【深度学习_TensorFlow】感知机、全连接层、神经网络

news2024/9/24 23:56:32

写在前面

感知机、全连接层、神经网络是什么意思?


感知机: 是最简单的神经网络结构,可以对线性可分的数据进行分类。

全连接层: 是神经网络中的一种层结构,每个神经元与上一层的所有神经元相连接,实现全连接。

神经网络: 是由大量神经元组成的网络结构,通过层与层之间的连接,实现对数据的表示和转换。神经网络通常由输入层、隐藏层和输出层等全连接层构成。

三者有什么关系?


  • 感知机是最简单的单层神经网络,仅有输入层和输出层。

  • 全连接层是构建多层神经网络时常用的一种层类型。

  • 神经网络通常由多层的全连接层叠加构成,从而实现比单层感知机更强大的功能。

所以可以说,感知机是简单的神经网络,全连接层是构建复杂神经网络的基础模块,神经网络通过组合多层全连接层实现复杂的功能。感知机和全连接层都是神经网络的组成要素。


写在中间

一、感知机

感知机(Perceptron)是一种简单的人工神经网络,由Frank Rosenblatt于1957年提出。它是一种线性二分类模型,主要用于解决二元分类问题。感知机的基本结构包括输入层、输出层和一个线性分类器。输入层接收输入数据,输出层提供分类结果,线性分类器将输入数据映射到输出层。

感知机模型的结构如下,它接受长度为𝑛的一维向量𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛],每个输入节点通过权值为[w1, w2, … , w𝑛]的连接汇集为变量 𝑧

z = w 1 x 1 + w 2 x 2 + ⋯ + w n x n + b z=w_{1}x_{1}+w_{2}x_{2}+\cdots+w_{n}x_{n}+b z=w1x1+w2x2++wnxn+b

写为向量的形式为:

z = w T x + b z=w^{\mathrm{T}}x+b z=wTx+b

其中𝑏称为感知机的偏置(Bias),一维向量𝒘 = [𝑤1, 𝑤2, … , 𝑤𝑛]称为感知机的权值(Weight),𝑧 称为感知机的净活性值(Net Activation)。

感知机是线性模型,并不能处理线性不可分问题。通过在线性模型后添加激活函数后得到活性值(Activation) :

a = σ ( z ) = σ ( w T x + b ) a=\sigma(z)=\sigma(w^{\mathrm{T}}x+b) a=σ(z)=σ(wTx+b)

其中激活函数可以是阶跃函数,也可以是符号函数:

a = { 1 w T x + b ≥ 0 0 w T x + b < 0 a=\left\{\begin{matrix}1&w^\mathrm{T}x+b\geq0\\0&w^\mathrm{T}x+b<0\end{matrix}\right. a={10wTx+b0wTx+b<0

a = { 1 w T x + b ≥ 0 − 1 w T x + b < 0 a=\left\{\begin{matrix}1&\text{w}^\mathrm{T}x+b\geq0\\-1&\text{w}^\mathrm{T}x+b<0\end{matrix}\right. a={11wTx+b0wTx+b<0

在这里插入图片描述

二、全连接层

( 1 )了解概念

全连接层(Fully Connected Layer)是神经网络中的一种层结构,主要用于将前一层的输出与后一层的输入进行连接。全连接层中的每个神经元都与前一层的所有神经元相连,因此得名。它在感知机的基础上,将不连续的阶跃激活函数换成了其它平滑连续可导的激活函数,并通过堆叠多个网络层来增强网络的表达能力

我们通过替换感知机的激活函数,同时并行堆叠多个神经元来实现多输入、多输出的网络层结构。举一个最常用的例子:

构成 3 输入节点、2 个输出节点的网络层。其中第一个输出节点的输出为:

o 1 = σ ( w 11 ⋅ x 1 + w 21 ⋅ x 2 + w 31 ⋅ x 3 + b 1 ) o_1=\sigma(w_{11}\cdot x_1+w_{21}\cdot x_2+w_{31}\cdot x_3+b_1) o1=σ(w11x1+w21x2+w31x3+b1)

第二个输出节点的输出为:

o 2 = σ ( w 12 ⋅ x 1 + w 22 ⋅ x 2 + w 32 ⋅ x 3 + b 2 ) o_{2}=\sigma(w_{12}\cdot x_{1}+w_{22}\cdot x_{2}+w_{32}\cdot x_{3}+b_{2}) o2=σ(w12x1+w22x2+w32x3+b2)

输出向量为𝒐 = [𝑜1, 𝑜2],通过矩阵可以表达为如下的形式:

[ o 1 o 2 ] = [ x 1 x 2 x 3 ] @ [ w 11 w 12 w 21 w 22 w 31 w 32 ] + [ b 1 b 2 ] \begin{bmatrix}o_1&o_2\end{bmatrix}=\begin{bmatrix}x_1&x_2&x_3\end{bmatrix}@\begin{bmatrix}w_{11}&w_{12}\\w_{21}&w_{22}\\w_{31}&w_{32}\end{bmatrix}+\begin{bmatrix}b_1&b_2\end{bmatrix} [o1o2]=[x1x2x3]@ w11w21w31w12w22w32 +[b1b2]

可以归纳为

O = X @ W + b \boldsymbol{O}=X@W+\boldsymbol{b} O=X@W+b

输入矩阵𝑿的 shape 定义为 [ b , d i n ] [b, d_{in}] [b,din],𝑏为样本数量,此处只有 1 个样本参与前向运算, d i n d_{in} din为输入节点数;权值矩阵 W 的 shape 定义为 [ d i n , d o u t ] [d_{in}, d_{out}] [din,dout] d o u t d_{out} dout为输出节点数,偏置向量 b 的 shape 定义为 [ d o u t ] [d_{out}] [dout]

2 )学会实现

全连接层本质上是矩阵的相乘和相加运算,实现并不复杂。TensorFlow 中有使用方便的层实现方式:layers.Dense(units, activation)。通过 layer.Dense 类,只需要指定输出节点数 units 和激活函数类型 activation 即可。

fc = layers.Dense(units=512, activation=tf.nn.relu)

上述通过一行代码即可以创建一层全连接层 fc,并指定输出节点数为 512,并创建内部权值张量𝑾和偏置张量𝒃。我们可以通过类内部的成员名 fc.kernelfc.bias来获取权值张量𝑾和偏置张量𝒃对象

三、神经网络

通过层层堆叠上面的全连接层,保证前一层的输出节点数与当前层的输入节点数匹配,,即可堆叠出任意层数的网络。我们把这种由神经元相互连接而成的网络叫做神经网络。

如图其中第 1~3 个全连接层在网络中间,称之为隐藏层 1、2、3,最后一个全连接层的输出作为网络的输出,称为输出层。隐藏层 1、2、3 的输出节点数分别为[256,128,64],输出层的输出节点数为 10。

在这里插入图片描述

下面我们就用张量的方式来实现上面的神经网络

# 隐藏层 1 张量 
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1)) 
b1 = tf.Variable(tf.zeros([256])) 
# 隐藏层 2 张量 
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1)) 
b2 = tf.Variable(tf.zeros([128])) 
# 隐藏层 3 张量 
w3 = tf.Variable(tf.random.truncated_normal([128, 64], stddev=0.1)) 
b3 = tf.Variable(tf.zeros([64])) 
# 输出层张量 
w4 = tf.Variable(tf.random.truncated_normal([64, 10], stddev=0.1)) 
b4 = tf.Variable(tf.zeros([10])) 

但是随着网络层数的增加,这样手动创建一个神经网络就显得过于繁琐,我们有更为简单的层实现方式,对于这种数据依次向前传播的网络,也可以通过 Sequential 容器封装成一个网络大类对象,调用大类的前向计算函数一次即可完成所有层的前向计算,使用起来更加方便:

#  导入 Sequential 容器 
from keras import layers,Sequential 
 
#  通过 Sequential 容器封装为一个网络类 
model = Sequential([ 
    layers.Dense(256, activation=tf.nn.relu) , # 创建隐藏层 1 
    layers.Dense(128, activation=tf.nn.relu) , # 创建隐藏层 2  
    layers.Dense(64, activation=tf.nn.relu) , # 创建隐藏层 3  
    layers.Dense(10, activation=None) , # 创建输出层  
])  

out = model(x) #  前向计算得到输出  

至此,网络构建的大体流程就讲解完毕了


写在最后

👍🏻点赞,你的认可是我创作的动力!
⭐收藏,你的青睐是我努力的方向!
✏️评论,你的意见是我进步的财富!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/838971.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

kibana-7.17.3版本安装及汉化

1、官网下载地址&#xff1a;https://www.elastic.co/cn/downloads/kibana 选择安装系统类型和历史版本kibana安装版本要和es版本对应 2、上传安装包然后解压 tar -zxf kibana-7.17.3-linux-x86_64.tar.gz 3、更改目录属主 chown elk. kibana-7.17.3-linux-x86_64 -R …

C语言笔试训练【第三天】

大家好&#xff0c;我是纪宁。 今天是C语言笔试训练的第三天&#xff0c;大家加油&#xff01; 第一题 1、已知函数的原型是&#xff1a; int fun(char b[10], int *a) &#xff0c;设定义&#xff1a; char c[10];int d; &#xff0c;正确的调用语句是&#xff08; &#xf…

基于Mediapipe的姿势识别并同步到Unity人体模型中

如题&#xff0c;由于是商业项目&#xff0c;无法公开源码&#xff0c;这里主要说一下实现此功能的思路。 人体关节点识别 基于Mediapipe Unity插件进行开发&#xff0c;性能比较低的CPU主机&#xff0c;无法流畅地运行Mediapipe&#xff0c;这个要注意一下。 Mediapipe33个人体…

STM32F103——基础篇

目录 1、寄存器基础知识 2、STM32F103系统架构 2.1 Cortex M3 内核&芯片 2.2 STM32F103系统架构 3、存储器映射 4、寄存器映射 4.1 寄存器描述解读 4.2 寄存器映射举例 4.3 寄存器地址计算 4.4 stm32f103xe.h 寄存器映射 1、寄存器基础知识 概念&#xff1a;寄存…

【C语言进阶】指针的高级应用(上)

本专栏介绍&#xff1a;免费专栏&#xff0c;并且会持续更新C语言基础知识&#xff0c;欢迎各位订阅关注。 关注我&#xff0c;带你了解更多关于机器人、嵌入式、人工智能等方面的优质文章&#xff0c;坚持更新&#xff01; 大家的支持才是更新的最强动力&#xff01; 文章目录…

详解PHP反射API

PHP中的反射API就像Java中的java.lang.reflect包一样。它由一系列可以分析属性、方法和类的内置类组成。它在某些方面和对象函数相似&#xff0c;比如get_class_vars()&#xff0c;但是更加灵活&#xff0c;而且可以提供更多信息。反射API也可与PHP最新的面向对象特性一起工作&…

掌握 JVM 的参数及配置

点击下方关注我&#xff0c;然后右上角点击...“设为星标”&#xff0c;就能第一时间收到更新推送啦~~~ JVM&#xff08;Java虚拟机&#xff09;是Java编程语言的核心组件之一&#xff0c;它负责执行Java程序&#xff0c;并提供一系列参数和配置选项&#xff0c;可以调整Java程…

探秘企业DevOps一体化平台建设终极形态丨IDCF

笔者从事为企业提供研发效能改进解决方案相关工作十几年&#xff0c;为国内上百家企业提供过DevOps咨询及解决方案落地解决方案&#xff0c;涉及行业包括&#xff1a;金融、通信、制造、互联网、快销等多种行业。 DevOps的核心是研发效能改进&#xff0c;效能的提升离不开强大…

Linux基本开发工具(一)

文章目录 Linux基本开发工具&#xff08;一&#xff09;Linux安装和卸载软件Linux 软件包管理器 yum关于sudo命令关于yum源的换源问题 vim编辑器的使用vim三种模式&#xff08;常见&#xff09;vim的基本操作vim配置 Linux基本开发工具&#xff08;一&#xff09; Linux安装和…

Dubbo中使用netty

技术主题 netty在Dubbo中的使用,主要集中在网络通信上, 技术原理 Dubbo是什么 高性能、轻量级的开源java的RPC框架,提供三大核心能力:面向接口的远程方法调用,智能容错和负载均衡,以及服务自动注册和发现。 Dubbo的传输结构 1、魔数标识符(四个字节),用于区分不同…

机器人开发--兴颂雷达介绍

机器人开发--兴颂雷达介绍 1 介绍2 使用手册参考 1 介绍 佛山市兴颂机器人科技有限公司&#xff08;Hinson&#xff09;是一家集研发、设计、生产、销售机器人(AGV)导航核心零部件、并提供整体运动控制方案的自主创新型国家高新技术企业。 2 使用手册 兴颂激光雷达使…

HDFS中的sequence file

sequence file序列化文件 介绍优缺点格式未压缩格式基于record压缩格式基于block压缩格式 介绍 sequence file是hadoop提供的一种二进制文件存储格式一条数据称之为record&#xff08;记录&#xff09;&#xff0c;底层直接以<key, value>键值对形式序列化到文件中 优…

【flink】开启savepoint

先启动一个任务 flink run -c com.yang.flink.CDCJob test-cdc.jar开启savepoint 命令&#xff1a; flink savepoint JobID 文件地址 flink savepoint e929a11d79bdc5e6f140f2cfb92e1335 file:///workspace/flinkSavepoints/backend这样就开启好了 操作中的错误 详细信…

HTTP——八、确认访问用户身份的认证

HTTP 一、何为认证二、BASIC认证BASIC认证的认证步骤 三、DIGEST认证DIGEST认证的认证步骤 四、SSL客户端认证1、SSL 客户端认证的认证步骤2、SSL 客户端认证采用双因素认证3、SSL 客户端认证必要的费用 五、基于表单认证1、认证多半为基于表单认证2、Session 管理及 Cookie 应…

【ONE·Linux || 基础IO(二)】

总言 文件系统与动静态库相关介绍。 文章目录 总言2、文件系统2.1、背景知识2.2、磁盘管理2.2.1、磁盘文件系统图2.2.2、inode与文件名 2.3、软硬链接 3、动静态库3.1、站在编写库的人的角度&#xff1a;如何写一个库&#xff1f;3.1.1、静态库制作3.1.3、动态库制作 3.2、站在…

初识MySQL数据库之用户管理

目录 一、用户管理 二、用户 1. 用户信息 2. 创建用户 3. 用户登录测试 4. 删除用户 5. 设置用户远端登录 6. 修改密码 6.1 修改当前用户的密码 6.2 root用户修改指定用户的密码 三、权限 1. 数据库中的各个权限含义 2. 给用户授权 3. 查看用户拥有权限 4. 授权…

VSCode---通过ctrl+鼠标滚动改变字体大小

打开设置然后在右边输editor.mouseWheelZoo勾选即可实现鼠标滚动改变字体大小 4.这种设置的字体大小是固定的

Wordpress升级版本后插件和主题常见出错及处理方法整理【持续更新】

Wordpress报错怎么解决&#xff1f; 一般常用的排查方法&#xff1a; 暂时禁用所有插件&#xff1b;将主题更改为默认主题&#xff1b; 修改wp-config.php文件&#xff1b;更新固定链接设置&#xff0c;确保设置正确&#xff1b;检查.htaccess文件是否存在且是否可写&#xf…

IL汇编实现两数相加输出结果

话说前面没有实现IL汇编2数相加&#xff1b;鼓捣了一下&#xff0c;实现的代码如下&#xff1b; .assembly extern mscorlib {}.assembly Test{.ver 1:0:1:0}.module test.exe.method static void main() cil managed{.maxstack 8.entrypoint.locals init (int32 V_0, int3…

数据集成、类的派生树、算子、软件核化。

数据集成、类的派生树、算子、软件核化TOC 数据集成&#xff1a;数据集成首先需要对数据进行分类、组织、排序&#xff0c;然后按照一定的规则合成、展示数据&#xff08;可以是生成式网页数据&#xff09;。对于元宇宙、大数据、大模型、基于搜索的计算、数据集成都是提高效率…