Go语言开发者的Apache Arrow使用指南:读写Parquet文件

news2024/12/28 6:02:32

Apache Arrow是一种开放的、与语言无关的列式内存格式,在本系列文章[1]的前几篇中,我们都聚焦于内存表示[2]与内存操作[3]

但对于一个数据库系统或大数据分析平台来说,数据不能也无法一直放在内存中,虽说目前内存很大也足够便宜了,但其易失性也决定了我们在特定时刻还是要将数据序列化后存储到磁盘或一些低成本的存储服务上(比如AWS的S3等)。

那么将Arrow序列化成什么存储格式呢?CSV、JSON?显然这些格式都不是为最大限度提高空间效率以及数据检索能力而设计的。在数据分析领域,Apache Parquet是与Arrow相似的一种开放的、面向列的数据存储格式,它被设计用于高效的数据编码和检索并最大限度提高空间效率。

和Arrow是一种内存格式不同,Parquet是一种数据文件格式。此外,Arrow和Parquet在设计上也做出了各自的一些取舍。Arrow旨在由矢量化计算内核对数据进行操作,提供对任何数组索引的 O(1) 随机访问查找能力;而Parquet为了最大限度提高空间效率,采用了可变长度编码方案和块压缩来大幅减小数据大小,这些技术都是以丧失高性能随机存取查找为代价的。

Parquet也是Apache的顶级项目[4],大多数实现了Arrow的编程语言也都提供了支持Arrow格式与Parquet文件相互转换的库实现,Go也不例外。在本文中,我们就来粗浅看一下如何使用Go实现Parquet文件的读写,即Arrow和Parquet的相互转换。

注:关于Parquet文件的详细格式(也蛮复杂),我可能会在后续文章中说明。

1. Parquet简介

如果不先说一说Parquet文件格式,后面的内容理解起来会略有困难的。下面是一个Parquet文件的结构示意图:

f88cf3a5253837fdb3db73f93a33763e.png

图来自https://www.uber.com/blog/cost-efficiency-big-data  

我们看到Parquet格式的文件被分为多个row group,每个row group由每一列的列块(column chunk)组成。考虑到磁盘存储的特点,每个列块又分为若干个页。这个列块中的诸多同构类型的列值可以在编码和压缩后存储在各个页中。下面是Parquet官方文档中Parquet文件中数据存储的具体示意图:

0ab6bdedf068a5424a2092ae1c69953e.png

我们看到Parquet按row group顺序向后排列,每个row group中column chunk也是依column次序向后排列的。

注:关于上图中repetion level和definition level这样的高级概念,不会成为理解本文内容的障碍,我们将留到后续文章中系统说明。

2. Arrow Table <-> Parquet

有了上面Parquet文件格式的初步知识后,接下来我们就来看看如何使用Go在Arrow和Parquet之间进行转换。

在《高级数据结构》[5]一文中,我们学习了Arrow Table和Record Batch两种高级结构。接下来我们就来看看如何将Table或Record与Parquet进行转换。一旦像Table、Record Batch这样的高级结构的转换搞定了,那Arrow中的那些简单数据类型[6])也就不在话下了。况且在实际项目中,我们面对更多的也是Arrow的高级数据结构(Table或Record)与Parquet的转换。

我们先来看看Table。

2.1 Table -> Parquet

通过在《高级数据结构》[7]一文,我们知道了Arrow Table的每一列本质上就是Schema+Chunked Array,这和Parquet的文件格式具有较高的适配度。

Arrow Go的parquet实现提供对了Table的良好支持,我们通过一个WriteTable函数就可以将内存中的Arrow Table持久化为Parquet格式的文件,我们来看看下面这个示例:

// flat_table_to_parquet.go

package main

import (
 "os"

 "github.com/apache/arrow/go/v13/arrow"
 "github.com/apache/arrow/go/v13/arrow/array"
 "github.com/apache/arrow/go/v13/arrow/memory"
 "github.com/apache/arrow/go/v13/parquet/pqarrow"
)

func main() {
 schema := arrow.NewSchema(
  []arrow.Field{
   {Name: "col1", Type: arrow.PrimitiveTypes.Int32},
   {Name: "col2", Type: arrow.PrimitiveTypes.Float64},
   {Name: "col3", Type: arrow.BinaryTypes.String},
  },
  nil,
 )

 col1 := func() *arrow.Column {
  chunk := func() *arrow.Chunked {
   ib := array.NewInt32Builder(memory.DefaultAllocator)
   defer ib.Release()

   ib.AppendValues([]int32{1, 2, 3}, nil)
   i1 := ib.NewInt32Array()
   defer i1.Release()

   ib.AppendValues([]int32{4, 5, 6, 7, 8, 9, 10}, nil)
   i2 := ib.NewInt32Array()
   defer i2.Release()

   c := arrow.NewChunked(
    arrow.PrimitiveTypes.Int32,
    []arrow.Array{i1, i2},
   )
   return c
  }()
  defer chunk.Release()

  return arrow.NewColumn(schema.Field(0), chunk)
 }()
 defer col1.Release()

 col2 := func() *arrow.Column {
  chunk := func() *arrow.Chunked {
   fb := array.NewFloat64Builder(memory.DefaultAllocator)
   defer fb.Release()

   fb.AppendValues([]float64{1.1, 2.2, 3.3, 4.4, 5.5}, nil)
   f1 := fb.NewFloat64Array()
   defer f1.Release()

   fb.AppendValues([]float64{6.6, 7.7}, nil)
   f2 := fb.NewFloat64Array()
   defer f2.Release()

   fb.AppendValues([]float64{8.8, 9.9, 10.0}, nil)
   f3 := fb.NewFloat64Array()
   defer f3.Release()

   c := arrow.NewChunked(
    arrow.PrimitiveTypes.Float64,
    []arrow.Array{f1, f2, f3},
   )
   return c
  }()
  defer chunk.Release()

  return arrow.NewColumn(schema.Field(1), chunk)
 }()
 defer col2.Release()

 col3 := func() *arrow.Column {
  chunk := func() *arrow.Chunked {
   sb := array.NewStringBuilder(memory.DefaultAllocator)
   defer sb.Release()

   sb.AppendValues([]string{"s1", "s2"}, nil)
   s1 := sb.NewStringArray()
   defer s1.Release()

   sb.AppendValues([]string{"s3", "s4"}, nil)
   s2 := sb.NewStringArray()
   defer s2.Release()

   sb.AppendValues([]string{"s5", "s6", "s7", "s8", "s9", "s10"}, nil)
   s3 := sb.NewStringArray()
   defer s3.Release()

   c := arrow.NewChunked(
    arrow.BinaryTypes.String,
    []arrow.Array{s1, s2, s3},
   )
   return c
  }()
  defer chunk.Release()

  return arrow.NewColumn(schema.Field(2), chunk)
 }()
 defer col3.Release()

 var tbl arrow.Table
 tbl = array.NewTable(schema, []arrow.Column{*col1, *col2, *col3}, -1)
 defer tbl.Release()

 f, err := os.Create("flat_table.parquet")
 if err != nil {
  panic(err)
 }
 defer f.Close()

 err = pqarrow.WriteTable(tbl, f, 1024, nil, pqarrow.DefaultWriterProps())
 if err != nil {
  panic(err)
 }
}

我们基于arrow的Builder模式以及NewTable创建了一个拥有三个列的Table(该table的创建例子来自于《高级数据结构》[8]一文)。有了table后,我们直接调用pqarrow的WriteTable函数即可将table写成parquet格式的文件。

我们来运行一下上述代码:

$go run flat_table_to_parquet.go

执行完上面命令后,当前目录下会出现一个flat_table.parquet的文件!

我们如何查看该文件内容来验证写入的数据是否与table一致呢?arrow go的parquet实现提供了一个parquet_reader的工具可以帮助我们做到这点,你可以执行如下命令安装这个工具:

$go install github.com/apache/arrow/go/v13/parquet/cmd/parquet_reader@latest

之后我们就可以执行下面命令查看我们刚刚生成的flat_table.parquet文件的内容了:

$parquet_reader flat_table.parquet  
File name: flat_table.parquet
Version: v2.6
Created By: parquet-go version 13.0.0-SNAPSHOT
Num Rows: 10
Number of RowGroups: 1
Number of Real Columns: 3
Number of Columns: 3
Number of Selected Columns: 3
Column 0: col1 (INT32/INT_32)
Column 1: col2 (DOUBLE)
Column 2: col3 (BYTE_ARRAY/UTF8)
--- Row Group: 0  ---
--- Total Bytes: 396  ---
--- Rows: 10  ---
Column 0
 Values: 10, Min: 1, Max: 10, Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 111, Compressed Size: 111
Column 1
 Values: 10, Min: 1.1, Max: 10, Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 169, Compressed Size: 169
Column 2
 Values: 10, Min: [115 49], Max: [115 57], Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 116, Compressed Size: 116
--- Values ---
col1              |col2              |col3              |
1                 |1.100000          |s1                |
2                 |2.200000          |s2                |
3                 |3.300000          |s3                |
4                 |4.400000          |s4                |
5                 |5.500000          |s5                |
6                 |6.600000          |s6                |
7                 |7.700000          |s7                |
8                 |8.800000          |s8                |
9                 |9.900000          |s9                |
10                |10.000000         |s10               |

parquet_reader列出了parquet文件的meta数据和每个row group中的column列的值,从输出来看,与我们arrow table的数据是一致的。

我们再回头看一下WriteTable函数,它的原型如下:

func WriteTable(tbl arrow.Table, w io.Writer, chunkSize int64, 
                props *parquet.WriterProperties, arrprops ArrowWriterProperties) error

这里说一下WriteTable的前三个参数,第一个是通过NewTable得到的arrow table结构,第二个参数也容易理解,就是一个可写的文件描述符,我们通过os.Create可以轻松拿到,第三个参数为chunkSize,这个chunkSize是什么呢?会对parquet文件的写入结果有影响么?其实这个chunkSize就是每个row group中的行数。同时parquet通过该chunkSize也可以计算出arrow table转parquet文件后有几个row group。

我们示例中的chunkSize值为1024,因此整个parquet文件只有一个row group。下面我们将其值改为5,再来看看输出的parquet文件内容:

$parquet_reader flat_table.parquet
File name: flat_table.parquet
Version: v2.6
Created By: parquet-go version 13.0.0-SNAPSHOT
Num Rows: 10
Number of RowGroups: 2
Number of Real Columns: 3
Number of Columns: 3
Number of Selected Columns: 3
Column 0: col1 (INT32/INT_32)
Column 1: col2 (DOUBLE)
Column 2: col3 (BYTE_ARRAY/UTF8)
--- Row Group: 0  ---
--- Total Bytes: 288  ---
--- Rows: 5  ---
Column 0
 Values: 5, Min: 1, Max: 5, Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 86, Compressed Size: 86
Column 1
 Values: 5, Min: 1.1, Max: 5.5, Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 122, Compressed Size: 122
Column 2
 Values: 5, Min: [115 49], Max: [115 53], Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 80, Compressed Size: 80
--- Values ---
col1              |col2              |col3              |
1                 |1.100000          |s1                |
2                 |2.200000          |s2                |
3                 |3.300000          |s3                |
4                 |4.400000          |s4                |
5                 |5.500000          |s5                |

--- Row Group: 1  ---
--- Total Bytes: 290  ---
--- Rows: 5  ---
Column 0
 Values: 5, Min: 6, Max: 10, Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 86, Compressed Size: 86
Column 1
 Values: 5, Min: 6.6, Max: 10, Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 122, Compressed Size: 122
Column 2
 Values: 5, Min: [115 49 48], Max: [115 57], Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 82, Compressed Size: 82
--- Values ---
col1              |col2              |col3              |
6                 |6.600000          |s6                |
7                 |7.700000          |s7                |
8                 |8.800000          |s8                |
9                 |9.900000          |s9                |
10                |10.000000         |s10               |

当chunkSize值为5后,parquet文件的row group变成了2,然后parquet_reader工具会按照两个row group的格式分别输出它们的meta信息和列值信息。

接下来,我们再来看一下如何从生成的parquet文件中读取数据并转换为arrow table。

2.2 Table <- Parquet

和WriteTable函数对应,arrow提供了ReadTable函数读取parquet文件并转换为内存中的arrow table,下面是代码示例:

// flat_table_from_parquet.go
func main() {
 f, err := os.Open("flat_table.parquet")
 if err != nil {
  panic(err)
 }
 defer f.Close()

 tbl, err := pqarrow.ReadTable(context.Background(), f, parquet.NewReaderProperties(memory.DefaultAllocator),
  pqarrow.ArrowReadProperties{}, memory.DefaultAllocator)
 if err != nil {
  panic(err)
 }

 dumpTable(tbl)
}

func dumpTable(tbl arrow.Table) {
 s := tbl.Schema()
 fmt.Println(s)
 fmt.Println("------")

 fmt.Println("the count of table columns=", tbl.NumCols())
 fmt.Println("the count of table rows=", tbl.NumRows())
 fmt.Println("------")

 for i := 0; i < int(tbl.NumCols()); i++ {
  col := tbl.Column(i)
  fmt.Printf("arrays in column(%s):\n", col.Name())
  chunk := col.Data()
  for _, arr := range chunk.Chunks() {
   fmt.Println(arr)
  }
  fmt.Println("------")
 }
}

我们看到ReadTable使用起来非常简单,由于parquet文件中包含meta信息,我们调用ReadTable时,一些参数使用默认值或零值即可。

我们运行一下上述代码:

$go run flat_table_from_parquet.go
schema:
  fields: 3
    - col1: type=int32
      metadata: ["PARQUET:field_id": "-1"]
    - col2: type=float64
      metadata: ["PARQUET:field_id": "-1"]
    - col3: type=utf8
      metadata: ["PARQUET:field_id": "-1"]
------
the count of table columns= 3
the count of table rows= 10
------
arrays in column(col1):
[1 2 3 4 5 6 7 8 9 10]
------
arrays in column(col2):
[1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10]
------
arrays in column(col3):
["s1" "s2" "s3" "s4" "s5" "s6" "s7" "s8" "s9" "s10"]
------

2.3 Table -> Parquet(压缩)

前面提到,Parquet文件格式的设计充分考虑了空间利用效率,再加上其是面向列存储的格式,Parquet支持列数据的压缩存储,并支持为不同列选择不同的压缩算法。

前面示例中调用的WriteTable在默认情况下是不对列进行压缩的,这从parquet_reader读取到的列的元信息中也可以看到(比如下面的Compression: UNCOMPRESSED):

Column 0
 Values: 10, Min: 1, Max: 10, Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 111, Compressed Size: 111

我们在WriteTable时也可以通过parquet.WriterProperties参数来为每个列指定压缩算法,比如下面示例:

// flat_table_to_parquet_compressed.go

var tbl arrow.Table
tbl = array.NewTable(schema, []arrow.Column{*col1, *col2, *col3}, -1)
defer tbl.Release()

f, err := os.Create("flat_table_compressed.parquet")
if err != nil {
    panic(err)
}
defer f.Close()

wp := parquet.NewWriterProperties(parquet.WithCompression(compress.Codecs.Snappy),
    parquet.WithCompressionFor("col1", compress.Codecs.Brotli))
err = pqarrow.WriteTable(tbl, f, 1024, wp, pqarrow.DefaultWriterProps())
if err != nil {
    panic(err)
}

在这段代码中,我们通过parquet.NewWriterProperties构建了新的WriterProperties,这个新的Properties默认所有列使用Snappy压缩,针对col1列使用Brotli算法压缩。我们将压缩后的数据写入flat_table_compressed.parquet文件。使用go run运行flat_table_to_parquet_compressed.go,然后使用parquet_reader查看文件flat_table_compressed.parquet得到如下结果:

$go run flat_table_to_parquet_compressed.go
$parquet_reader flat_table_compressed.parquet
File name: flat_table_compressed.parquet
Version: v2.6
Created By: parquet-go version 13.0.0-SNAPSHOT
Num Rows: 10
Number of RowGroups: 1
Number of Real Columns: 3
Number of Columns: 3
Number of Selected Columns: 3
Column 0: col1 (INT32/INT_32)
Column 1: col2 (DOUBLE)
Column 2: col3 (BYTE_ARRAY/UTF8)
--- Row Group: 0  ---
--- Total Bytes: 352  ---
--- Rows: 10  ---
Column 0
 Values: 10, Min: 1, Max: 10, Null Values: 0, Distinct Values: 0
 Compression: BROTLI, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 111, Compressed Size: 98
Column 1
 Values: 10, Min: 1.1, Max: 10, Null Values: 0, Distinct Values: 0
 Compression: SNAPPY, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 168, Compressed Size: 148
Column 2
 Values: 10, Min: [115 49], Max: [115 57], Null Values: 0, Distinct Values: 0
 Compression: SNAPPY, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 116, Compressed Size: 106
--- Values ---
col1              |col2              |col3              |
1                 |1.100000          |s1                |
2                 |2.200000          |s2                |
3                 |3.300000          |s3                |
4                 |4.400000          |s4                |
5                 |5.500000          |s5                |
6                 |6.600000          |s6                |
7                 |7.700000          |s7                |
8                 |8.800000          |s8                |
9                 |9.900000          |s9                |
10                |10.000000         |s10               |

从parquet_reader的输出,我们可以看到:各个Column的Compression信息不再是UNCOMPRESSED了,并且三个列在经过压缩后的Size与未压缩对比都有一定的减小:

Column 0: 
 Compression: BROTLI, Uncompressed Size: 111, Compressed Size: 98
Column 1: 
 Compression: SNAPPY, Uncompressed Size: 168, Compressed Size: 148
Column 2: 
 Compression: SNAPPY, Uncompressed Size: 116, Compressed Size: 106

从文件大小对比也能体现出压缩算法的作用:

-rw-r--r--   1 tonybai  staff   786  7 22 08:06 flat_table.parquet
-rw-r--r--   1 tonybai  staff   742  7 20 13:19 flat_table_compressed.parquet

Go的parquet实现支持多种压缩算法:

// github.com/apache/arrow/go/parquet/compress/compress.go

var Codecs = struct {
    Uncompressed Compression
    Snappy       Compression
    Gzip         Compression
    // LZO is unsupported in this library since LZO license is incompatible with Apache License
    Lzo    Compression
    Brotli Compression
    // LZ4 unsupported in this library due to problematic issues between the Hadoop LZ4 spec vs regular lz4
    // see: http://mail-archives.apache.org/mod_mbox/arrow-dev/202007.mbox/%3CCAAri41v24xuA8MGHLDvgSnE+7AAgOhiEukemW_oPNHMvfMmrWw@mail.gmail.com%3E
    Lz4  Compression
    Zstd Compression
}{    
    Uncompressed: Compression(parquet.CompressionCodec_UNCOMPRESSED),
    Snappy:       Compression(parquet.CompressionCodec_SNAPPY),
    Gzip:         Compression(parquet.CompressionCodec_GZIP),
    Lzo:          Compression(parquet.CompressionCodec_LZO),
    Brotli:       Compression(parquet.CompressionCodec_BROTLI),
    Lz4:          Compression(parquet.CompressionCodec_LZ4),
    Zstd:         Compression(parquet.CompressionCodec_ZSTD),
}

你只需要根据你的列的类型选择最适合的压缩算法即可。

2.4 Table <- Parquet(压缩)

接下来,我们来读取这个数据经过压缩的Parquet。读取压缩的Parquet是否需要在ReadTable时传入特殊的Properties呢?答案是不需要!因为Parquet文件中存储了元信息(metadata),可以帮助ReadTable使用对应的算法解压缩并提取信息:

// flat_table_from_parquet_compressed.go

func main() {
 f, err := os.Open("flat_table_compressed.parquet")
 if err != nil {
  panic(err)
 }
 defer f.Close()

 tbl, err := pqarrow.ReadTable(context.Background(), f, parquet.NewReaderProperties(memory.DefaultAllocator),
  pqarrow.ArrowReadProperties{}, memory.DefaultAllocator)
 if err != nil {
  panic(err)
 }

 dumpTable(tbl)
}

运行这段程序,我们就可以读取压缩后的parquet文件了:

$go run flat_table_from_parquet_compressed.go
schema:
  fields: 3
    - col1: type=int32
      metadata: ["PARQUET:field_id": "-1"]
    - col2: type=float64
      metadata: ["PARQUET:field_id": "-1"]
    - col3: type=utf8
      metadata: ["PARQUET:field_id": "-1"]
------
the count of table columns= 3
the count of table rows= 10
------
arrays in column(col1):
[1 2 3 4 5 6 7 8 9 10]
------
arrays in column(col2):
[1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10]
------
arrays in column(col3):
["s1" "s2" "s3" "s4" "s5" "s6" "s7" "s8" "s9" "s10"]
------

接下来,我们来看看Arrow中的另外一种高级数据结构Record Batch如何实现与Parquet文件格式的转换。

3. Arrow Record Batch <-> Parquet

注:大家可以先阅读/温习一下《高级数据结构》[9]一文来了解一下Record Batch的概念。

3.1 Record Batch -> Parquet

Arrow Go实现将一个Record Batch作为一个Row group来对应。下面的程序向Parquet文件中写入了三个record,我们来看一下:

// flat_record_to_parquet.go

func main() {
 var records []arrow.Record
 schema := arrow.NewSchema(
  []arrow.Field{
   {Name: "archer", Type: arrow.BinaryTypes.String},
   {Name: "location", Type: arrow.BinaryTypes.String},
   {Name: "year", Type: arrow.PrimitiveTypes.Int16},
  },
  nil,
 )

 rb := array.NewRecordBuilder(memory.DefaultAllocator, schema)
 defer rb.Release()

 for i := 0; i < 3; i++ {
  postfix := strconv.Itoa(i)
  rb.Field(0).(*array.StringBuilder).AppendValues([]string{"tony" + postfix, "amy" + postfix, "jim" + postfix}, nil)
  rb.Field(1).(*array.StringBuilder).AppendValues([]string{"beijing" + postfix, "shanghai" + postfix, "chengdu" + postfix}, nil)
  rb.Field(2).(*array.Int16Builder).AppendValues([]int16{1992 + int16(i), 1993 + int16(i), 1994 + int16(i)}, nil)
  rec := rb.NewRecord()
  records = append(records, rec)
 }

 // write to parquet
 f, err := os.Create("flat_record.parquet")
 if err != nil {
  panic(err)
 }

 props := parquet.NewWriterProperties()
 writer, err := pqarrow.NewFileWriter(schema, f, props,
  pqarrow.DefaultWriterProps())
 if err != nil {
  panic(err)
 }
 defer writer.Close()

 for _, rec := range records {
  if err := writer.Write(rec); err != nil {
   panic(err)
  }
  rec.Release()
 }
}

和调用WriteTable完成table到parquet文件的写入不同,这里我们创建了一个FileWriter,通过FileWriter将构建出的Record Batch逐个写入。运行上述代码生成flat_record.parquet文件并使用parquet_reader展示该文件的内容:

$go run flat_record_to_parquet.go    
$parquet_reader flat_record.parquet
File name: flat_record.parquet
Version: v2.6
Created By: parquet-go version 13.0.0-SNAPSHOT
Num Rows: 9
Number of RowGroups: 3
Number of Real Columns: 3
Number of Columns: 3
Number of Selected Columns: 3
Column 0: archer (BYTE_ARRAY/UTF8)
Column 1: location (BYTE_ARRAY/UTF8)
Column 2: year (INT32/INT_16)
--- Row Group: 0  ---
--- Total Bytes: 255  ---
--- Rows: 3  ---
Column 0
 Values: 3, Min: [97 109 121 48], Max: [116 111 110 121 48], Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 79, Compressed Size: 79
Column 1
 Values: 3, Min: [98 101 105 106 105 110 103 48], Max: [115 104 97 110 103 104 97 105 48], Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 99, Compressed Size: 99
Column 2
 Values: 3, Min: 1992, Max: 1994, Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 77, Compressed Size: 77
--- Values ---
archer            |location          |year              |
tony0             |beijing0          |1992              |
amy0              |shanghai0         |1993              |
jim0              |chengdu0          |1994              |

--- Row Group: 1  ---
--- Total Bytes: 255  ---
--- Rows: 3  ---
Column 0
 Values: 3, Min: [97 109 121 49], Max: [116 111 110 121 49], Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 79, Compressed Size: 79
Column 1
 Values: 3, Min: [98 101 105 106 105 110 103 49], Max: [115 104 97 110 103 104 97 105 49], Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 99, Compressed Size: 99
Column 2
 Values: 3, Min: 1993, Max: 1995, Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 77, Compressed Size: 77
--- Values ---
archer            |location          |year              |
tony1             |beijing1          |1993              |
amy1              |shanghai1         |1994              |
jim1              |chengdu1          |1995              |

--- Row Group: 2  ---
--- Total Bytes: 255  ---
--- Rows: 3  ---
Column 0
 Values: 3, Min: [97 109 121 50], Max: [116 111 110 121 50], Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 79, Compressed Size: 79
Column 1
 Values: 3, Min: [98 101 105 106 105 110 103 50], Max: [115 104 97 110 103 104 97 105 50], Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 99, Compressed Size: 99
Column 2
 Values: 3, Min: 1994, Max: 1996, Null Values: 0, Distinct Values: 0
 Compression: UNCOMPRESSED, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 77, Compressed Size: 77
--- Values ---
archer            |location          |year              |
tony2             |beijing2          |1994              |
amy2              |shanghai2         |1995              |
jim2              |chengdu2          |1996              |

我们看到parquet_reader分别输出了三个row group的元数据和列值,每个row group与我们写入的一个record对应。

那读取这样的parquet文件与ReadTable有何不同呢?我们继续往下看。

3.2 Record Batch <- Parquet

下面是用于读取

// flat_record_from_parquet.go
func main() {
 f, err := os.Open("flat_record.parquet")
 if err != nil {
  panic(err)
 }
 defer f.Close()

 rdr, err := file.NewParquetReader(f)
 if err != nil {
  panic(err)
 }
 defer rdr.Close()

 arrRdr, err := pqarrow.NewFileReader(rdr,
  pqarrow.ArrowReadProperties{
   BatchSize: 3,
  }, memory.DefaultAllocator)
 if err != nil {
  panic(err)
 }

 s, _ := arrRdr.Schema()
 fmt.Println(*s)

 rr, err := arrRdr.GetRecordReader(context.Background(), nil, nil)
 if err != nil {
  panic(err)
 }

 for {
  rec, err := rr.Read()
  if err != nil && err != io.EOF {
   panic(err)
  }
  if err == io.EOF {
   break
  }
  fmt.Println(rec)
 }
}

我们看到相对于将parquet转换为table,将parquet转换为record略为复杂一些,这里的一个关键是在调用NewFileReader时传入的ArrowReadProperties中的BatchSize字段,要想正确读取出record,这个BatchSize需适当填写。这个BatchSize会告诉Reader 每个读取的Record Batch的长度,也就是row数量。这里传入的是3,即3个row为一个Recordd batch。

下面是运行上述程序的结果:

$go run flat_record_from_parquet.go
{[{archer 0x26ccc00 false {[PARQUET:field_id] [-1]}} {location 0x26ccc00 false {[PARQUET:field_id] [-1]}} {year 0x26ccc00 false {[PARQUET:field_id] [-1]}}] map[archer:[0] location:[1] year:[2]] {[] []} 0}
record:
  schema:
  fields: 3
    - archer: type=utf8
        metadata: ["PARQUET:field_id": "-1"]
    - location: type=utf8
          metadata: ["PARQUET:field_id": "-1"]
    - year: type=int16
      metadata: ["PARQUET:field_id": "-1"]
  rows: 3
  col[0][archer]: ["tony0" "amy0" "jim0"]
  col[1][location]: ["beijing0" "shanghai0" "chengdu0"]
  col[2][year]: [1992 1993 1994]

record:
  schema:
  fields: 3
    - archer: type=utf8
        metadata: ["PARQUET:field_id": "-1"]
    - location: type=utf8
          metadata: ["PARQUET:field_id": "-1"]
    - year: type=int16
      metadata: ["PARQUET:field_id": "-1"]
  rows: 3
  col[0][archer]: ["tony1" "amy1" "jim1"]
  col[1][location]: ["beijing1" "shanghai1" "chengdu1"]
  col[2][year]: [1993 1994 1995]

record:
  schema:
  fields: 3
    - archer: type=utf8
        metadata: ["PARQUET:field_id": "-1"]
    - location: type=utf8
          metadata: ["PARQUET:field_id": "-1"]
    - year: type=int16
      metadata: ["PARQUET:field_id": "-1"]
  rows: 3
  col[0][archer]: ["tony2" "amy2" "jim2"]
  col[1][location]: ["beijing2" "shanghai2" "chengdu2"]
  col[2][year]: [1994 1995 1996]

我们看到:每3行被作为一个record读取出来了。如果将BatchSize改为5,则输出如下:

$go run flat_record_from_parquet.go
{[{archer 0x26ccc00 false {[PARQUET:field_id] [-1]}} {location 0x26ccc00 false {[PARQUET:field_id] [-1]}} {year 0x26ccc00 false {[PARQUET:field_id] [-1]}}] map[archer:[0] location:[1] year:[2]] {[] []} 0}
record:
  schema:
  fields: 3
    - archer: type=utf8
        metadata: ["PARQUET:field_id": "-1"]
    - location: type=utf8
          metadata: ["PARQUET:field_id": "-1"]
    - year: type=int16
      metadata: ["PARQUET:field_id": "-1"]
  rows: 5
  col[0][archer]: ["tony0" "amy0" "jim0" "tony1" "amy1"]
  col[1][location]: ["beijing0" "shanghai0" "chengdu0" "beijing1" "shanghai1"]
  col[2][year]: [1992 1993 1994 1993 1994]

record:
  schema:
  fields: 3
    - archer: type=utf8
        metadata: ["PARQUET:field_id": "-1"]
    - location: type=utf8
          metadata: ["PARQUET:field_id": "-1"]
    - year: type=int16
      metadata: ["PARQUET:field_id": "-1"]
  rows: 4
  col[0][archer]: ["jim1" "tony2" "amy2" "jim2"]
  col[1][location]: ["chengdu1" "beijing2" "shanghai2" "chengdu2"]
  col[2][year]: [1995 1994 1995 1996]

这次:前5行作为一个record,后4行作为另外一个record。

当然,我们也可以使用flat_table_from_parquet.go中的代码来读取flat_record.parquet(将读取文件名改为flat_record.parquet),只不过由于将parquet数据转换为了table,其输出内容将变为:

$go run flat_table_from_parquet.go
schema:
  fields: 3
    - archer: type=utf8
        metadata: ["PARQUET:field_id": "-1"]
    - location: type=utf8
          metadata: ["PARQUET:field_id": "-1"]
    - year: type=int16
      metadata: ["PARQUET:field_id": "-1"]
------
the count of table columns= 3
the count of table rows= 9
------
arrays in column(archer):
["tony0" "amy0" "jim0" "tony1" "amy1" "jim1" "tony2" "amy2" "jim2"]
------
arrays in column(location):
["beijing0" "shanghai0" "chengdu0" "beijing1" "shanghai1" "chengdu1" "beijing2" "shanghai2" "chengdu2"]
------
arrays in column(year):
[1992 1993 1994 1993 1994 1995 1994 1995 1996]
------

3.3 Record Batch -> Parquet(压缩)

Recod同样支持压缩写入Parquet,其原理与前面table压缩存储是一致的,都是通过设置WriterProperties来实现的:

// flat_record_to_parquet_compressed.go

func main() {
 ... ...
    f, err := os.Create("flat_record_compressed.parquet")
    if err != nil {
        panic(err)
    }
    defer f.Close()

    props := parquet.NewWriterProperties(parquet.WithCompression(compress.Codecs.Zstd),
        parquet.WithCompressionFor("year", compress.Codecs.Brotli))
    writer, err := pqarrow.NewFileWriter(schema, f, props,
        pqarrow.DefaultWriterProps())
    if err != nil {
        panic(err)
    }
    defer writer.Close()

    for _, rec := range records {
        if err := writer.Write(rec); err != nil {
            panic(err)
        }
        rec.Release()
    }
}

不过这次针对arrow.string类型和arrow.int16类型的压缩效果非常“差”:

$parquet_reader flat_record_compressed.parquet
File name: flat_record_compressed.parquet
Version: v2.6
Created By: parquet-go version 13.0.0-SNAPSHOT
Num Rows: 9
Number of RowGroups: 3
Number of Real Columns: 3
Number of Columns: 3
Number of Selected Columns: 3
Column 0: archer (BYTE_ARRAY/UTF8)
Column 1: location (BYTE_ARRAY/UTF8)
Column 2: year (INT32/INT_16)
--- Row Group: 0  ---
--- Total Bytes: 315  ---
--- Rows: 3  ---
Column 0
 Values: 3, Min: [97 109 121 48], Max: [116 111 110 121 48], Null Values: 0, Distinct Values: 0
 Compression: ZSTD, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 79, Compressed Size: 105
Column 1
 Values: 3, Min: [98 101 105 106 105 110 103 48], Max: [115 104 97 110 103 104 97 105 48], Null Values: 0, Distinct Values: 0
 Compression: ZSTD, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 99, Compressed Size: 125
Column 2
 Values: 3, Min: 1992, Max: 1994, Null Values: 0, Distinct Values: 0
 Compression: BROTLI, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 77, Compressed Size: 85
--- Values ---
archer            |location          |year              |
tony0             |beijing0          |1992              |
amy0              |shanghai0         |1993              |
jim0              |chengdu0          |1994              |

--- Row Group: 1  ---
--- Total Bytes: 315  ---
--- Rows: 3  ---
Column 0
 Values: 3, Min: [97 109 121 49], Max: [116 111 110 121 49], Null Values: 0, Distinct Values: 0
 Compression: ZSTD, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 79, Compressed Size: 105
Column 1
 Values: 3, Min: [98 101 105 106 105 110 103 49], Max: [115 104 97 110 103 104 97 105 49], Null Values: 0, Distinct Values: 0
 Compression: ZSTD, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 99, Compressed Size: 125
Column 2
 Values: 3, Min: 1993, Max: 1995, Null Values: 0, Distinct Values: 0
 Compression: BROTLI, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 77, Compressed Size: 85
--- Values ---
archer            |location          |year              |
tony1             |beijing1          |1993              |
amy1              |shanghai1         |1994              |
jim1              |chengdu1          |1995              |

--- Row Group: 2  ---
--- Total Bytes: 315  ---
--- Rows: 3  ---
Column 0
 Values: 3, Min: [97 109 121 50], Max: [116 111 110 121 50], Null Values: 0, Distinct Values: 0
 Compression: ZSTD, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 79, Compressed Size: 105
Column 1
 Values: 3, Min: [98 101 105 106 105 110 103 50], Max: [115 104 97 110 103 104 97 105 50], Null Values: 0, Distinct Values: 0
 Compression: ZSTD, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 99, Compressed Size: 125
Column 2
 Values: 3, Min: 1994, Max: 1996, Null Values: 0, Distinct Values: 0
 Compression: BROTLI, Encodings: RLE_DICTIONARY PLAIN RLE
 Uncompressed Size: 77, Compressed Size: 85
--- Values ---
archer            |location          |year              |
tony2             |beijing2          |1994              |
amy2              |shanghai2         |1995              |
jim2              |chengdu2          |1996              |

越压缩,parquet文件的size越大。当然这个问题不是我们这篇文章的重点,只是提醒大家选择适当的压缩算法十分重要

3.4 Record Batch <- Parquet(压缩)

和读取table转换后的压缩parquet文件一样,读取record转换后的压缩parquet一样无需特殊设置,使用flat_record_from_parquet.go即可(需要改一下读取的文件名),这里就不赘述了。

4. 小结

本文旨在介绍使用Go进行Arrow和Parquet文件相互转换的基本方法,我们以table和record两种高级数据结构为例,分别介绍了读写parquet文件以及压缩parquet文件的方法。

当然本文中的例子都是“平坦(flat)”的简单例子,parquet文件还支持更复杂的嵌套数据,我们会在后续的深入讲解parquet格式的文章中提及。

5. 参考资料

  • Parquet File Format - https://parquet.apache.org/docs/file-format/

  • 《Dremel: Interactive Analysis of Web-Scale Datasets》 - https://storage.googleapis.com/pub-tools-public-publication-data/pdf/36632.pdf

  • Announcing Parquet 1.0: Columnar Storage for Hadoop - https://blog.twitter.com/engineering/en_us/a/2013/announcing-parquet-10-columnar-storage-for-hadoop

  • Dremel made simple with Parquet - https://blog.twitter.com/engineering/en_us/a/2013/dremel-made-simple-with-parquet

  • parquet项目首页 - http://parquet.apache.org/

  • Apache Parquet介绍 by influxdata - https://www.influxdata.com/glossary/apache-parquet/

  • Intro to InfluxDB IOx - https://www.influxdata.com/blog/intro-influxdb-iox/

  • Apache Arrow介绍 by influxdb - https://www.influxdata.com/glossary/apache-arrow/

  • 开源时序数据库解析 - InfluxDB IOx - https://zhuanlan.zhihu.com/p/534035337

  • Arrow and Parquet Part 1: Primitive Types and Nullability - https://arrow.apache.org/blog/2022/10/05/arrow-parquet-encoding-part-1/

  • Arrow and Parquet Part 2: Nested and Hierarchical Data using Structs and Lists - https://arrow.apache.org/blog/2022/10/08/arrow-parquet-encoding-part-2/

  • Arrow and Parquet Part 3: Arbitrary Nesting with Lists of Structs and Structs of Lists - https://arrow.apache.org/blog/2022/10/17/arrow-parquet-encoding-part-3/

  • Cost Efficiency @ Scale in Big Data File Format - https://www.uber.com/blog/cost-efficiency-big-data/


“Gopher部落”知识星球[10]旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2023年,Gopher部落将进一步聚焦于如何编写雅、地道、可读、可测试的Go代码,关注代码质量并深入理解Go核心技术,并继续加强与星友的互动。欢迎大家加入!

be0dc754e17db4530ddea365894df949.jpegc49cc8e1a1d87b73484140dec33ac923.png

6892daaba686d35c8b927d3f1951b90f.png405e02b808c9c0d09489f5cd9d4f3a26.jpeg

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址[11]:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 - https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx

  • 微博2:https://weibo.com/u/6484441286

  • 博客:tonybai.com

  • github: https://github.com/bigwhite

427cb0e9b45368f4400b2b00d1686a53.jpeg

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

参考资料

[1] 

本系列文章: https://tonybai.com/tag/arrow

[2] 

内存表示: https://tonybai.com/2023/06/25/a-guide-of-using-apache-arrow-for-gopher-part1

[3] 

内存操作: https://tonybai.com/2023/07/13/a-guide-of-using-apache-arrow-for-gopher-part4/

[4] 

Parquet也是Apache的顶级项目: https://parquet.apache.org

[5] 

《高级数据结构》: https://tonybai.com/2023/07/08/a-guide-of-using-apache-arrow-for-gopher-part3/

[6] 

简单数据类型: https://tonybai.com/2023/06/25/a-guide-of-using-apache-arrow-for-gopher-part1

[7] 

《高级数据结构》: https://tonybai.com/2023/07/08/a-guide-of-using-apache-arrow-for-gopher-part3/

[8] 

《高级数据结构》: https://tonybai.com/2023/07/08/a-guide-of-using-apache-arrow-for-gopher-part3/

[9] 

《高级数据结构》: https://tonybai.com/2023/07/08/a-guide-of-using-apache-arrow-for-gopher-part3/

[10] 

“Gopher部落”知识星球: https://wx.zsxq.com/dweb2/index/group/51284458844544

[11] 

链接地址: https://m.do.co/c/bff6eed92687

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/836462.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

FuncGPT竟然限免?!速来体验全球首个AIGF!

近日&#xff0c;飞算SoFlu软件机器人重磅推出全新功能——FuncGPT&#xff08;慧函数&#xff09;。FuncGPT&#xff08;慧函数&#xff09;是一款函数AI生产器&#xff0c;它能够根据用户的需求快速生成 Java 语言的函数代码。FuncGPT&#xff08;慧函数&#xff09;拥有强大…

行政资产管理信息系统

行政资产管理信息系统是通过专业设计开发的资产管理解决方案&#xff0c;旨在为企业建立和完善资产管理体系。该系统可以有效地控制资产的购买和应用&#xff0c;从而节省资金&#xff0c;完成资产的有效管理。   资产管理信息系统的核心功能是统一资产管理&#xff0c;可以…

java 版本企业招标投标管理系统源码+多个行业+tbms+及时准确+全程电子化

​ 功能描述 1、门户管理&#xff1a;所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含&#xff1a;招标公告、非招标公告、系统通知、政策法规。 2、立项管理&#xff1a;企业用户可对需要采购的项目进行立项申请&#xff0c;并提交审批&#xff0c;查…

kernel pwn入门

Linux Kernel 介绍 Linux 内核是 Linux 操作系统的核心组件&#xff0c;它提供了操作系统的基本功能和服务。它是一个开源软件&#xff0c;由 Linus Torvalds 在 1991 年开始开发&#xff0c;并得到了全球广泛的贡献和支持。 Linux 内核的主要功能包括进程管理、内存管理、文…

2023-08-04 Untiy进阶 C#知识补充4——C#5主要功能与语法

文章目录 一、概述二、回顾——线程三、线程池四、Task 任务类五、同步和异步 ​ 注意&#xff1a;在此仅提及 Unity 开发中会用到的一些功能和特性&#xff0c;对于不适合在 Unity 中使用的内容会忽略。 一、概述 C# 5 调用方信息特性&#xff08;C# 进阶内容&#xff09;异步…

途乐证券|俄罗斯宣布9月削减石油出口量

当地时间周四&#xff0c;美股兜售潮仍在持续&#xff0c;三大股指连续第二个交易日团体收跌。到收盘&#xff0c;道指跌落0.19%&#xff0c;标普500指数跌落0.25%&#xff0c;纳指跌幅为0.10%。 美国ISM7月非制造业PMI下滑 数据面上&#xff0c;美国供应办理协会ISM周四发布的…

掌握好视频翻译软件的使用方法,帮你跨越语言障碍

嘿&#xff0c;翻译小达人们&#xff0c;你知道吗&#xff0c;当你看到一段充满神秘符号的英语视频&#xff0c;脑袋里冒出一大片问号的时候&#xff0c;别慌&#xff01;我们有比手动翻译更妙的解决办法——视频翻译。嗯&#xff0c;这货可不一般&#xff0c;它能帮你解读视频…

锂电设备振动监测:早发现问题,早预防故障

锂电设备在生产过程中的振动问题可能导致设备故障、损坏和生产线停机&#xff0c;对企业产生严重影响。为了确保锂电池生产的稳定性和可靠性&#xff0c;振动监测成为了关键一步。通过引入智能无线温振传感器及其监测分析软件&#xff0c;企业可以早发现问题、早预防故障&#…

[PaddlePaddle] [学习笔记] PaddlePaddle 官方文档 —— 使用Python和NumPy构建神经网络模型

1. 机器学习和深度学习综述 1.1 人工智能、机器学习、深度学习的关系 近些年人工智能、机器学习和深度学习的概念十分火热&#xff0c;但很多从业者却很难说清它们之间的关系&#xff0c;外行人更是雾里看花。在研究深度学习之前&#xff0c;先从三个概念的正本清源开始。概括…

节能延寿:ARM Cortex-M微控制器下的低功耗定时器应用

嵌入式系统的开发在现代科技中发挥着至关重要的作用。它们被广泛应用于从智能家居到工业自动化的各种领域。在本文中,我们将聚焦于使用ARM Cortex-M系列微控制器实现低功耗定时器的应用。我们将详细介绍在嵌入式系统中如何实现低功耗的定时器功能,并附上代码示例。 嵌入式系…

详聊API接口?淘宝API接口在ERP系统中扮演者什么角色?

什么是API&#xff1f; API全称应用程序编程接口&#xff08;Application Programming Interface&#xff09;&#xff0c;是一组用于访问某个软件或硬件的协议、规则和工具集合。电商API就是各大电商平台提供给开发者访问平台数据的接口。目前&#xff0c;主流电商平台如淘宝…

Ubuntu 22.04安装和使用ROS1可行吗

可行。 测试结果 ROS1可以一直使用下去的&#xff0c;这一点不用担心。Ubuntu会一直维护的。 简要介绍 Debian发行版^_^ AI&#xff1a;在Ubuntu 22.04上安装ROS1是可行的&#xff0c;但需要注意ROS1对Ubuntu的支持只到20.04。因此&#xff0c;如果要在22.04上安装ROS1&am…

Kubernetes v1.20 二进制部署

架构 k8s集群master01&#xff1a;192.168.80.101 kube-apiserver kube-controller-manager kube-scheduler etcd k8s集群master02&#xff1a;192.168.80.102 k8s集群node01&#xff1a;192.168.80.103 kubelet kube-proxy docker k8s集群node02&#xff1a;192.168.80…

问题解决和批判性思维是软件工程的重要核心

软件工程的重心在于问题解决和批判性思维&#xff08;合理设计和架构降低复杂度&#xff09;&#xff0c;而非仅局限于编程。 许多人误以为软件工程就只是编程&#xff0c;即用编程语言编写指令&#xff0c;让计算机按照这些指令行事。但实际上&#xff0c;软件工程的内涵远超…

Leetcode-每日一题【剑指 Offer 04. 二维数组中的查找】

题目 在一个 n * m 的二维数组中&#xff0c;每一行都按照从左到右 非递减 的顺序排序&#xff0c;每一列都按照从上到下 非递减 的顺序排序。请完成一个高效的函数&#xff0c;输入这样的一个二维数组和一个整数&#xff0c;判断数组中是否含有该整数。 示例: 现有矩阵 matri…

机器学习基础之《特征工程(3)—特征预处理》

一、什么是特征预处理 通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程 处理前&#xff0c;特征值是数值&#xff0c;处理后&#xff0c;进行了特征缩放

学习笔记|C251|STC32G单片机视频开发教程(冲哥)|第三集:开发环境搭建和程序下载

文章目录 1.STC-ISP软件的下载2.STC32手册下载3.PDF阅读器下载4.学会PDF阅读器查阅手册5.跟着手册搭建C251开发环境Tips:如何同时安装Keil的C51、C251和MDK 6.程序包的下载7.第一个工程的编译和下载 原作者/主讲人&#xff1a;冲哥 原始视频地址 1.STC-ISP软件的下载 STC-ISP …

在线会议的线下战场:补齐产业故事里的第一个短板

过去几年时间里&#xff0c;在线会议产品以其互联网的强产品体验和线上办公的必选项属性站在了TO B风口上&#xff0c;但在水温变化的如今&#xff0c;这个冷却的赛道在增长之外&#xff0c;更迎来了新的审视&#xff1a;即用类互联网的打法&#xff0c;能否彻底渗透TO B市场&a…

weui 去掉输入框的边框 每一项目的边框删除

问题&#xff1a; 边框是通过before添加&#xff0c;如下源码是&#xff1a; .weui_cell:before {content: " ";position: absolute;left: 15px;top: 0;width: 100%;height: 1px;border-color:rgb(255 111 119);color: #D9D9D9;-webkit-transform-origin:0 0;transf…

AI代码生成助手Cursor、TabNine 、Cosy使用体验

AI代码助手好多都需要翻墙,chargpt,微软系统的Copilot, Cursor(基于gpt,需要翻墙) 。TabNine不翻墙但是免费版本只给生成单行代码,阿里的cosy功能比较弱甚至不能算ai。即使这样也能大大提高编码效率了&#xff0c; 使用了下&#xff0c;感觉AI编码助手真的是可以解决一部分问题…