 'user']
print(len(res2))      # 运行结果:3

​ 另外提到的一个用于临时保存数据的类,这里主要用于保存接口返回的数据,因为有些测试数据是动态变化的,可能要依赖于某个接口,后面的测试用例又需要这些数据,那么我们在接口返回时就可以保存到这个类里作为一个类属性,接着在需要用这个数据的测试用例时,把这个类属性提取出来替换到测试数据中即可。提示:设置属性setattr(对象, 属性名, 属性值),获取属性值getattr(对象, 属性名)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/849896.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

目标检测YOLOv3基于DarkNet53模型测试-笔记

目标检测YOLOv3基于DarkNet53模型测试-笔记 预测和试测结果&#xff1a; 预测代码如下所示&#xff1a; testInsects.py #YOLOv3网模型测试-单图片文件测试并显示测试结果 import time import os import paddle import numpy as np import cv2 import random from PIL impor…

ROS实现自定义信息以及使用

常见的消息包 消息包定义一般如下&#x1f447; &#xff08;1&#xff09;创建包和依赖项 &#xff08;2&#xff09;在新建的qq_msgs的包新建msgs的文件夹&#xff0c;在该文件夹里面新建Carry.msg类型的文件。 其实&#xff0c;Carry.msg就是你自己定义的消息类型&am…

CentOS软件包管理rpm、yum

一、软件包概述 Linux常见软件包分为两种&#xff0c;分别是源代码包、二进制文件包。源代码包是没有经过编译的包&#xff0c;需要经过GCC、C编译器编译才能运行&#xff0c;文件内容包含源代码文件&#xff0c;通常以.tar.gz、.zip、.rar结尾&#xff1b;二进制包无需编译&am…

尚硅谷大数据项目《在线教育之采集系统》笔记003

视频地址&#xff1a;尚硅谷大数据项目《在线教育之采集系统》_哔哩哔哩_bilibili 目录 P036 P037 P038 P039 P041 P042 P043 P044 P045 P046 P036 先启动zookeeper&#xff0c;在启动kafka&#xff0c;启动hadoop中的hdfs node003启动flume&#xff0c;node001启动f…

用户稳定增长,拆解美团立足于“吃”的刚需价值

近期&#xff0c;QuestMobile发布了《中国移动互联网2023年上半年大报告》。报告显示&#xff0c;上半年&#xff0c;我国移动互联网月人均单日使用时长同比增长7.7%至7.2小时&#xff0c;移动互联网月活用户增长至12.13亿。 尽管在几年前&#xff0c;互联网流量触顶就已经成为…

re学习(30)攻防世界-hackme(代码复原2)

思路&#xff1a; 1.输出成功&#xff0c;v26不为0,说明关系式&#xff1a;v21((unsigned __int8)v24 ^ v20) →2.在汇编代码第37行&#xff0c;输入v16v20&#xff0c;所以求的值为v20 →3.根据关系式&#xff0c;求的值v20v21^v24 →4.v21在第汇编代码第36行也可以提取出来…

springboot人事管理系统设计与实现

126springboot人事管理系统java web员工信息管理系统 人事管理系统&#xff0c;属于ERP的一个部分。它单指汇集成功企业先进的人力资源管理理念、人力资源管理实践、人力资源信息化系统建设的经验&#xff0c;以信息技术实现对企业人力资源信息的高度集成化管理&#xff0c;为…

dijkstra算法相关(使用邻接表和优先队列两种方法)力扣题:743. 网络延迟时间(有向图);1334. 阈值距离内邻居最少的城市(无向图)

具体dijkstra算法就不展开说了&#xff0c;因为太多帖子来解释了&#xff0c;并且这也只是我的个人总结/记录&#xff0c;我会把自己的思考过程写在代码的注释中。 743. 网络延迟时间&#xff08;有向图&#xff09; 有 n 个网络节点&#xff0c;标记为 1 到 n。 给你一个列…

ArduPilot开源飞控之MAVProxy简介

ArduPilot开源飞控之MAVProxy简介 1. 源由2. 特点3. 安装 & 更新3.1 安装Step 1: 烧录raspberryPi镜像Step 2&#xff1a;apt软件包更新Step 3&#xff1a;Raspian系统更新Step 4&#xff1a;安装依赖环境Step 5&#xff1a;安装mavproxyStep 6&#xff1a;配置bash环境 3.…

HttpRunner自动化测试之脚手架工具使用(一键搭建)

脚手架工具使用&#xff1a; 每一个成熟的系统工具&#xff0c;都会有对应的脚手架工具&#xff0c;它可以快速构建项目的必要目录&#xff0c;不必自己一个一个的配置与搭建&#xff0c;只需要执行一些命令即可。 httprunner也提供了脚手架工具&#xff0c;使用步骤如下&…

Python接口自动化-requests模块之post请求

一、源码解析 def post(url, dataNone, jsonNone, **kwargs):r"""Sends a POST request.:param url: URL for the new :class:Request object.:param data: (optional) Dictionary, list of tuples, bytes, or file-likeobject to send in the body of the :cla…

微服务——ES实现自动补全

效果展示 在搜索框根据拼音首字母进行提示 拼音分词器 和IK中文分词器一样的用法&#xff0c;按照下面的顺序执行。 # 进入容器内部 docker exec -it elasticsearch /bin/bash# 在线下载并安装 ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch…

迭代器模式-遍历聚合对象中的元素

在开发中&#xff0c;我们经常使用到Iterator这个接口&#xff0c;我们很疑惑于这个接口的作用&#xff0c;认为集合已经实现了数据访问的方法&#xff0c;增加Iterator的意义在哪。本文我们将学习迭代器模式&#xff0c;用以探讨Iterator的作用。 1.1 迭代器模式概述 提供一…

地图 SDK gitlab 测试代码环境配置

文章目录 1、Gradle 插件版本和 Gradle 版本2、NDK 路径3、JDK 版本4、修改变量5、重新 BuildQ&A&#xff1a; test 用例启动之后问题问题描述 拉下项目的 dev 分支&#xff0c;然后依赖的 mapsdk-base 也完成下载 &#xff0c;之后就是Android Studio 配置环境 1、Gradle …

【Git】保姆级详解:Git配置SSH Key(密钥和公钥)到github

博主简介&#xff1a;22级计算机科学与技术本科生一枚&#x1f338;博主主页&#xff1a;是瑶瑶子啦每日一言&#x1f33c;: “当人们做不到一些事情的时候&#xff0c;他们会对你说你也同样不能。”——《当幸福来敲门》 克里斯加德纳 Git配置SSH Key 一、什么是Git?二、什么…

如何给Google Chrome增加proxy

1. 先打开https://github.com/KaranGauswami/socks-to-http-proxy/releases 我的电脑是Liunx系统所以下载第一个 2. 下载完之后把这个文件变成可执行文件&#xff0c;可以是用这个命令 chmod x 文件名 3. 然后执行这个命令&#xff1a; ./sthp-linux -p 8080 -s 127.0.0.1:…

Jwt(Json web token)——使用token的权限验证方法 用户+角色+权限表设计 SpringBoot项目应用

目录 引出使用token的权限验证方法流程 用户、角色、权限表设计权限表角色表角色-权限关联表用户表查询用户的权限&#xff08;四表联查&#xff09;数据库的视图 项目中的应用自定义注解拦截器controller层DTO返回给前端枚举类型的json化日期json问题 实体类-DAO 总结 引出 1.…

学习pytorch

学习pytorch 1. 环境安装配置镜像源conda命令记录遇到的问题1. torch.cuda.is_available() False 1. 环境安装 B站小土堆视频 配置镜像源 conda config --show channels conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainhttp://www.m…

leetcode 图算法小结

文章目录 1 DFS和BFS797. 所有可能的路径200. 岛屿数量 1 DFS和BFS 深度优先遍历一般采用回溯算法进行解决。回溯算法&#xff0c;其实就是dfs的过程。 void dfs(参数) {处理节点dfs(图&#xff0c;选择的节点); // 递归回溯&#xff0c;撤销处理结果 }广度优先搜索理解为层次…

Java-数据类型

数据类型 数据类型基本数据类型整形浮点字符型布尔类字节 引用数据类型类型转换显式转换隐式转换注意事项 整型提升 作为学习Java的入门知识,在刚开始面试的几场,表现不太好的时候,就有几个面试官会问这个问题,估计此时此刻我在他们的心目中也就是这个问题的层次了吧…当然,当时…