AOF日志:宕机了,Redis如何避免数据丢失

news2024/9/25 19:20:00

当服务器宕机后,数据全部丢失:我们很容易想到的一个解决方案是从后端数据库恢复这些数据,但这种方式存在两个问题:一是,需要频繁访问数据库,会给数据库带来巨大的压力;二是,这些数据是从慢速数据库中读取出来的,性能肯定比不上从 Redis 中读取,导致使用这些数据的应用程序响应变慢。所以,对 Redis 来说,实现数据的持久化,避免从后端数据库中进行恢复,是至
关重要的。

目前,Redis 的持久化主要有两大机制,即 AOF 日志和 RDB 快照。

AOF 日志是如何实现的?

说到日志,我们比较熟悉的是数据库的写前日志(Write Ahead Log, WAL),也就是
说,在实际写数据前,先把修改的数据记到日志文件中,以便故障时进行恢复。不过,
AOF 日志正好相反,它是写后日志,“写后”的意思是 Redis 是先执行命令,把数据写入
内存,然后才记录日志,如下图所示:

 那 AOF 为什么要先执行命令再记日志呢?要回答这个问题,我们要先知道 AOF 里记录了
什么内容?

传统数据库的日志,例如 redo log(重做日志),记录的是修改后的数据,而 AOF 里记
录的是 Redis 收到的每一条命令,这些命令是以文本形式保存的。

我们以 Redis 收到“set testkey testvalue”命令后记录的日志为例,看看 AOF 日志的内
容。其中,“*3”表示当前命令有三个部分,每部分都是由“$+数字”开头,后面紧跟着
具体的命令、键或值。这里,“数字”表示这部分中的命令、键或值一共有多少字节。例
如,“$3 set”表示这部分有 3 个字节,也就是“set”命令。

         但是,为了避免额外的检查开销,Redis 在向 AOF 里面记录日志的时候,并不会先去对这
些命令进行语法检查。所以,如果先记日志再执行命令的话,日志中就有可能记录了错误
的命令,Redis 在使用日志恢复数据时,就可能会出错。

        而写后日志这种方式,就是先让系统执行命令,只有命令能执行成功,才会被记录到日志
中,否则,系统就会直接向客户端报错。所以,Redis 使用写后日志这一方式的一大好处
是,可以避免出现记录错误命令的情况。

        除此之外,AOF 还有一个好处:它是在命令执行后才记录日志,所以不会阻塞当前的写操
作。

        不过,AOF 也有两个潜在的风险 :

        首先,如果刚执行完一个命令,还没有来得及记日志就宕机了,那么这个命令和相应的数
据就有丢失的风险。如果此时 Redis 是用作缓存,还可以从后端数据库重新读入数据进行恢复,但是,如果 Redis 是直接用作数据库的话,此时,因为命令没有记入日志,所以就无法用日志进行恢复了。

        其次,AOF 虽然避免了对当前命令的阻塞,但可能会给下一个操作带来阻塞风险。这是因
为,AOF 日志也是在主线程中执行的,如果在把日志文件写入磁盘时,磁盘写压力大,就
会导致写盘很慢,进而导致后续的操作也无法执行了

        其次,AOF 虽然避免了对当前命令的阻塞,但可能会给下一个操作带来阻塞风险。这是因
为,AOF 日志也是在主线程中执行的,如果在把日志文件写入磁盘时,磁盘写压力大,就
会导致写盘很慢,进而导致后续的操作也无法执行了


三种写回策略

其实,对于这个问题,AOF 机制给我们提供了三个选择,也就是 AOF 配置项
appendfsync 的三个可选值。

        Always,同步写回:每个写命令执行完,立马同步地将日志写回磁盘;
        Everysec,每秒写回:每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲
        区,每隔一秒把缓冲区中的内容写入磁盘;
        No,操作系统控制的写回:每个写命令执行完,只是先把日志写到 AOF 文件的内存缓
        冲区,由操作系统决定何时将缓冲区内容写回磁盘

        针对避免主线程阻塞和减少数据丢失问题,这三种写回策略都无法做到两全其美。我们来
分析下其中的原因:

        “同步写回”可以做到基本不丢数据,但是它在每一个写命令后都有一个慢速的落盘操
作,不可避免地会影响主线程性能;

        虽然“操作系统控制的写回”在写完缓冲区后,就可以继续执行后续的命令,但是落盘
的时机已经不在 Redis 手中了,只要 AOF 记录没有写回磁盘,一旦宕机对应的数据就
丢失了;                

        每秒写回”采用一秒写回一次的频率,避免了“同步写回”的性能开销,虽然减少了
对系统性能的影响,但是如果发生宕机,上一秒内未落盘的命令操作仍然会丢失。所
以,这只能算是,在避免影响主线程性能和避免数据丢失两者间取了个折中。

三种写回策略的优缺点:

我们就可以根据系统对高性能和高可靠性的要求,来选择使用哪种写回策略

 

        但是,按照系统的性能需求选定了写回策略,并不是“高枕无忧”了。毕竟,AOF 是以文
件的形式在记录接收到的所有写命令。随着接收的写命令越来越多,AOF 文件会越来越
大。这也就意味着,我们一定要小心 AOF 文件过大带来的性能问题。 

        这里的“性能问题”,主要在于以下三个方面:一是,文件系统本身对文件大小有限制,
无法保存过大的文件
;二是,如果文件太大,之后再往里面追加命令记录的话,效率也会
变低
;三是,如果发生宕机,AOF 中记录的命令要一个个被重新执行,用于故障恢复,如
果日志文件太大,整个恢复过程就会非常缓慢
,这就会影响到 Redis 的正常使用。

        所以,我们就要采取一定的控制手段,这个时候,AOF 重写机制就登场了。

日志文件太大了怎么办?

        简单来说,AOF 重写机制就是在重写时,Redis 根据数据库的现状创建一个新的 AOF 文
件,也就是说,读取数据库中的所有键值对,然后对每一个键值对用一条命令记录它的写
入。比如说,当读取了键值对“testkey”: “testvalue”之后,重写机制会记录 set
testkey testvalue 这条命令。这样,当需要恢复时,可以重新执行该命令,实
现“testkey”: “testvalue”的写入。

        为什么重写机制可以把日志文件变小呢? 实际上,重写机制具有“多变一”功能。所谓
的“多变一”,也就是说,旧日志文件中的多条命令,在重写后的新日志中变成了一条命
令。 

        我们知道,AOF 文件是以追加的方式,逐一记录接收到的写命令的。当一个键值对被多条
写命令反复修改时,AOF 文件会记录相应的多条命令。但是,在重写的时候,是根据这个
键值对当前的最新状态,为它生成对应的写入命令。这样一来,一个键值对在重写日志中
只用一条命令就行了,而且,在日志恢复时,只用执行这条命令,就可以直接完成这个键
值对的写入了。       

        下面这张图就是一个例子:

         当我们对一个列表先后做了 6 次修改操作后,列表的最后状态是[“D”, “C”, “N”],
此时,只用 LPUSH u:list “N”, “C”, "D"这一条命令就能实现该数据的恢复,这就节省
了五条命令的空间。对于被修改过成百上千次的键值对来说,重写能节省的空间当然就更
大了。

        不过,虽然 AOF 重写后,日志文件会缩小,但是,要把整个数据库的最新数据的操作日志
都写回磁盘,仍然是一个非常耗时的过程。这时,我们就要继续关注另一个问题了:重写
会不会阻塞主线程?

AOF 重写会阻塞吗?

        和 AOF 日志由主线程写回不同,重写过程是由后台线程 bgrewriteaof 来完成的,这也是
为了避免阻塞主线程,导致数据库性能下降。

        我把重写的过程总结为“一个拷贝,两处日志”

        一个拷贝”就是指,每次执行重写时,主线程 fork 出后台的 bgrewriteaof 子进程。此
时,fork 会把主线程的内存拷贝一份给 bgrewriteaof 子进程,这里面就包含了数据库的
最新数据。然后,bgrewriteaof 子进程就可以在不影响主线程的情况下,逐一把拷贝的数
据写成操作,记入重写日志。

        “两处日志”又是什么呢?

        因为主线程未阻塞,仍然可以处理新来的操作。此时,如果有写操作,第一处日志就是指
正在使用的 AOF 日志,Redis 会把这个操作写到它的缓冲区。这样一来,即使宕机了,这
个 AOF 日志的操作仍然是齐全的,可以用于恢复。

        而第二处日志,就是指新的 AOF 重写日志。这个操作也会被写到重写日志的缓冲区。这
样,重写日志也不会丢失最新的操作。等到拷贝数据的所有操作记录重写完成后,重写日
志记录的这些最新操作也会写入新的 AOF 文件,以保证数据库最新状态的记录。此时,我
们就可以用新的 AOF 文件替代旧文件了。

 总结来说,每次 AOF 重写时,Redis 会先执行一个内存拷贝,用于重写;然后,使用两个
日志保证在重写过程中,新写入的数据不会丢失。而且,因为 Redis 采用额外的线程进行
数据重写,所以,这个过程并不会阻塞主线程。

问题的提出

        不过,你可能也注意到了,落盘时机和重写机制都是在“记日志”这一过程中发挥作用
的。例如,落盘时机的选择可以避免记日志时阻塞主线程,重写可以避免日志文件过大。
但是,在“用日志”的过程中,也就是使用 AOF 进行故障恢复时,我们仍然需要把所有的
操作记录都运行一遍。再加上 Redis 的单线程设计,这些命令操作只能一条一条按顺序执
行,这个“重放”的过程就会很慢了。
        那么,有没有既能避免数据丢失,又能更快地恢复的方法呢?当然有,那就是 RDB 快照
了。

        AOF 日志重写的时候,是由 bgrewriteaof 子进程来完成的,不用主线程参与,我们今
天说的非阻塞也是指子进程的执行不阻塞主线程。但是,你觉得,这个重写过程有没有
其他潜在的阻塞风险呢?如果有的话,会在哪里阻塞?

        AOF 重写也有一个重写日志,为什么它不共享使用 AOF 本身的日志呢?

        学习就是这样你会发现,你学着学着就会发现很多问题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/838710.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

整数规划——第三章 全单模矩阵

整数规划——第三章 全单模矩阵 若线性规划问题的约束矩阵为全单模矩阵,则该问题可行域的顶点都是整数点,从而线性规划与整数规划的最优解相同。 3.1 全单模性与最优性 考虑线性整数规划问题: (IP) min ⁡ c T x , s . t . A x ≤ b , x …

19、springboot引用配置属性或引用生成文件的属性或引用随机值

引用配置属性或引用生成文件的属性或引用随机值 ★ 使用占位符引用其他配置属性: 配置文件中可用${}占位符引用已有的属性,被引用的属性可以是: - 已定义的属性。 - 来自其他配置源(比如命令行的选项参数、环境变量、系统属性等…

JGJ79-2012建筑地基处理技术规范

为了在地基处理的设计和施工中贯执行国家的技术经济政策,做到安全适用、技术先进、经济合理、确保质量、保护环境,制定本规范。 本规范适用于建筑工程地基处理的设计、施工和质量检验。 地基处理除应满足工程设计要求外,尚应做到因地制宜就…

【数模】奇异值分解SVD和图形处理

介绍奇异值分解在图形压缩中的运用,并将简单介绍下Matlab对于图形和视频的处理 一、奇异值分解介绍 1.1 基本概念 奇异值分解(Singular Value Decomposition,以下简称SVD)是线性代数中一种重要的矩阵分解: U和V都是正交矩阵∑是奇异值矩阵&…

操作系统_内存管理

这里写目录标题 虚拟内存是什么为什么要有虚拟内存虚拟内存的实现方式1.分页查找过程页表的底层实现 2.分段段表的底层实现 3.段页式 分段和分页有什么区别什么是交换空间物理地址、逻辑地址、有效地址、线性地址、虚拟地址页面替换算法什么是缓冲区溢出 有什么危害malloc 是如…

Arthas协助MQ消费性能优化

背景 项目中使用AWS的SQS消息队列进行异步处理,QA通过压测发现单机TPS在23左右,目标性能在500TPS,所以需要对消费逻辑进行优化,提升消费速度。 目标 消费TPS从23提升到500 优化流程 优化的思路是先分析定位性能瓶颈&#xff…

如何加载模型YOLOv8 ONNXRuntime

YOLOv8 是 YOLO(You Only Look Once)目标检测系统的最新版本(v8)。YOLO 是一种实时、一次性目标检测系统,旨在在网络的单次前向传递中执行目标检测,使其快速高效。YOLOv8是之前YOLO模型的改进版本,具有更高的精度和更快的推理速度。 ONNX(开放神经网络交换)是一种表示…

算法练习--leetcode 数组

文章目录 爬楼梯问题裴波那契数列两数之和 [数组]合并两个有序数组移动零找到所有数组中消失的数字三数之和 爬楼梯问题 输入n阶楼梯,每次爬1或者2个台阶,有多少种方法可以爬到楼顶? 示例1:输入2, 输出2 一次爬2阶&a…

正点原子HAL库入门1~GPIO

探索者F407ZGT6(V3) 理论基础 IO端口基本结构 F4/F7/H7系列的IO端口 F1在输出模式,禁止使用内部上下拉 F4/F7/H7在输出模式,可以使用内部上下拉不同系列IO翻转速度不同 F1系列的IO端口 施密特触发器:将非标准方波,整形为方波 当…

WebRTC 之音视频同步

在网络视频会议中, 我们常会遇到音视频不同步的问题, 我们有一个专有名词 lip-sync 唇同步来描述这类问题,当我们看到人的嘴唇动作与听到的声音对不上的时候,不同步的问题就出现了 而在线会议中, 听见清晰的声音是优先…

pygame贪吃蛇游戏

pygame贪吃蛇游戏 贪吃蛇游戏通过enter键启动,贪吃蛇通过WSAD进行上下左右移动,每次在游戏区域中随机生成一个食物,每次吃完食物后,蛇变长并且获得积分;按空格键暂停。 贪吃蛇 import random, sys, time, pygame from …

SQL 表别名 和 列别名

列表名 列表名之后 order by 可以用别名 也可以用原名, where 中不能用别名的 SQL语句执行顺序: from–>where–>group by -->having — >select --> order 第一步:from语句,选择要操作的表。 第二步&#xff1…

SolidWorks 3D Interconnect介绍

目前市面上有的三维设计软件有很多,如UG、Pro/E、CATIA等,而且每个三维设计软件都会生成自己文件格式。由于产品设计的原因,我们避免不了的会需要去使用不同三维设计软件的文件,这对于工程师来说其实是一件比较麻烦的事。 为什么…

性能测试JMeter学习笔记(脚本增强和命令行操作)

HTTP的Cookie管理器 在根节点下,添加“HTTP Cookie管理器”(注意是根节点) Cookie管理器作用:只要响应里有Cookie,就自动存进Cookie管理器,而后在后续的请求中,自动携带cookie JMeter脚本增强…

奥威BI系统:零编程建模、开发报表,提升决策速度

奥威BI是一款非常实用的、易用、高效的商业智能工具,可以帮助企业快速获取数据、分析数据、展示数据。值得特别注意的一点是奥威BI系统支持零编程建模、开发报表,是一款人人都能用的大数据分析系统,有助于全面提升企业的数据分析挖掘效率&…

教资学习笔记总结

科目一 科目二 第一章 教育基础知识和基本原理 第一节 教育的认识 1.教育的概念 教育的词源:教育一词最早出现于《孟子尽心上》:“得天下英才而教育之”许慎在《说文解字》中最早解释教育:“教,上所施,下所效也”…

DNS部署与安全详解(上)

文章目录 一、DNS二、域名组成1. 域名组成概述2. 域名组成 三、监听端口四、DNS解析种类1. 按照查询方式分类:2. 按照查询内容分类: 五、DNS服务器搭建过程1. 先确保服务器的IP地址是固定的2. 安装DNS软件 一、DNS DNS全称Domain Name Service&#xff0…

组合总和——力扣39

文章目录 题目描述回溯题目描述 回溯 class Solution {public:vector<vector<

Qt--动态链接库的创建和使用

写在前面 在Qt的实际开发中&#xff0c;免不了使用和创建动态链接库&#xff0c;因此熟悉Qt中动态链接库的创建和使用对后续的库开发或使用是非常用必要的。 在之前的文章https://blog.csdn.net/SNAKEpc12138/article/details/126189926?spm1001.2014.3001.5501中已经对导入…

Swish - Mac 触控板手势窗口管理工具[macOS]

Swish for Mac是一款Mac触控板增强工具&#xff0c;借助直观的两指轻扫&#xff0c;捏合&#xff0c;轻击和按住手势&#xff0c;就可以从触控板上控制窗口和应用程序。 Swish for Mac又不仅仅只是一个窗口管理器&#xff0c;Swish具有28个易于使用的标题栏&#xff0c;停靠栏…