《每天5分钟玩转kubernetes》读书笔记

news2025/1/18 6:56:24

笔记

概念

Pod是脆弱的,但应用是健壮的。

kubelet运行在Cluster所有节点上,负责启动Pod和容器。kubeadm用于初始化Cluster。kubectl是k8s命令行工具。通过kubectl可以部署和管理应用,查看各种资源,创建、删除和更新各种组件。

Pending、ContainerCreating、ImagePullBackOff都表明Pod没有就绪,Running才是就绪状态。

k8s的系统组件都被放到kube-system namespace中。

kubelet是唯一没有以容器形式运行的k8s组件,它在Ubuntu中通过Systemd服务运行。

出于安全考虑,默认配置下k8s不会将Pod调度到Master节点。如果希望将k8s-master也当作Node使用,可执行如下命令:
kubectl taint node <k8s-node> node-role.kubernetes.io/master-
如果要恢复Master Only状态,执行如下命令:
kubectl taint node <k8s-node> node-role.kubernetes.io/master="":NoSchedule

默认配置下,Scheduler会将Pod调度到所有可用的Node。不过有些情况希望将Pod部署到指定的Node,如将有大量磁盘I/O的Pod部署到配置SSD的Node;或Pod需要GPU,需要运行在配置GPU的节点上。k8s是通过label来实现这个功能的。

设置label:
kubectl label node <k8s-node> disktype=ssd
查看节点的label:
kubectl get node --show-labels
然后可以编辑 yml 文件设置nodeSelector:disktype:ssd
删除label,-即删除的意思:
kubectl label node <k8s-node> disktype-
删除label后,除非在yml中删除nodeSelector设置,并执行kubectl apply命令重新部署,否则删除label不会生效。

Service

Service从逻辑上代表一组Pod,具体是哪些Pod则是由label来挑选的。Service有自己的不变的IP,客户端只需要访问Service的IP,k8s则负责建立和维护Service与Pod的映射关系。无论后端Pod如何变化,对客户端没有任何影响,因为Service没有变。

Cluster IP是一个虚拟IP,是由k8s节点上的iptables规则管理的。可以通过iptables-save命令打印出当前节点的iptables规则。Cluster的每一个节点都配置了相同的iptables规则,这样就确保了整个Cluster都能够通过Service的Cluster IP访问Service。

除可以通过Cluster IP访问Service,k8s还提供更为方便的DNS访问。k8s部署时会默认安装kube-dns组件,每当有新的Service被创建,kube-dns会添加该Service的DNS记录。Cluster中的Pod可以通过<SERVICE_NAME>.<NAMESPACE_NAME>访问Service。如果在同一个namespace,则可以省略.<NAMESPACE_NAME>

DNS服务器是kube-dns.kube-system.svc.cluster.local,这实际上就是kube-dns组件,它本身是部署在kube-system namespace中的一个Service。

用nslookup查看httpd-svc的DNS信息。

除了Cluster内部可以访问Service,很多情况下也希望应用的Service能够暴露给Cluster外部。k8s提供多种类型的Service,默认是ClusterIP:

  • ClusterIP:Service通过Cluster内部的IP对外提供服务,只有Cluster内的节点和Pod可访问,这是默认的Service类型
  • NodePort:Service通过Cluster节点的静态端口对外提供服务。Cluster外部可以通过<NodeIP>:<NodePort>访问Service
  • LoadBalancer:Service利用cloud provider特有的load balancer对外提供服务,cloud provider负责将load balancer的流量导向Service。目前支持的cloud provider有GCP、AWS、Azure等。

DaemonSet

典型应用场景:

  1. 在集群的每个节点上运行存储Daemon,如glusterd或ceph
  2. 在每个节点上运行日志收集Daemon,如flunentd或logstash
  3. 在每个节点上运行监控Daemon,如Prometheus Node Exporter或collectd

Job Pod执行完容器已经退出,需要用--show-all才能查看Completed状态的Pod。

同时运行多个Pod,提高Job的执行效率。这个可以通过parallelism设置。
completions设置Job成功完成Pod的总数。

spec:
  completions: 6
  parallelism: 2

配置解读:每次运行两个Pod,直到总共有6个Pod成功完成。
如果不指定completions和parallelism,默认值均为1。

k8s默认没有enable CronJob功能,需要在kube-apiserver中加入这个功能,修改kube-apiserver的配置文件/etc/kubernetes/manifests/kubeapiserver.yaml,在启动参数中加上--runtime-config=batch/v2alpha1=true,然后重启kubelet服务即可:systemctl restart kubelet.service
验证,输入命令kubectl api-versions,或者执行更精确的命令:kubectl api-versions | grep batch/v2alpha1

健康检查

即Health Check。
k8s默认的健康检查机制:每个容器启动时都会执行一个进程,此进程由Dockerfile的CMD或ENTRYPOINT指定。如果进程退出时返回码非零,则认为容器发生故障,k8s就会根据restartPolicy重启容器。

Liveness探测指定k8s什么时候通过重启容器实现自愈;
Readiness探测指定k8s什么时候可以将容器加入到Service负载均衡池中,对外提供服务。

区别:

  1. Liveness探测和Readiness探测是两种Health Check机制,如果不特意配置,k8s将对两种探测采取相同的默认行为,即通过判断容器启动进程的返回值是否为零来判断探测是否成功
  2. 两种探测的配置方法完全一样,支持的配置参数也一样。不同之处在于探测失败后的行为:Liveness探测是重启容器;Readiness探测则是将容器设置为不可用,不接收Service转发的请求
  3. Liveness探测和Readiness探测是独立执行的,二者之间没有依赖,可单独使用,也可以同时使用。用Liveness探测判断容器是否需要重启以实现自愈;用Readiness探测判断容器是否已经准备好对外提供服务。

健康检查的应用场景:

  1. Scale Up
  2. Rolling Update

滚动更新通过参数maxSurge和maxUnavailable来控制副本替换的数量:

  1. maxSurge:控制滚动更新过程中副本总数超过DESIRED的上限。可以是具体的整数,也可以是百分百,向上取整。maxSurge默认值为25%
  2. maxUnavailable:控制滚动更新过程中,不可用的副本相占DESIRED的最大比例。可以是具体的整数,也可以是百分百,向下取整。maxUnavailable默认值为25%

maxSurge值越大,初始创建的新副本数量就越多;maxUnavailable值越大,初始销毁的旧副本数量就越多。

滚动更新失败,可以通过kubectl rollout undo回滚到上一个版本

回滚

kubectl apply每次更新应用时,k8s都会记录下当前的配置,保存为一个revision,这样就可以回滚到某个特定revision。默认配置下,k8s只会保留最近的几个revision,可在Deployment配置文件中通过revisionHistoryLimit属性配置revision数量。

数据管理

容器和Pod是短暂的。其含义是它们的生命周期可能很短,会被频繁地销毁和创建。容器销毁时,保存在容器内部文件系统中的数据都会被清除。为了持久化保存容器的数据,可以使用k8s Volume。Volume的生命周期独立于容器,Pod中的容器可能被销毁和重建,但Volume会被保留。

本质上,k8s Volume是一个目录,这一点与Docker Volume类似。k8s Volume也支持多种backend类型,包括emptyDir、hostPath、GCE Persistent Disk、AWS Elastic Block Store、NFS、Ceph等。

emptyDir Volume对于容器来说是持久的,对于Pod则不是。当Pod从节点删除时,Volume的内容也会被删除。但如果只是容器被销毁而Pod还在,则Volume不受影响。

emptyDir Volume的生命周期与Pod一致。Pod中的所有容器都可以共享Volume,它们可以指定各自的mount路径。

PVC

Pod通常是由应用的开发人员维护,Volume则通常是由存储系统的管理员维护。开发人员要获得上面的信息,要么询问管理员,要么自己就是管理员。这样就带来一个管理上的问题:应用开发人员和系统管理员的职责耦合在一起了。

解决方案:PVC
PV:PersistentVolume,是外部存储系统中的一块存储空间,由管理员创建和维护。与Volume一样,PV具有持久性,生命周期独立于Pod。

PVC:PersistentVolumeClaim ,是对PV的申请(Claim)。PVC通常由普通用户创建和维护。需要为Pod分配存储资源时,用户可以创建一个PVC,指明存储资源的容量大小和访问模式(比如只读)等信息,k8s会查找并提供满足条件的PV。

有了PVC,用户只需要告诉k8s需要什么样的存储资源,而不必关心真正的空间从哪里分配、如何访问等底层细节信息。这些Storage Provider的底层信息交给管理员来处理,只有管理员才应该关心创建PersistentVolume的细节信息。

accessModes:支持的访问模式有3种,ReadWriteOnce表示PV能以read-write模式mount到单个节点,ReadOnlyMany表示PV能以read-only模式mount到多个节点,ReadWriteMany表示PV能以read-write模式mount到多个节点。

persistentVolumeReclaimPolicy:指定当PV的回收策略为Recycle,支持的策略有3种,Retain表示需要管理员手工回收;Recycle表示清除PV中的数据,效果相当于执行rm -rf/thevolume/*;Delete表示删除Storage Provider上的对应存储资源,例如AWS EBS、GCE PD、Azure Disk、OpenStack Cinder Volume等。

回收PV

当不需要使用PV时,可用删除PVC回收PV。当PVC被删除后,k8s启动一个新Pod recycler-for-<pv>,这个Pod的作用就是清除PV的数据。此时mypv1的状态为Released,表示已经解除了与PVC的Bound,正在清除数据,不过此时还不可用。当数据清除完毕,PV的状态重新变为Available,此时可以被新的PVC申请。

PV还支持Delete的回收策略,会删除PV在Storage Provider上对应的存储空间。NFS的PV不支持Delete,支持Delete的Provider有AWS EBS、GCE PD、Azure Disk、OpenStack Cinder Volume。

PV动态供给

Static Provision:静态供给,提前创建PV,通过PVC申请PV并在Pod中使用。

Dynamical Provision:动态供给,即如果没有满足PVC条件的PV,会动态创建PV。相比静态供给,动态供给有明显的优势:不需要提前创建PV,减少管理员的工作量,效率高。动态供给是通过StorageClass实现的,StorageClass定义如何创建PV。StorageClass支持Delete和Retain两种reclaimPolicy,默认是Delete。

Secret & Configmap

Secret会以密文的方式存储数据,会以Volume的形式被mount到Pod,容器可通过文件的方式使用Secret中的敏感数据;此外,容器也可以环境变量的方式使用这些数据。

创建Secret的四种方法:

  • --from-literal:一个--from-literal对应一个信息条目
  • --from-file:一个文件内容对应一个信息条目
  • --from-env-file:文件中每行Key=Value对应一个信息条目
  • YAML:文件中的敏感数据必须是通过base64编码后数据

查看Secret

kubectl get secret <secret_name>
kubectl describe secret <secret_name>
kubectl edit secret <secret_name> # 查看加密信息

与Secret一样,ConfigMap也支持四种创建方式。

Helm

两个概念:chart和release

  • chart是创建一个应用的信息集合,包括各种k8s对象的配置模板、参数定义、依赖关系、文档说明等。chart是应用部署的自包含逻辑单元。可以将chart想象成apt、yum中的软件安装包
  • release是chart的运行实例,代表一个正在运行的应用。当chart被安装到k8s集群,就生成一个release。chart能够多次安装到同一个集群,每次安装都是一个release。

Helm是包管理工具,包就是指chart。Helm能够:

  • 从零创建新chart
  • 与存储chart的仓库交互,拉取、保存和更新chart
  • 在k8s集群中安装和卸载release
  • 更新、回滚和测试release

Helm包含两个组件:Helm客户端和Tiller服务器。

Helm客户端是终端用户使用的命令行工具,用户可以:

  • 在本地开发chart
  • 管理chart仓库
  • 与Tiller服务器交互
  • 在远程k8s集群上安装chart
  • 查看release信息
  • 升级或卸载已有的release

Tiller服务器运行在k8s集群中,它会处理Helm客户端的请求,与k8s API Server交互。Tiller服务器负责:

  • 监听来自Helm客户端的请求
  • 通过chart构建release
  • 在k8s中安装chart,并跟踪release的状态
  • 通过API Server升级或卸载已有的release

总结:Helm客户端负责管理chart,Tiller服务器负责管理release。

chart

Helm的应用打包格式,由一系列文件组成,这些文件描述k8s部署应用时所需要的资源。chart将这些文件放置在预定义的目录结构中,通常整个chart被打成tar包,标注上版本信息,便于Helm部署。

Helm采用Go语言的模板来编写chart。Go模板非常强大,支持变量、对象、函数、流控制等功能。

如果存在一些信息多个模板都会用到,则可在templates/_helpers.tpl中将其定义为子模板,然后通过templates函数引用。

randAlphaNumb64encquote都是Go模板语言支持的函数,函数之间可以通过管道|连接。

Helm有两种方式传递配置参数。

常用命令:

helm create mychart # 创建chart
helm lint mychart # 检测chart的语法,报告错误以及给出建议
helm install --dry-run mychart --debug  # 模拟安装chart,并输出每个模板生成的YAML内容
helm search mychart
helm repo add myrepo http://
helm install myrepo/mychart
helm repo update

任何HTTP Server都可以用作chart仓库。

Helm支持四种安装方法:

  1. 安装仓库中的chart,如helm install stable/nginx
  2. 通过tar包安装,如helm install./nginx-1.2.3.tgz
  3. 通过chart本地目录安装,如helm install./nginx
  4. 通过URL安装,如helm install https://example.com/charts/nginx-1.2.3.tgz

网络

基于扁平地址空间的网络模型,集群中的每个Pod都有自己的IP地址,Pod之间不需要配置NAT就能直接通信。另外,同一个Pod中的容器共享Pod的IP,能够通过localhost通信。

CNI,Container Networking Interface规范。CNI是由CoreOS提出的容器网络规范,使用插件(Plugin)模型创建容器的网络栈。

目前已有多种k8s网络方案,如Flannel、Calico、Canal、Weave Net等。因为它们都实现CNI规范,用户无论选择哪种方案,得到的网络模型都一样,即每个Pod都有独立的IP,可以直接通信。区别在于不同方案的底层实现不同,有的采用基于VxLAN的Overlay实现,有的则是Underlay,性能上有区别。再有就是是否支持Network Policy。

Network Policy

k8s的一种资源,Network Policy通过Label选择Pod,并指定其他Pod或外界如何与这些Pod通信。

默认情况下,所有Pod是非隔离的,即任何来源的网络流量都能够访问Pod,没有任何限制。当为Pod定义Network Policy时,只有Policy允许的流量才能访问Pod。不是所有的k8s网络方案都支持Network Policy。比如Flannel就不支持,Calico是支持的。
Canal用Flannel实现k8s集群网络,同时用Calico实现Network Policy。

Dashboard

k8s默认没有部署Dashboard,安装命令:
kubectl create -f https://raw.githubusercontent.com/kubernetes/dashboard/master/charts/kubernetes-dashboard.yaml

Dashboard会在kube-system namespace中创建自己的Deployment和Service,

Service是ClusterIP类型,为方便使用,可通过kubectl --namespace=kube-system edit service kubernetes-dashboard修改成NodePort类型。

Dashboard支持Kubeconfig和Token两种认证方式。可以通过配置文件dashboard-admin.yaml为Dashboard默认用户赋予admin权限。

kubectl apply -f dashboard-admin.yaml命令使文件修改生效。

集群监控

Weave Scope

安装:``

Scope会自动构建应用和集群的逻辑拓扑,单击顶部PODS,会显示所有Pod以及Pod之间的依赖关系。

Scope支持关键字搜索和定位资源,还可以进行条件搜索,比如查找和定位MEMORY大于100MB的Pod。

Heapster

Heapster是k8s原生的集群监控方案。Heapster以Pod的形式运行,它会自动发现集群节点,从节点上的Kubelet获取监控数据。Kubelet则是从节点上的cAdvisor收集数据。Heapster将数据按照Pod进行分组,将它们存储到预先配置的backend并进行可视化展示。Heapster当前支持的backend有InfluxDB(通过Grafana展示)、Google Cloud Monitoring等。

整体架构
在这里插入图片描述

Prometheus Operator

Prometheus Operator基于基于Prometheus,可以监控k8s的API Server、Scheduler、Controller Manager等管理组件是否正常工作以及负荷是否过大。

Prometheus Operator的目标是尽可能简化在k8s中部署和维护Prometheus的工作。为方便管理,创建一个单独的Namespace monitoring,Prometheus Operator相关的组件都会部署到这个Namespace。

架构
在这里插入图片描述
组件

  • Prometheus Operator:在k8s中以Deployment运行。其职责是部署和管理Prometheus Server,根据ServiceMonitor动态更新Prometheus Server的监控对象。
  • Prometheus Server会作为k8s应用部署到集群中。为了更好地在k8s中管理Prometheus,CoreOS的开发人员专门定义了一个命名为Prometheus类型的k8s定制化资源。我们可以把Prometheus看作一种特殊的Deployment,它的用途就是专门部署Prometheus Server
  • Service就是Cluster中的Service资源,也是Prometheus要监控的对象,在Prometheus中叫作Target。每个监控对象都有一个对应的Service。比如要监控k8s Scheduler,就得有一个与Scheduler对应的Service。当然,k8s集群默认是没有这个Service的,Prometheus Operator会负责创建。
  • Operator能够动态更新Prometheus的Target列表,ServiceMonitor就是Target的抽象。比如想监控k8s Scheduler,用户可以创建一个与Scheduler Service相映射的ServiceMonitor对象。Operator则会发现这个新的ServiceMonitor,并将Scheduler的Target添加到Prometheus的监控列表中。ServiceMonitor也是Prometheus Operator专门开发的一种k8s定制化资源类型。
  • 除了Prometheus和ServiceMonitor,Alertmanager是Operator开发的第三种k8s定制化资源。我们可以把Alertmanager看作一种特殊的Deployment,它的用途就是专门部署Alertmanager组件。

集群日志管理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/837872.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

推荐一款非常简单实用的数据库连接工具Navicat Premium

Navicat Premium是一款非常实用的数据库连接工具&#xff0c;别再用HeidiSQL和idea自带的数据库连接了&#xff0c;看完这篇文章&#xff0c;赶紧把Navicat Premium用起来吧。 首先&#xff0c;需要获取Navicat Premium的安装包&#xff0c;可以通过以下网盘链接下载&#xff0…

谷歌联合CMU提出全新语义金字塔概念,无需额外训练使LLMs学会执行视觉任务

​ 论文链接&#xff1a;https://arxiv.org/abs/2306.17842 代码仓库&#xff1a;https://github.com/google-research/magvit/ 在目前的大模型社区中&#xff0c;发展较为成熟的当属以ChatGPT为代表的纯语言模型&#xff08;LLMs&#xff09;&#xff0c;以GPT-4为代表的多模态…

【大数据】ELK最简入门案例(带你进入ELK世界)

文章目录 1. 前言2. 安装3. 启动ELK启动Elasticsearch启动Kibana启动Logstash 4. 测试ELK环境 本文通过最简单纯正的案例带你入门ELK世界。 1. 前言 ELK是Elasticsearch、Logstash、Kibana的缩写&#xff0c;如果对Elasticsearch、Logstash、Kibana不是很了解&#xff0c;可以…

2023华数杯C题完整模型代码

华数杯C题完整论文模型代码已经完成&#xff0c;文末获取&#xff01; 母亲的心理健康状况对婴儿的成长和发展有重要的影响。本研究使用大数据分析方法&#xff0c;探索了母亲的心理健康状况、婴儿的行为特征以及婴儿的睡眠质量之间的相关性。我们采集了大量的数据&#xff0c;…

Python零基础入门(十一)——异常处理

系列文章目录 个人简介&#xff1a;机电专业在读研究生&#xff0c;CSDN内容合伙人&#xff0c;博主个人首页 Python入门专栏&#xff1a;《Python入门》欢迎阅读&#xff0c;一起进步&#xff01;&#x1f31f;&#x1f31f;&#x1f31f; 码字不易&#xff0c;如果觉得文章不…

MS5182N/MS5189N——16bit、4/8 通道、200KSPS、 SAR 型 ADC

产品简述 MS5182N/MS5189N 是 4/8 通道、 16bit 、电荷再分配逐次 逼近型模数转换器。采用单电源供电。 MS5182N/MS5189N 内 部集成无失码的 16 位 SAR ADC 、低串扰多路复用器、内部低 漂移基准电压源 ( 可以选择 2.5 或 4.096 V) 、温度传感器、可选 择的单极…

Java 之LocalDateTime的介绍和使用

LocalDateTime是Java的日期和时间类之一&#xff0c;用于表示不带时区信息的日期时间。 LocalDateTime 没有时区&#xff0c; 所以也就不能用来直接获取时间戳LocalDateTime 是一个基于值得类&#xff0c; 所以该类的示例不是通过构造函数的方式进行创建 以下是一些关于Loca…

华为推出手机系统云翻新服务:什么是云翻新?如何使用?

华为手机系统云翻新是华为推出的一项功能&#xff0c;旨在通过云服务提供系统翻新的服务。它可以帮助用户对手机的系统进行优化和更新&#xff0c;以提高手机的性能和流畅度。具体而言&#xff0c;华为手机系统云翻新功能提供了免费的云空间&#xff0c;用户可以将手机中的系统…

【学习笔记】生成式AI(ChatGPT原理,大型语言模型)

ChatGPT原理剖析 语言模型 文字接龙 ChatGPT在测试阶段是不联网的。 ChatGPT背后的关键技术&#xff1a;预训练&#xff08;Pre-train&#xff09; 又叫自监督式学习&#xff08;Self-supervised Learning&#xff09;&#xff0c;得到的模型叫做基石模型&#xff08;Founda…

JavaScript【静态方法、实例方法/to类、实例方法/get类、实例方法/set类、Math与Date实操、 JS时间戳、日期互相转换】(九)

目录 Math对象_静态方法三 Date对象 Date对象_静态方法 Date对象_实例方法/to类 Date对象_实例方法/get类 Date对象_实例方法/set类 Math与Date实操 JS时间戳、日期互相转换 Math对象_静态方法三 Math.random() Math.random() 返回0到1之间的一个伪随机数&#xff0c;可…

python中几个有趣的函数和推导式

前言 嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! 一、range()函数 1、range()通常用来做循环。 2、range()生成器的特性。 例子&#xff1a;假如range&#xff08;&#xff09;中使用的数值特别大&#xff0c;为100000000000000000000000000000&#xff1f; python解释…

同比增长50%!W/AR HUD赛道持续向好背后的变化

在智能座舱进入域控制器时代的同时&#xff0c;带来人机交互体验升级的HUD赛道&#xff0c;同样持续火热。 高工智能汽车研究院监测数据显示&#xff0c;2023年1-6月中国市场&#xff08;不含进出口&#xff09;乘用车前装标配W/AR HUD交付90.49万台&#xff0c;潜在选装规模6…

【深度学习_TensorFlow】梯度下降

写在前面 一直不太理解梯度下降算法是什么意思&#xff0c;今天我们就解开它神秘的面纱 写在中间 线性回归方程 如果要求出一条直线&#xff0c;我们只需知道直线上的两个不重合的点&#xff0c;就可以通过解方程组来求出直线 但是&#xff0c;如果我们选取的这两个点不在直…

使用 Amazon ECS Anywhere 在边缘部署 Amazon IoT Greengrass

1.概述 亚马逊云科技提供了完备的IoT服务能力&#xff0c;涵盖设备服务、连接和控制服务以及云端分析服务&#xff0c;是快速构建安全可靠、可扩展的 IoT 平台的常见选择。Amazon IoT Greengrass 边缘运行时和云服务&#xff0c;可帮助您在设备上构建、部署和管理 IoT 应用。A…

中小企业如何做好私域运营呢?

​通过在公域平台上进行引流到私域平台&#xff0c;流量一旦进来&#xff0c;后面再做活动就不需要进行推广的成本&#xff0c;从而进行多次复购。而在于公域平台&#xff0c;流量进来只是一次性&#xff0c;当它出去后可能就不会再记得你的这个产品或者这个店&#xff0c;即当…

NUEDC 2022 E - 声源定位跟踪系统

更好的阅读体验参考个人博客&#xff1a;NUEDC 2022 E | Framist’s Little House NUEDC 2022 E - 声源定位跟踪系统 省级大学生电子设计竞赛 一等奖作品 仓库地址&#xff1a;framist/NUEDC2022-E 求小星星♥(ˆ◡ˆԅ) fork from: framist/STemWinForHAL: 移植emWin与HAL库…

【React学习】—虚拟DOM两种创建方式(二)

【React学习】—虚拟DOM两种创建方式&#xff08;二&#xff09; 一、Hello React案例 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, init…

初识网络(JavaEE初阶系列9)

目录 前言&#xff1a; 1.网络的发展史 1.1独立模式 1.2网络互联 1.3局域网LAN 1.4广域网WAN 2.网络通信基础 2.1IP地址 2.2端口号 3.认识协议 3.1协议分层 3.2分层的作用 3.3TCP/IP五层&#xff08;或四层&#xff09;模型 3.4OSI七层模型 3.5网络设备所在分层 …

Delphi Professional Crack,IDE插件开发和扩展IDE

Delphi Professional Crack,IDE插件开发和扩展IDE 构建具有强大视觉设计功能的单源多平台本机应用程序。 Delphi帮助您使用Object Pascal为Windows、Mac、Mobile、IoT和Linux构建和更新数据丰富、超连接、可视化的应用程序。Delphi Professional适合个人开发人员和小型团队构建…

MGRE综合

实验 一、实验思路 1.先按照上图配置IP地址及环回 2.写缺省使公网可通 3.让R1、R4、R5每台路由器均成为中心站点形成全连网状结构拓扑 4.让R1成为中心站点R2R3为分支站点 5.分区域宣告ospf之后更改ospf在虚拟接口Tunnel工作方式为broadcast及让R1 当选DR 二、上虚拟机操作…