React diff 根据相对位置的 diff 算法

news2024/12/29 10:55:05

文章目录

  • diff 算法
  • 没有 key 时的diff
  • 通过 key 的 diff
    • 查找需要移动的节点
    • 移动节点
    • 添加新元素
    • 移除不存在的元素
    • 缺点

diff 算法

在这里插入图片描述

没有 key 时的diff

  • 根据新旧列表的长度进行 diff
    • 公共长度相同的部分直接patch
    • 新列表长度>旧列表长度则添加,否则删除
function patchChildren(
  prevChildFlags,
  nextChildFlags,
  prevChildren,
  nextChildren,
  container
) {
  switch (prevChildFlags) {
    // 省略...

    // 旧的 children 中有多个子节点
    default:
      switch (nextChildFlags) {
        case ChildrenFlags.SINGLE_VNODE:
          // 省略...
        case ChildrenFlags.NO_CHILDREN:
          // 省略...
        default:
          // 新的 children 中有多个子节点
          // 获取公共长度,取新旧 children 长度较小的那一个
          const prevLen = prevChildren.length
          const nextLen = nextChildren.length
          const commonLength = prevLen > nextLen ? nextLen : prevLen
          for (let i = 0; i < commonLength; i++) {
            patch(prevChildren[i], nextChildren[i], container)
          }
          // 如果 nextLen > prevLen,将多出来的元素添加
          if (nextLen > prevLen) {
            for (let i = commonLength; i < nextLen; i++) {
              mount(nextChildren[i], container)
            }
          } else if (prevLen > nextLen) {
            // 如果 prevLen > nextLen,将多出来的元素移除
            for (let i = commonLength; i < prevLen; i++) {
              container.removeChild(prevChildren[i].el)
            }
          }
          break
      }
      break
  }
}

通过 key 的 diff

  • 通过 key 就能够明确的知道新旧 children 中节点的映射关系,复用旧节点进行 patch
// 遍历新的 children
for (let i = 0; i < nextChildren.length; i++) {
  const nextVNode = nextChildren[i]
  let j = 0
  // 遍历旧的 children
  for (j; j < prevChildren.length; j++) {
    const prevVNode = prevChildren[j]
    // 如果找到了具有相同 key 值的两个节点,则调用 `patch` 函数更新之
    if (nextVNode.key === prevVNode.key) {
      patch(prevVNode, nextVNode, container)
      break // 这里需要 break
    }
  }
}

查找需要移动的节点

在这里插入图片描述

  • 如果在寻找的过程中遇到的节点索引呈现递增趋势,则说明新旧 children 中节点顺序相同,不需要移动操作。相反的,如果在寻找的过程中遇到的索引值不呈现递增趋势,则说明需要移动操作
  • 因为 diff 是在旧真实节点列表上根据新旧虚拟 vnode 列表进行的真实移动,所以为了保证移动旧列表后的相对位置正确,很多时候都通过insertBefore 替换 appendChild
    • 取出新 children 的第一个节点,即 li-c,并尝试在旧 children 中寻找 li-c,结果是我们找到了,并且 li-c 在旧 children 中的索引为 2。
    • 取出新 children 的第二个节点,即 li-a,并尝试在旧 children 中寻找 li-a,也找到了,并且 li-a 在旧 children 中的索引为 0。
    • 递增的趋势被打破了,我们在寻找的过程中先遇到的索引值是 2,接着又遇到了比 2 小的 0,这说明在旧 children 中 li-a 的位置要比 li-c 靠前,但在新的 children 中 li-a 的位置要比 li-c 靠后。这时我们就知道了 li-a 是那个需要被移动的节点,我们接着往下执行
    • 取出新 children 的第三个节点,即 li-b,并尝试在旧 children 中寻找 li-b,同样找到了,并且 li-b 在旧 children 中的索引为 1。
    • 我们发现 1 同样小于 2,这说明在旧 children 中节点 li-b 的位置也要比 li-c 的位置靠前,但在新的 children 中 li-b 的位置要比 li-c 靠后。所以 li-b 也需要被移动。
  • 在当前寻找过程中在旧 children 中所遇到的最大索引值。如果在后续寻找的过程中发现存在索引值比最大索引值小的节点,意味着该节点需要被移动。
// 用来存储寻找过程中遇到的最大索引值
let lastIndex = 0
// 遍历新的 children
for (let i = 0; i < nextChildren.length; i++) {
  const nextVNode = nextChildren[i]
  let j = 0
  // 遍历旧的 children
  for (j; j < prevChildren.length; j++) {
    const prevVNode = prevChildren[j]
    // 如果找到了具有相同 key 值的两个节点,则调用 `patch` 函数更新之
    if (nextVNode.key === prevVNode.key) {
      patch(prevVNode, nextVNode, container)
      if (j < lastIndex) {
        // 需要移动
      } else {
        // 更新 lastIndex
        lastIndex = j
      }
      break // 这里需要 break
    }
  }
}

移动节点

  • 新 children 中的第一个节点是 li-c,它在旧 children 中的索引为 2,由于 li-c 是新 children 中的第一个节点,所以它始终都是不需要移动的,只需要调用 patch 函数更新即可
function patchElement(prevVNode, nextVNode, container) {
  // 省略...

  // 拿到 el 元素,注意这时要让 nextVNode.el 也引用该元素
  const el = (nextVNode.el = prevVNode.el)
  
  // 省略...
}
  • 接下来是新 children 中的第二个节点 li-a,它在旧 children 中的索引是 0,由于 0 < 2 所以 li-a 是需要移动的节点,通过观察新 children 可知,新 children 中 li-a 节点的前一个节点是 li-c,所以我们的移动方案应该是:把 li-a 节点对应的真实 DOM 移动到 li-c 节点所对应真实 DOM 的后面
  • 所以我们的思路应该是想办法拿到 li-c 节点对应真实 DOM 的下一个兄弟节点,并把 li-a 节点所对应真实 DOM 插到该节点的前面
// 用来存储寻找过程中遇到的最大索引值
let lastIndex = 0
// 遍历新的 children
for (let i = 0; i < nextChildren.length; i++) {
  const nextVNode = nextChildren[i]
  let j = 0
  // 遍历旧的 children
  for (j; j < prevChildren.length; j++) {
    const prevVNode = prevChildren[j]
    // 如果找到了具有相同 key 值的两个节点,则调用 `patch` 函数更新之
    if (nextVNode.key === prevVNode.key) {
      patch(prevVNode, nextVNode, container)
      if (j < lastIndex) {
        // 需要移动
        // refNode 是为了下面调用 insertBefore 函数准备的
        // 拿到新节点列表的上一个节点,插到其后面
        const refNode = nextChildren[i - 1].el.nextSibling
        // 调用 insertBefore 函数移动 DOM
        container.insertBefore(prevVNode.el, refNode)
      } else {
        // 更新 lastIndex
        lastIndex = j
      }
      break // 这里需要 break
    }
  }
}

添加新元素

在这里插入图片描述

  • 节点 li-d 在旧的 children 中是不存在的,所以当我们尝试在旧的 children 中寻找 li-d 节点时,是找不到可复用节点的,这时就没办法通过移动节点来完成更新操作,所以我们应该使用 mount 函数将 li-d 节点作为全新的 VNode 挂载到合适的位置。
  • 查找旧节点是否存在 li-d 的 key ,不存在则新增节点
  • 如何才能保证 li-d 节点始终被添加到 li-a 节点的后面呢?答案是使用 insertBefore 方法代替 appendChild 方法,因为需要在已存在的真实节点列表进行移动,这样能够保证相对位置正确
let lastIndex = 0
for (let i = 0; i < nextChildren.length; i++) {
  const nextVNode = nextChildren[i]
  let j = 0,
    find = false
  for (j; j < prevChildren.length; j++) {
    const prevVNode = prevChildren[j]
    if (nextVNode.key === prevVNode.key) {
      find = true
      patch(prevVNode, nextVNode, container)
      if (j < lastIndex) {
        // 需要移动
        const refNode = nextChildren[i - 1].el.nextSibling
        container.insertBefore(prevVNode.el, refNode)
        break
      } else {
        // 更新 lastIndex
        lastIndex = j
      }
    }
  }
  if (!find) {
    // 挂载新节点
    // 找到 refNode
    const refNode =
      i - 1 < 0
        ? prevChildren[0].el
        : nextChildren[i - 1].el.nextSibling
    mount(nextVNode, container, false, refNode)
  }
}


  • 先找到当前遍历到的节点的前一个节点,即 nextChildren[i - 1],接着找到该节点所对应真实 DOM 的下一个子节点作为 refNode,即 nextChildren[i - 1].el.nextSibling,但是由于当前遍历到的节点有可能是新 children 的第一个节点,这时 i - 1 < 0,这将导致 nextChildren[i - 1] 不存在,所以当 i - 1 < 0 时,我们就知道新的节点是作为第一个节点而存在的,这时我们只需要把新的节点插入到最前面即可,所以我们使用 prevChildren[0].el 作为 refNode
// mount 函数
function mount(vnode, container, isSVG, refNode) {
  const { flags } = vnode
  if (flags & VNodeFlags.ELEMENT) {
    // 挂载普通标签
    mountElement(vnode, container, isSVG, refNode)
  }

  // 省略...
}

// mountElement 函数
function mountElement(vnode, container, isSVG, refNode) {
  // 省略...

  refNode ? container.insertBefore(el, refNode) : container.appendChild(el)
}

移除不存在的元素

在这里插入图片描述

  • 新的 children 中已经不存在 li-c 节点了,所以我们应该想办法将 li-c 节点对应的真实 DOM 从容器元素内移除。但我们之前编写的算法还不能完成这个任务,因为外层循环遍历的是新的 children,所以外层循环会执行两次,第一次用于处理 li-a 节点,第二次用于处理 li-b 节点,此时整个算法已经运行结束了。
  • 所以,我们需要在外层循环结束之后,再优先遍历一次旧的 children,并尝试拿着旧 children 中的节点去新 children 中寻找相同的节点,如果找不到则说明该节点已经不存在于新 children 中了,这时我们应该将该节点对应的真实 DOM 移除
let lastIndex = 0
for (let i = 0; i < nextChildren.length; i++) {
  const nextVNode = nextChildren[i]
  let j = 0,
    find = false
  for (j; j < prevChildren.length; j++) {
    // 省略...
  }
  if (!find) {
    // 挂载新节点
    // 省略...
  }
}
// 移除已经不存在的节点
// 遍历旧的节点
for (let i = 0; i < prevChildren.length; i++) {
  const prevVNode = prevChildren[i]
  // 拿着旧 VNode 去新 children 中寻找相同的节点
  const has = nextChildren.find(
    nextVNode => nextVNode.key === prevVNode.key
  )
  if (!has) {
    // 如果没有找到相同的节点,则移除
    container.removeChild(prevVNode.el)
  }
}

缺点

在这里插入图片描述

  • 在这个例子中,我们可以通过肉眼观察从而得知最优的解决方案应该是:把 li-c 节点对应的真实 DOM 移动到最前面即可,只需要一次移动即可完成更新。然而,React 所采用的 Diff 算法在更新如上案例的时候,会进行两次移动:
    在这里插入图片描述
  • 第一次把 li-a 移动到 li-c 后面
  • 第二次把 li-b 移动到 li-a 后面

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/836389.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

yo!这里是STL::vector类简单模拟实现

目录 前言 重要接口模拟实现 默认成员函数 1.构造函数 2.析构函数 3.拷贝构造函数 4.赋值运算符重载 迭代器 简单接口 1.size() 2.capacity() 3.swap() 操作符重载 1.操作符[] 扩容接口 1.reserve() 2.resize() 增删查改接口 1.push_back() 2.pop_back() …

vue页面布局

布局 用element-plus自带的布局&#xff1b; 左边菜单 用他的Menu 菜单、自带收缩和展开&#xff1b;数据可以接口获取或者写死&#xff1b; 使用的如下操作、把主题和默认打开的index存到缓存中 头部&#xff1b; 简单的先分成左右&#xff1b;再简单的分成左右 1、左…

CS 144 Lab Four -- the TCP connection

CS 144 Lab Four -- the TCP connection TCPConnection 简述TCP 状态图代码实现完整流程追踪 测试 对应课程视频: 【计算机网络】 斯坦福大学CS144课程 Lab Three 对应的PDF: Lab Checkpoint 4: down the stack (the network interface) TCPConnection 简述 TCPConnection 需…

Python系统学习1-3-变量,运算符

1、变量 变量&#xff1a;关联一个对象的标识符 学习目标&#xff1a;学会画变量的内存图 命名规则:字母数字下划线&#xff0c;所有单词小写&#xff0c;单词之间下划线隔开 赋值&#xff1a;创建一个变量或改变一个变量关联的数据。 语法&#xff1a;变量名数据&#xf…

vue运行在IE浏览器空白报错SCRIPT1006: 缺少‘)‘ -【vue兼容IE篇】

其他浏览器均正常&#xff0c;但是切换ie模式&#xff0c;打开空白&#xff0c;F12打开报错缺少‘)‘ &#xff0c;如下图 在搜狗浏览器下点开报错&#xff1a;定格在crypto-js处 解决&#xff1a; 步骤一&#xff1a;使用npm安装babel-polyfill 依赖&#xff08;已安装了可忽…

Java与Kotline Funcation函数与参数函数的详解

一.介绍 在现在以IDE为开发工具的时代&#xff0c;各种开发语言都有&#xff0c;kotlin的语法势头比较强&#xff0c;今天我们将介绍在项目中出现比较多的两种函数&#xff0c;一种是参数函数&#xff0c;还有一种就是Function函数 如果你不了匿名函数请阅读以下文档&#xff…

IT 运营分析 (ITOA)

IT 运营 &#xff08;ITOps&#xff09; 是指向组织实施、管理、交付和支持 IT 服务&#xff0c;ITOps 可帮助组织维护和运行所需的所有技术工具&#xff0c;以保持业务活动以最高质量正常运行&#xff0c;同时降低成本。 一些常见的 ITOps 过程是&#xff1a; 问题整改&…

el-table 去掉边框(修改颜色)

原始&#xff1a; 去掉表格的border属性&#xff0c;每一行下面还会有一条线&#xff0c;并且不能再拖拽表头 为了满足在隐藏表格边框的情况下还能拖动表头&#xff0c;修改相关css即可&#xff0c;如下代码 <style lang"less"> .table {//避免单元格之间出现白…

Clickhouse 优势与部署

一、clickhouse简介 1.1 clickhouse介绍 ClickHouse的背后研发团队是俄罗斯的Yandex公司&#xff0c;2011年在纳斯达克上市&#xff0c;它的核心产品是搜索引擎。我们知道&#xff0c;做搜索引擎的公司营收非常依赖流量和在线广告&#xff0c;所以做搜索引擎的公司一般会并行推…

【LeetCode-简单】剑指 Offer 52. 两个链表的第一个公共节点

题目 输入两个链表&#xff0c;找出它们的第一个公共节点。 如下面的两个链表&#xff1a; 在节点 c1 开始相交。 输入&#xff1a;intersectVal 8, listA [4,1,8,4,5], listB [5,0,1,8,4,5], skipA 2, skipB 3 输出&#xff1a;Reference of the node with value 8 输…

想参加华为杯竞赛、高教社杯和数学建模国赛的小伙伴看过来

本文目录 ⭐ 赛事介绍⭐ 辅导比赛 ⭐ 赛事介绍 ⭐ 参赛好处 ⭐ 辅导比赛 ⭐ 写在最后 ⭐ 赛事介绍 华为杯全国研究生数学建模竞赛是由华为公司主办的一项面向全国研究生的数学建模竞赛。该竞赛旨在通过实际问题的建模和解决&#xff0c;培养研究生的创新能力和团队合作精神&a…

【ASP.NET MVC】使用动软(四)(12)

一、筛选器类和Cookie实现路由 需解决的问题&#xff1a; 网站登录往往需要用户名密码验证&#xff0c;为避免重复验证&#xff0c;一般采用Cookie 、Session等技术来保持用户的登录状态&#xff1a; Session是在服务端保存的一个数据结构&#xff0c;用来跟踪用户的状态&…

EtherCAT转MODBUS RTU/RS485/232总线协议网关

产品功能 JM-ECT-RTU是一款EtherCAT从站功能的通讯网关。该产品主要功能是将EtherCAT网络和MODBUS-RTU网络连接起来。 JM-ECT-RTU网关连接到EtherCAT总线中作为从站使用&#xff0c;连接到MODBUS-RTU总线中作为主站或从站使用。 本网关产品将基于MODBUS 的设备或串行RS-232/…

10分钟理解React生命周期

前言 学习React&#xff0c;生命周期很重要&#xff0c;我们了解完生命周期的各个组件&#xff0c;对写高性能组件会有很大的帮助。 一、简介 React /riˈkt/ 组件的生命周期指的是组件从创建到销毁过程中所经历的一系列方法调用。这些方法可以让我们在不同的时刻执行特定的…

科班应届生,我选择来黑马提升技能!

不论是因为对未来的迷茫和焦虑&#xff0c;还是对生活的现状不满意&#xff0c;又或者是想完善自己的专业知识&#xff0c;亦或是跨界迎接新的挑战&#xff0c;都可以来黑马…… 学科 | JavaEE 校区 | 武汉 薪资 | 10k&#xff08;应届生&#xff09; 黑马程序员的学弟、学妹…

【方法】Excel表格如何拆分数据?

当需要把多个数据逐个填到Excel单元格的时候&#xff0c;我们可以利用Excel的数据拆分功能&#xff0c;可以节省不少时间。 小编以下面的数据为例&#xff0c;看看如何进行数据拆分。 首先&#xff0c;要选择数字所在的单元格&#xff0c;然后依次点击菜单栏中的“数据”>…

Django实现音乐网站 ⑹

使用Python Django框架制作一个音乐网站&#xff0c; 本篇主要是在添加编辑过程中对后台歌手功能优化及表模型名称修改、模型继承内容。 目录 表模型名称修改 模型继承 创建抽象基类 其他模型继承 更新表结构 歌手新增、编辑优化 表字段名称修改 隐藏单曲数和专辑数 姓…

Redis 单线程VS多线程

面试题 redis到底是单线程还是多线程&#xff1f;IO多路复用是什么&#xff1f;redis为什么快&#xff1f; Redis单线程 是什么 Redis的版本很多3.x、4.x、6.x&#xff0c;版本不同架构也是不同的&#xff0c;不限定版本问是否单线程也不太严谨。 1、版本3.x &#xff0c;最…

中外人工智能专家共话大语言模型与 AI 创新

文章目录 一、前言二、主要内容三、总结 &#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 一、前言 智源社区活动&#xff0c;中外人工智能专家共话大语言模型与 AI 创新。 对谈书目&#xff1a; 《大模型时代》&#xff0c;龙志勇、黄雯 著&#xf…

.Net6 Web Core API --- Autofac -- AOP

目录 一、AOP 封装 二、类拦截 案例 三、接口拦截器 案例 AOP拦截器 可开启 类拦截器 和 接口拦截器 类拦截器 --- 只有方法标注 virtual 标识才会启动 接口拦截器 --- 所有实现接口的方法都会启动 一、AOP 封装 // 在 Program.cs 配置 builder.AddAOPExt();//自定义 A…