【Pytorch+torchvision】MNIST手写数字识别

news2024/11/24 6:45:14

深度学习入门项目,含代码详细解析

在本文中,我们将在PyTorch中构建一个简单的卷积神经网络,并使用MNIST数据集训练它识别手写数字。 MNIST包含70,000张手写数字图像: 60,000张用于培训,10,000张用于测试。图像是灰度(即通道数为1)28x28像素,并且居中的,以减少预处理和加快运行。

目录

 1.整体代码

 2.代码解析

2.1参数设置

2.2数据集

2.3查看测试数据 

2.4定义卷积神经网络​编辑

2.5初始化网络与优化器

3.实验结果


 1.整体代码

import torch
import torchvision
from torch.utils.data import DataLoader
import torch.nn as nn #torch.nn层中包含可训练的参数
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
#注意下面两行在matplotlib使用上出错时,加上可不出错
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'

n_epochs = 3 #epoch的数量定义了将循环整个训练数据集的次数
batch_size_train = 64 #每次投喂的样本数量
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5 #优化器的超参数
log_interval = 10
random_seed = 1
torch.manual_seed(random_seed) #对于可重复的实验,须为任何使用随机数产生的东西设置随机种子
#训练集数据
train_loader = torch.utils.data.DataLoader(
  torchvision.datasets.MNIST('./data/', train=True, download=True, #加载该数据集(download=True)
                             transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 (0.1307,), (0.3081,))
                             ])), #Normalize()转换使用的值0.1307和0.3081是该数据集的全局平均值和标准偏差,这里将它们作为给定值
  batch_size=batch_size_train, shuffle=True)
#测试集数据
test_loader = torch.utils.data.DataLoader(
  torchvision.datasets.MNIST('./data/', train=False, download=True,
                             transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 (0.1307,), (0.3081,))
                             ])),
  batch_size=batch_size_test, shuffle=True) #使用size=1000对这个数据集进行测试
#查看一批测试数据由什么组成
examples = enumerate(test_loader) #enumerate指循环,类似for
batch_idx, (example_data, example_targets) = next(examples) #example_targets是图片实际对应的数字标签,example_data是指图片本身数据
print(example_targets)
print(example_data.shape) #输出torch.Size([1000, 1, 28, 28]),意味着我们有1000个例子的28x28像素的灰度(即没有rgb通道)

#定义卷积神经网络
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # batch*1*28*28(每次会送入batch个样本,输入通道数1(黑白图像),图像分辨率是28x28)
        # 下面的卷积层Conv2d的第一个参数指输入通道数,第二个参数指输出通道数(即用了几个卷积核),第三个参数指卷积核的大小
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5) #因为图像为黑白的,所以输入通道为1,此时输出数据大小变为28-5+1=24.所以batchx1x28x28 -> batchx10x24x24
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5) #第一个卷积层的输出通道数等于第二个卷积层是输入通道数。
        self.conv2_drop = nn.Dropout2d() #在前向传播时,让某个神经元的激活值以一定的概率p停止工作,可以使模型泛化性更强,因为它不会太依赖某些局部的特征
        self.fc1 = nn.Linear(320, 50) #由于下部分前向传播处理后,输出数据为20x4x4=320,传递给全连接层。# 输入通道数是320,输出通道数是50
        self.fc2 = nn.Linear(50, 10)#输入通道数是50,输出通道数是10,(即10分类(数字1-9),最后结果需要分类为几个就是几个输出通道数)。全连接层(Linear):y=x乘A的转置+b
    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2)) # batch*10*24*24 -> batch*10*12*12(2*2的池化层会减半,步长为2)(激活函数ReLU不改变形状)
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) #此时输出数据大小变为12-5+1=8(卷积核大小为5)(2*2的池化层会减半)。所以 batchx10x12x12 -> batchx20x4x4。
        x = x.view(-1, 320) # batch*20*4*4 -> batch*320
        x = F.relu(self.fc1(x)) #进入全连接层
        x = F.dropout(x, training=self.training) #减少遇到过拟合问题,dropout层是一个很好的规范模型。
        x = self.fc2(x)
        #计算log(softmax(x))
        return F.log_softmax(x)
#初始化网络和优化器
#如果我们使用GPU进行训练,应使用例如network.cuda()将网络参数发送给GPU。将网络参数传递给优化器之前,将它们传输到适当的设备很重要,否则优化器无法以正确的方式跟踪它们。
network = Net()
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
                      momentum=momentum)
train_losses = []
train_counter = []
test_losses = []
test_counter = [i*len(train_loader.dataset) for i in range(n_epochs + 1)]
#每个epoch对所有训练数据进行一次迭代。加载单独批次由DataLoader处理
#训练函数
def train(epoch):
    network.train() #在训练模型时会在前面加上
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad() #使用optimizer.zero_grad()手动将梯度设置为零,因为PyTorch在默认情况下会累积梯度
        output = network(data) #生成网络的输出(前向传递)
        loss = F.nll_loss(output, target) #计算输出(output)与真值标签(target)之间的负对数概率损失
        loss.backward() #对损失反向传播
        optimizer.step() #收集一组新的梯度,并使用optimizer.step()将其传播回每个网络参数
        if batch_idx % log_interval == 0: #log_interval=10,每10次投喂后输出一次
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))
            train_losses.append(loss.item()) #添加进训练损失列表中
            train_counter.append(
                (batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset)))
            #神经网络模块以及优化器能够使用.state_dict()保存和加载它们的内部状态。这样,如果需要,我们就可以继续从以前保存的状态dict中进行训练——只需调用.load_state_dict(state_dict)。
            torch.save(network.state_dict(), './model.pth')
            torch.save(optimizer.state_dict(), './optimizer.pth')


train(1)

#测试函数。总结测试损失,并跟踪正确分类的数字来计算网络的精度。
def test():
    network.eval() #在测试模型时在前面使用
    test_loss = 0
    correct = 0
    with torch.no_grad(): #使用上下文管理器no_grad(),我们可以避免将生成网络输出的计算结果存储在计算图(计算过程的构建,以便梯度反向传播等操作)中。(with是使用的意思)
        for data, target in test_loader:
            output = network(data) #生成网络的输出(前向传递)
            # 将一批的损失相加
            test_loss += F.nll_loss(output, target, size_average=False).item() #NLLLoss 的输入是一个对数概率向量和一个目标标签
            pred = output.data.max(1, keepdim=True)[1] ## 找到概率最大的下标
            correct += pred.eq(target.data.view_as(pred)).sum() #预测正确的数量相加
    test_loss /= len(test_loader.dataset)
    test_losses.append(test_loss)
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

test()

#我们将在循环遍历n_epochs之前手动添加test()调用,以使用随机初始化的参数来评估我们的模型。
for epoch in range(1, n_epochs + 1):
  train(epoch)
  test()

#评估模型的性能,画损失曲线
fig = plt.figure()
plt.plot(train_counter, train_losses, color='blue')
plt.scatter(test_counter, test_losses, color='red')
plt.legend(['Train Loss', 'Test Loss'], loc='upper right')
plt.xlabel('number of training examples seen')
plt.ylabel('negative log likelihood loss')
plt.show()

#输出自己找的测试图片,比较模型的输出。
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
with torch.no_grad():
  output = network(example_data)
fig1 = plt.figure()
for i in range(6):
  plt.subplot(2,3,i+1)
  plt.tight_layout()
  plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
  plt.title("Prediction: {}".format(
    output.data.max(1, keepdim=True)[1][i].item()))
  plt.xticks([])
  plt.yticks([])
plt.show()

#继续对网络进行训练,并看看如何从第一次培训运行时保存的state_dicts中继续进行训练。我们将初始化一组新的网络和优化器。
continued_network = Net()
continued_optimizer = optim.SGD(network.parameters(), lr=learning_rate,
                                momentum=momentum)

network_state_dict = torch.load('model.pth') #见左侧项目列表,有该文件
continued_network.load_state_dict(network_state_dict) #使用.load_state_dict(),我们现在可以加载网络的内部状态,并在最后一次保存它们时优化它们。
optimizer_state_dict = torch.load('optimizer.pth') #见左侧项目列表,有该文件
continued_optimizer.load_state_dict(optimizer_state_dict)
#同样,运行一个训练循环应该立即恢复我们之前的训练。为了检查这一点,我们只需使用与前面相同的列表来跟踪损失值
for i in range(4,9):
  test_counter.append(i*len(train_loader.dataset))
  train(i)
  test()
#我们再次看到测试集的准确性从一个epoch到另一个epoch有了(运行更慢的,慢的多了)提高。
#输出自己找的测试图片,比较模型的输出。
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
with torch.no_grad():
  output = network(example_data)
fig1 = plt.figure()
for i in range(6):
  plt.subplot(2,3,i+1)
  plt.tight_layout()
  plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
  plt.title("Prediction: {}".format(
    output.data.max(1, keepdim=True)[1][i].item()))
  plt.xticks([])
  plt.yticks([])
plt.show()

 2.代码解析

2.1参数设置

(1)深度学习中Epoch、Batch以及Batch size的设定 - 知乎 (zhihu.com)

Epoch(时期):将所有训练样本训练一次的过程

Batch:将整个训练样本分为若干个Batch

Batch_Size:每个Batch的样本数量

Iteration:训练一个Batch就是一个Iteration 

(2)学习率一般设置为0.1或0.01

(3)Pytorch——momentum动量_momentum pytorch_Chukai123的博客-CSDN博客

Momentum作用:动量,跳出局部最优解。

引入momentum之后的权重更新:v=momentum∗v−Lr∗dw;w=w+v

V为速度一般初始为0

(4)log_interval=10:间隔10个Batch输出一次

(5)【pytorch】torch.manual_seed()用法详解_torch.seed_Xavier Jiezou的博客-CSDN博客

torch.manual_seed(seed):设置每次运行py文件生成的随机数相同。

2.2数据集

(1)torch.utils.data.DataLoader

Shuffle=True:打乱数据

(2)torchvision.datasets.MNIST

Root:MNIST数据集根目录

Train:true则从training.pt创建数据集,否则从test.pt创建

Download:true则从internet下载放在根目录

Transform:

torchvision.transforms 参数解读/中文使用手册_torchvision.transforms.functional.rotate_江南蜡笔小新的博客-CSDN博客

torchvision.transforms.ToTensor
PIL图片或者numpy.ndarray转成Tensor类型的

torchvision.transforms.functional.normalize(tensor, mean, std)
根据给定的标准差和方差归一化tensor图片
参数:

  • tensor(Tensor)—— 形状为(C,H,W)Tensor图片
  • mean(squence) —— 每个通道的均值,序列
  • std (sequence) —— 每个通道的标准差,序列
    返回:返回归一化后的Tensor图片。

2.3查看测试数据 

Enumerate:将一个可遍历对象组合为一个索引序列

Next:返回迭代器的下一个项目

2.4定义卷积神经网络

Super:调用父类方法

卷积输出大小 = 输入分辨率 – 卷积核大小 + 1

输出通道数 = 使用卷积核数量

第一个全连接层输入分辨率如何确定?

28->24,24/2->12,12->8,8/2->4

这么说可能有些抽象,看下面的图就知道怎么来的了。

F.relu对应右侧图示的激活函数

PyTorch常用激活函数解析_f.leaky_relu_orientliu96的博客-CSDN博客

F.max_pool2d(,2):对卷积层进行最大池化,“2”为步长(2*2的池化层)

x.view:将tensor reshape成一维向量

F.log_softmax:归一化输出

2.5初始化网络与优化器

Optim.SGD:随机梯度下降

[i*len(train_loader.dataset) for i in range(n_epochs + 1)] 使用列表推导式构建一个样本数列表

 F.nll_lossNLLLoss 函数输入 input 之前,需要对 input 进行 log_softmax 处理,即将 input 转换成概率分布的形式,并且取对数,底数为 e。其损失函数为负对数似然。

3.实验结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/848885.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

融云:从「对话框」跳进魔法世界,AIGC 带给社交的新范式

8 月 17 日(周四),融云将带来直播课-《北极星如何协助开发者排查问题与预警风险?》欢迎点击上方报名~ AIGC 与社交结合的应用主要分两种,一是发乎于 AIGC,以大模型为基础提供虚拟伴侣等服务的 App&#xff…

7个月的测试经验,来面试居然开口要18K,我一问连5K都不值...

2021年8月份我入职了深圳某家创业公司,刚入职还是很兴奋的,到公司一看我傻了,公司除了我一个测试,公司的开发人员就只有3个前端2个后端还有2个UI,在粗略了解公司的业务后才发现是一个从零开始的项目,目前啥…

网络防御(7)

课堂实验 R1 [Huawei] int g0/0/0 [Huawei-GigabitEthernet0/0/0]ip add 100.1.12.2 24 protocolAug 1 2023 10:24:09-08:00 Huawei gOlIFNET/4/LINK STATE(1)[4]:The1ineIp on the interface GigabitEthernet0/0/0 has entered the Up state. [Huawei-GigabitEthernet0/0/…

lab7 proxylab

前情提要,如果看了书本,这个lab难度不高,但是如果不看书,难度还是挺高的,并且这个lab会用到cachelab中学到的东西,需要阅读 第十章:系统编程第十一章:网络编程第十二章:…

UE5.2 LyraDemo源码阅读笔记(四)

上一篇(三)讲到在模式玩法UI点击Elimination进入淘汰赛模式。 UI选择点击Elimination后,触发蓝图W_HostSessionScreen的HostSession节点,有: 调用这个方法切换关卡后,会调用到LyraGameMode.cpp的 ALyraGam…

双通道差分2:1/1:2USB31多路复用器/分离器ASW3410

ASW3410 是一个 2:1 或1:2 的数据开关,用于高速数据传输。 ASW3410数据开关支持高性能的各类高速数据 传输协议,如下: USB 3.1 SuperSpeed (Gen 2)10Gbps PCle (Gen 3) SATA 6Gbit/s 光纤通道HDMI 2.0 Display Port 1.2 特性 10GHz 典型带宽 2.5 GHz的…

【C++从0到王者】第十八站:手把手教你写一个简单的优先级队列

文章目录 一、优先级队列简介二、优先级队列的接口说明1.基本介绍及其使用2.构造函数3.求数组中第k个最大的元素 三、手撕优先级队列四、仿函数1.仿函数介绍2.优先级队列添加仿函数3.需要自己写仿函数的情形 五、优先级队列完整代码 一、优先级队列简介 优先级队列是一种容器适…

【网络安全】等保测评系列预热

【网络安全】等保测评系列预热 前言1. 什么是等级保护?2. 为什么要做等保?3. 路人甲疑问? 一、等保测试1. 渗透测试流程1.1 明确目标1.2 信息搜集1.3 漏洞探索1.4 漏洞验证1.5 信息分析1.6 获取所需1.7 信息整理1.8 形成报告 2. 等保概述2.1 …

HEIF—— 1、vs2017编译Nokia - heif源码

HEIF(高效图像文件格式) 一种图片有损压缩格式,它的后缀名通常为".heic"或".heif"。 HEIF 是由运动图像专家组 (MPEG) 标准化的视觉媒体容器格式,用于存储和共享图像和图像序列。它基于著名的 ISO 基本媒体文件格式 (ISOBMFF) 标准。HEIF读写器引擎…

NAT及其实验(eNSP,细致易懂)

目录 NAT产生背景 NAT概述NAT(Network Address Translation),网络地址转换 NAT工作规则 标准NAT技术 NAPT[网络地址端口转换[Port-->传输层-端口编号]] Easy IP——最简单的PAT NAT Server 静态NAT实验 动态NAT实验 NAPT实验 N…

Ajax 笔记(一)

笔记目录 1. Ajax 入门1.1 Ajax 概念1.2 axios 使用1.2.1 URL1.2.2 URL 查询参数1.2.3 小案例-查询地区列表1.2.4 常用请求方法和数据提交1.2.5 错误处理 1.3 HTTP 协议1.3.1 请求报文1.3.2 响应报文 1.4 接口文档1.5 案例1.5.1 用户登录(主要业务)1.5.2…

用MiCoNE工具对16S序列数据进行共现网络分析

谷禾健康 微生物群通常由数百个物种组成的群落,这些物种之间存在复杂的相互作用。绘制微生物群落中不同物种之间的相互关系,对于理解和控制其结构和功能非常重要。 微生物群高通量测序的激增导致创建了数千个包含微生物丰度信息的数据集。这些丰度可以转…

umi黑科技:把静态文件打包进静态网页中:P

为了能够跨平台通用,我现在很多工具都需要用JS进行开发。 比如我之前研究了半天的JS版本的报表工具。 但是这其中有个问题我没办法解决,就是有一些设置信息或者是模板文件需要一起打包进静态的页面中。 今天解决了这个问题,记录一下方法。 1…

Android 13 Launcher——屏蔽长按非icon区域出现弹窗

目录 一.背景 二.屏蔽此功能 一.背景 长按Launcher非icon区域也是会有弹窗的,会显示小组件等信息,定制开发要求长按非icon区域不要弹窗,我们来实现此功能,先看下未修改前的长按非icon区域的效果 如上图可以看出长按功能显示出壁…

计网实验第三章:UDP

问题集1 问题一 问题参考Wireshark的报文内容字段的显示信息 在这个数据包中,确定每个UDP报头字段的长度(以字节为单位) 答:96 bytes 问题二 长度字段中的值是什么的长度?你可以参考课文 这个答案)。用捕获的UDP数据包验证您的声明。 答&#xff1…

Cesium相机理解

关于cesium相机,包括里面内部原理网上有很多人讲的都很清楚了,我感觉这两个人写的都挺好得: 相机 Camera | Cesium 入门教程 (syzdev.cn) Cesium中的相机—setView&lookAtTransform_cesium setview_云上飞47636962的博客-CSDN博客上面这…

培训报名小程序报名确认开发

目录 1 创建页面2 创建URL参数3 信息展示4 消息订阅5 页面传参6 程序预览总结 我们上一篇介绍了报名功能的开发,在用户报名成功后需要展示报名的确认信息,如果信息无误提示用户支付,在支付之前需要让用户进行授权,允许小程序给用户…

打破传统直播,最新数字化升级3DVR全景直播

导语: 近年来,随着科技的不断创新和发展,传媒领域也正经历着一场前所未有的变革。在这个数字化时代,直播已经不再仅仅是在屏幕上看到一些人的视频,而是将观众带入一个真实世界的全新体验。其中,3DVR全景直…

Windows11右键菜单

刚开始使用Windows11时,新的右键菜单用起来很不习惯。 记录一下修改和恢复Windows11的右键菜单的方法。 1.Win11切换到旧版右键菜单: 方法:WinR打开CMD,运行下面的命令行 添加注册列表重启Windows资源管理器 reg add "HKC…

elevation mapping学习笔记3之使用D435i相机离线或在线订阅点云和tf关系生成高程图

文章目录 0 引言1 数据1.1 D435i相机配置1.2 协方差位姿1.3 tf 关系2 离线demo2.1 yaml配置文件2.2 launch启动文件2.3 数据录制2.4 离线加载点云生成高程图3 在线demo3.1 launch启动文件3.2 CMakeLists.txt3.3 在线加载点云生成高程图0 引言 elevation mapping学习笔记1已经成…