回归预测 | MATLAB实现基于SVM-RFE-BP支持向量机递归特征消除特征选择算法结合BP神经网络的多输入单输出回归预测

news2024/11/16 15:36:49

回归预测 | MATLAB实现基于SVM-RFE-BP支持向量机递归特征消除特征选择算法结合BP神经网络的多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现基于SVM-RFE-BP支持向量机递归特征消除特征选择算法结合BP神经网络的多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 研究内容
      • 程序设计
      • 参考资料

预测效果

1
2

3
4
5
6
7

基本介绍

MATLAB实现基于SVM-RFE-BP支持向量机递归特征消除特征选择算法结合BP神经网络的多输入单输出回归预测,输出为选择的特征序号
Chinese:
Options:可用的选项即表示的涵义如下
  -s svm类型:SVM设置类型(默认0)
  0 – C-SVC
  1 --v-SVC
  2 – 一类SVM
  3 – e -SVR
  4 – v-SVR
  -t 核函数类型:核函数设置类型(默认2)
  0 – 线性:u’v
  1 – 多项式:(ru’v + coef0)^degree
  2 – RBF函数:exp(-r|u-v|^2)
  3 –sigmoid:tanh(r
u’v + coef0)
经过特征选择后,保留特征的序号为:
126 160 161 163 165 166 237 239 240 370
评价结果如下所示:
平均绝对误差MAE为:0.27933
均方误差MSE为: 0.15813
均方根误差RMSEP为: 0.39765
决定系数R^2为: 0.93392
剩余预测残差RPD为: 4.2631
平均绝对百分比误差MAPE为: 0.0032299

研究内容

基于SVM-RFE-BP的特征选择算法结合BP神经网络的多输入单输出回归预测是一种结合了支持向量机递归特征消除(SVM-RFE)和反向传播(BP)神经网络的方法。下面是算法的基本步骤:
数据准备:准备包含多个输入特征和一个输出变量的训练数据集。确保数据集已经进行了预处理和标准化。
特征选择:使用SVM-RFE算法对输入特征进行排序和选择。SVM-RFE是一种递归特征消除算法,它通过反复训练支持向量机(SVM)模型,并剔除最不重要的特征,直到达到指定的特征数量或达到某个停止准则。
特征提取:使用SVM-RFE选择的特征作为输入,从训练数据集中提取这些特征。
神经网络构建:构建一个BP神经网络模型,该模型具有适当的输入层、隐藏层和输出层。输入层的节点数量应与选择的特征数量相同,输出层的节点数量为1。
神经网络训练:使用特征提取的数据作为输入,将输出变量作为目标,对BP神经网络进行训练。使用反向传播算法来更新网络的权重和偏置,以最小化预测输出与实际输出之间的误差。
预测:使用训练好的BP神经网络模型对新的输入特征进行预测。将这些特征输入到训练好的神经网络中,得到对应的输出。
这种基于SVM-RFE-BP的方法可以结合支持向量机的特征选择能力和神经网络的非线性建模能力,提高回归预测的性能和准确性。然而,需要注意的是,该方法的效果取决于数据集的特征和特征选择的参数设置,因此在实际应用中需要进行适当的调优和验证。

程序设计

  • 完整源码和数据获取方式1:私信博主回复SVM-RFE-BP回归或同等价值程序兑换;
  • 完整程序和数据下载方式2(资源处直接下载):MATLAB实现基于SVM-RFE-BP支持向量机递归特征消除特征选择算法结合BP神经网络的多输入单输出回归预测
  • 完整程序和数据下载方式3(订阅《智能学习》专栏,同时获取《智能学习》专栏收录程序4份,数据订阅后私信我获取):MATLAB实现基于SVM-RFE-BP支持向量机递归特征消除特征选择算法结合BP神经网络的多输入单输出回归预测,专栏外只能获取该程序。
%%  输出选择特征的对应序号
disp('经过特征选择后,保留特征的序号为:')
disp(save_index)

%%  特征选择后的数据集
p_train = p_train(:, save_index);
p_test  = p_test (:, save_index);

%%  矩阵转置适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%%  创建网络


%%  设置训练参数
net.trainParam.epochs = 1000;  % 最大迭代次数


%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%% 测试集结果
figure;
plotregression(T_test,T_sim2,['回归图']);
figure;
ploterrhist(T_test-T_sim2,['误差直方图']);
%%  均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);

%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;

SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));
%%  训练集绘图
figure
%plot(1:M,T_train,'r-*',1:M,T_sim1,'b-o','LineWidth',1)
plot(1:M,T_train,'r-*',1:M,T_sim1,'b-o','LineWidth',1.5)
legend('真实值','SVM-RFE预测值')
xlabel('预测样本')
ylabel('预测结果')

%% 预测集绘图
figure
plot(1:N,T_test,'r-*',1:N,T_sim2,'b-o','LineWidth',1.5)
legend('真实值','SVM-RFE预测值')
xlabel('预测样本')
ylabel('预测结果')


%% 测试集误差图
figure  
ERROR3=T_test-T_sim2;
plot(T_test-T_sim2,'b-*','LineWidth',1.5)

%% 绘制线性拟合图
%% 训练集拟合效果图
figure
plot(T_train,T_sim1,'*r');
xlabel('真实值')
ylabel('预测值')

title(string)
hold on ;h=lsline;
set(h,'LineWidth',1,'LineStyle','-','Color',[1 0 1])
%% 预测集拟合效果图
figure
plot(T_test,T_sim2,'ob');
xlabel('真实值')
ylabel('预测值')
string1 = {'测试集效果图';['R^2_p=' num2str(R2)  '  RMSEP=' 
set(h,'LineWidth',1,'LineStyle','-','Color',[1 0 1])
%% 求平均
R3=(R1+R2)./2;
error3=(error1+error2)./2;
%% 总数据线性预测拟合图
tsim=[T_sim1,T_sim2]';
S=[T_train,T_test]';
figure
plot(S,tsim,'ob');
xlabel('真实值')
ylabel('预测值')

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/839102.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Android Studio中使用cmake开发JNI实战

JNI学习大纲 一、JNI编程入门 二、Android Studio中使用cmake开发JNI实战 第一章节我们介绍了JNI的开发步骤,那这一章节我们就开始在Android Studio中实战一下吧,Lets Start。 1. Android Studio中安装CMake插件 AS中菜单栏选择Tools>SDK Manager在…

Servlet是什么和创建、配置第一个servlet

Servlet是什么和创建、配置第一个servlet servlet是什么 2、创建servlet 方式一: 方式二: 方式三:

vscode中无法使用git解决方案

1 首先查看git安装目录 where git 2 找到bash.exe 的路径 比如:C:/Users/Wangzd/AppData/Local/Programs/Git/bin/bash 3 找到vscode的配置项setting.json 4 添加 "terminal.integrated.shell.windowns": "C:/Users/Wangzd/AppData/Local/Pr…

Python如何解决Amazon亚马逊“图文验证码”识别(6)

前言 本文是该专栏的第55篇,后面会持续分享python爬虫干货知识,记得关注。 在本专栏前面,笔者有详细介绍多种登录验证码识别方法,感兴趣的同学可往前翻阅。而本文,笔者将单独详细介绍亚马逊Amazon的图文识别验证码的解决方法。 如上图所示,访问或请求频次达到一定程度之…

IPv6地址分类,EUI-64转换规则

1、可聚合的单全球单播地址Global Unique Address: Aggregate global unicast address,前3位是001,即2000::/3,目前IANA已经将一部分可聚合全球单播进行了专门使用,如:2001::/16用于IPV6互联网,…

深挖 Threads App 帖子布局,我进一步加深了对CSS网格布局的理解

当我遇到一个新产品时,我首先想到的是他们如何实现CSS。当我遇到Meta的Threads时也不例外。我很快就探索了移动应用程序,并注意到我可以在网页上预览公共帖子。 这为我提供了一个深入挖掘的机会。我发现了一些有趣的发现,我将在本文中讨论。 …

Docker相关命令与入门

1. Docker 命令 # centos 7 systemctl start docker # 启动服务 systemctl stop docker systemctl restart docker # 重启服务 systemctl status docker systemctl enable docker # 开机自启动1.1 镜像相关的命令 # 查看镜像 docker images docker images -q # 查看…

深度学习:探究Tensor和Numpy

目录 引言 1 pytorch中Tensor 1.1 什么是Tensor 1.2 为什么需要Tensor 1.3 如何创建Tensor 1.3.1 从已有其他数据结构转化创建为Tensor 1.3.2 随机初始化一个Tensor 1.3.3 从已保存文件加载一个Tensor 1.4 Tensor的特性 1.4.1 丰富的常用函数操作 1.4.2 灵活的dtype和…

使用TensorBoard进行可视化

1. TensorBoard介绍 TensorBoard是TensorFlow推出的可视化工具,可以可视化模型结构、跟踪并以表格形式显示模型指标。 TensorBoard的使用包括两个步骤: 在代码中设置TensorBoard,在训练的过程中将会根据设置产生日志文件在浏览器中可视化该…

启动RocketMQ报错

说明:启动RocketMQ消费者时,报以下错误:java.lang.IllegalStateException:Failed to start RocketMQ push consumer. 解决:看下所有的监听器类,检查是不是有相同的消费者组名,注释掉其中一个即可…

文心一言 VS 讯飞星火 VS chatgpt (71)-- 算法导论7.1 1题

参照图 7-1的方法,说明 PARTITION在数组 A(13,19,9,5,12,8,7,4,21,2,6,11)上的操作过程。 文心一言: PARTITION 是一种常…

C++笔记之while循环的帧率监测与控制

C笔记之while循环的帧率监测与控制 code review! 文章目录 C笔记之while循环的帧率监测与控制1.两个时间相关的类2.例程3.运行4.代码 1.两个时间相关的类 2.例程 3.运行 4.代码 // 帧率监测与控制程序 #include <chrono> #include <iostream> #include <thre…

python 连接oracle pandas以简化excel的编写和数据操作

python代码 Author: liukai 2810248865qq.com Date: 2022-08-18 04:28:52 LastEditors: liukai 2810248865qq.com LastEditTime: 2023-07-06 22:12:56 FilePath: \PythonProject02\pandas以简化excel的编写和数据操作.py Description: 这是默认设置,请设置customMade, 打开koro…

Python爬虫的学习day02 requests 模块post 函数, lmxl 模块的 etree 模块

1. requests 模块post 函数 1.1 post 函数的参数 &#xff08;简单版&#xff09; 参数1&#xff1a; url 网络地址 参数2&#xff1a; data 请求数据 &#xff08;一般数据是 账号&#xff0c;密码&#xff09; 参数3&#xff1a; headers 头请求 &#xff08…

概念解析 | 虚拟镜面:超越三次反射的非视线成像

虚拟镜面:超越三次反射的非视线成像 注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:虚拟镜面在非视线成像中的应用。 参考文献:Royo D, Sultan T, Muoz A, et al. Virtual Mirrors: Non-Line-of-Sight Imaging Beyond the Th…

MyBatis关联查询

文章目录 前言多对一关联 association一对多关联 collection 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 关联查询是指在一个查询中同时获取多个表中的数据&#xff0c;将它们结合在一起进行展示。 关联表需要两个及以上的表 数据库代码&#xff1…

初阶C语言——特别详细地介绍函数

系列文章目录 第一章 “C“浒传——初识C语言&#xff08;更适合初学者体质哦&#xff01;&#xff09; 第二章 详细认识分支语句和循环语句以及他们的易错点 第三章 初阶C语言——特别详细地介绍函数 目录 系列文章目录 前言 一、函数是个什么鬼东西&#xff1f; 二、C语…

springboot基于vue的高校迎新系统的设计与实现8jf9e

随着时代的发展&#xff0c;人们的生活方式得到巨大的改变&#xff0c;从而慢慢地产生了大量高校迎新信息&#xff0c;高校迎新信息需要一个现代化的管理系统&#xff0c;进行高校迎新信息的管理。 高校迎新系统的开发就是为了解决高校迎新管理的问题&#xff0c;系统开发是基于…

JavaScript |(六)DOM事件 | 尚硅谷JavaScript基础实战

学习来源&#xff1a;尚硅谷JavaScript基础&实战丨JS入门到精通全套完整版 文章目录 &#x1f4da;事件对象&#x1f4da;事件的冒泡&#x1f4da;事件的委派&#x1f4da;事件的绑定&#x1f407;赋值绑定&#x1f407;addEventListener()&#x1f407;attachEvent()&…

认识FFMPEG框架

FFMPEG全称: Fast Forward Moving Picture Experts Group (MPEG:动态图像专家组) ffmpeg相关网站: git://source.ffmpeg.org/ffmpeg.git http://git.videolan.org/?pffmpeg.git https://github.com/FFmpeg/FFmpeg FFMPEG框架基本组件: AVFormat , AVCodec, AVDevice, AVFil…