机器学习笔记之优化算法(七)线搜索方法(步长角度;非精确搜索;Wolfe Condition)

news2025/1/19 20:19:06

引言

上一节介绍了 Glodstein \text{Glodstein} Glodstein准则 ( Glodstein Condition ) (\text{Glodstein Condition}) (Glodstein Condition)及其弊端。本节将针对该弊端,介绍 Wolfe \text{Wolfe} Wolfe准则 ( Wolfe Condition ) (\text{Wolfe Condition}) (Wolfe Condition)

回顾:

Armijo \text{Armijo} Armijo准则及其弊端

在当前迭代步骤中,为了能够得到更精炼 ϕ ( α ) \phi(\alpha) ϕ(α)选择范围 Armijo \text{Armijo} Armijo准则 ( Armijo Condition ) (\text{Armijo Condition}) (Armijo Condition)提出一种关于 ϕ ( α ) \phi(\alpha) ϕ(α)筛选方式,使其比 ϕ ( α ) < f ( x k ) \phi(\alpha) < f(x_k) ϕ(α)<f(xk)更加严格
Armijo Condition :  { ϕ ( α ) < L ( α ) = f ( x k ) + C 1 ⋅ [ ∇ f ( x k ) ] T P k ⋅ α C 1 ∈ ( 0 , 1 ) \text{Armijo Condition : } \begin{cases} \phi(\alpha) < \mathcal L(\alpha) = f(x_k) + \mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k \cdot \alpha \\ \quad \\ \mathcal C_1 \in (0,1) \end{cases} Armijo Condition :  ϕ(α)<L(α)=f(xk)+C1[f(xk)]TPkαC1(0,1)
这种操作产生的弊端是: C 1 \mathcal C_1 C1在取值过程中,可能出现数量较少的、并且并非 ϕ ( α ) \phi(\alpha) ϕ(α)主要部分的选择空间。见下图:
Armijo准则弊端
这种情况可能导致:
下面的两种情况都指向同一个问题: L ( α ) \mathcal L(\alpha) L(α)所划分的 α \alpha α范围从整个 ϕ ( α ) \phi(\alpha) ϕ(α)角度观察,是片面的、局部的。

  • 可选择的 α \alpha α范围较小;
  • 小范围内的 α \alpha α结果,其对应的 ϕ ( α ) \phi(\alpha) ϕ(α)并不优质
    这里的‘优质’是指与整个 ϕ ( α ) \phi(\alpha) ϕ(α)函数结果相比都属于一个较小的结果。最优质的自然是 α ∗ = arg ⁡ min ⁡ α > 0 ϕ ( α ) \alpha^* = \mathop{\arg\min}\limits_{\alpha > 0} \phi(\alpha) α=α>0argminϕ(α),但我们在每次迭代过程中并不执著 α ∗ \alpha^* α,仅希望选择出的 α \alpha α结果能够有效地使 { f ( x k ) } k = 0 ∞ \{f(x_{k})\}_{k=0}^{\infty} {f(xk)}k=0收敛到最优值 f ∗ f^* f

Glodstein \text{Glodstein} Glodstein准则及其弊端

针对 Armijo \text{Armijo} Armijo准则的问题, Glodstein \text{Glodstein} Glodstein准则在其基础上添加一个下界
Glodstein Condition :  { f ( x k ) + ( 1 − C ) ⋅ [ ∇ f ( x k ) ] T P k ⋅ α ⏟ Lower Bound ≤ ϕ ( α ) ≤ f ( x k ) + C ⋅ [ ∇ f ( x k ) ] T P k ⋅ α C ∈ ( 0 , 1 2 ) \text{Glodstein Condition : } \begin{cases} \begin{aligned} & \underbrace{f(x_k) + (1 - \mathcal C) \cdot [\nabla f(x_k)]^T \mathcal P_k \cdot \alpha}_{\text{Lower Bound}} \leq \phi(\alpha) \leq f(x_k) + \mathcal C \cdot [\nabla f(x_k)]^T \mathcal P_k \cdot \alpha \\ & \mathcal C \in \left(0,\frac{1}{2}\right) \end{aligned} \end{cases} Glodstein Condition :  Lower Bound f(xk)+(1C)[f(xk)]TPkαϕ(α)f(xk)+C[f(xk)]TPkαC(0,21)
其中分别描述上界、下界划分函数

  • Upper Bound :  L U ( α ) = f ( x k ) + C ⋅ [ ∇ f ( x k ) ] T P k ⋅ α \text{Upper Bound : } \begin{aligned}\mathcal L_{\mathcal U}(\alpha) = f(x_k) + \mathcal C \cdot [\nabla f(x_k)]^T \mathcal P_k \cdot \alpha\end{aligned} Upper Bound : LU(α)=f(xk)+C[f(xk)]TPkα
  • Lower Bound :  L L ( α ) = f ( x k ) + ( 1 − C ) ⋅ [ ∇ f ( x k ) ] T P k ⋅ α \text{Lower Bound : } \mathcal L_{\mathcal L}(\alpha) = f(x_k) + (1 - \mathcal C) \cdot [\nabla f(x_k)]^T \mathcal P_k \cdot \alpha Lower Bound : LL(α)=f(xk)+(1C)[f(xk)]TPkα

关于 f ( x k ) + 1 2 [ ∇ f ( x k ) ] T P k ⋅ α \begin{aligned}f(x_k) + \frac{1}{2} [\nabla f(x_k)]^T \mathcal P_k \cdot \alpha\end{aligned} f(xk)+21[f(xk)]TPkα对称。这能保证满足该范围的 α \alpha α结果,其对应的 ϕ ( α ) \phi(\alpha) ϕ(α)总是位于 ϕ ( α ) \phi(\alpha) ϕ(α)核心部分而不是片面的、局部的部分。见下图:
其中两条绿色实线之间区域内的 ϕ ( α ) \phi(\alpha) ϕ(α)结果相比 Armijo \text{Armijo} Armijo准则,其描述的范围更加核心。
Glodstein准则特点
Goldstein \text{Goldstein} Goldstein准则自身同样存在弊端当参数 C \mathcal C C靠近 1 2 \begin{aligned}\frac{1}{2}\end{aligned} 21时,对应上下界包含的 ϕ ( α ) \phi(\alpha) ϕ(α)结果极少。从而可能使一些优质 α \alpha α结果丢失。见下图:
Glodstein准则弊端

Wolfe Condition \text{Wolfe Condition} Wolfe Condition

首先,我们可以发现一个关于 Armijo \text{Armijo} Armijo准则与 Goldstein \text{Goldstein} Goldstein准则的共同问题被选择的仅仅是满足划分边界条件的 α \alpha α结果,而被选择的 α \alpha α结果是否存在被选择的意义是未知的
换句话说,基于这两种准则选择出的 α \alpha α结果仅仅是因为:

  • α \alpha α对应的 ϕ ( α ) \phi(\alpha) ϕ(α)位于决策边界 L ( α ) = f ( x k ) + C 1 ⋅ [ ∇ f ( x k ) ] T P k ⋅ α \mathcal L(\alpha) = f(x_k) + \mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k \cdot \alpha L(α)=f(xk)+C1[f(xk)]TPkα的下方 ( Armijo Condition ) (\text{Armijo Condition}) (Armijo Condition);
  • α \alpha α对应的 ϕ ( α ) \phi(\alpha) ϕ(α)位于上决策边界 L U ( α ) \mathcal L_{\mathcal U}(\alpha) LU(α)与下决策边界 L L ( α ) \mathcal L_{\mathcal L}(\alpha) LL(α)所围成的范围之间 ( Glodstein Condition ) (\text{Glodstein Condition}) (Glodstein Condition)

这意味着:我们确实得到了若干 α \alpha α结果,但是这些结果是否优质属于未知状态

我们尝试从满足 Armijo \text{Armijo} Armijo准则的基础上,通过某种规则剔除掉部分没有竞争力 α \alpha α结果,从而在剩余结果中找到优质 α \alpha α结果。见下图:
Wolfe初始状态
初始状态下,我们找到了一个 C 1 ∈ ( 0 , 1 ) \mathcal C_1 \in (0,1) C1(0,1),并描述出了它的划分边界 L ( α ) \mathcal L(\alpha) L(α);由于 L ( α ) \mathcal L(\alpha) L(α)斜率 C 1 ⋅ [ ∇ f ( x k ) ] T P k \mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k C1[f(xk)]TPk必然大于 l ( α ) l(\alpha) l(α)斜率 [ ∇ f ( x k ) ] T P k [\nabla f(x_k)]^T \mathcal P_k [f(xk)]TPk,因此从 α = 0 \alpha = 0 α=0出发,找到切线斜率 L ( α ) \mathcal L(\alpha) L(α)斜率相同的点:
下图中的绿色虚线表示切线斜率与 L ( α ) \mathcal L(\alpha) L(α)斜率相同的 α \alpha α点,短绿线表示寻找过程,点 A \mathcal A A表示满足条件的切点。
Wolfe步骤1
通过观察可以发现: A \mathcal A A必然不是极值点(虽然看起来有点像~),因为该点处的斜率 ≠ 0 \neq 0 =0。这里能够确定: [ 0 , f ( x k ) ] [0,f(x_k)] [0,f(xk)] A \mathcal A A点这一段函数内的所有点相比于 A \mathcal A A都没有竞争力。而这些点的切线斜率 ϕ ′ ( α ) \phi'(\alpha) ϕ(α)满足
[ ∇ f ( x k ) ] T P k ≤ ϕ ′ ( α ) ≤ C 1 ⋅ [ ∇ f ( x k ) ] T P k [\nabla f(x_k)]^T \mathcal P_k \leq \phi'(\alpha) \leq \mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k [f(xk)]TPkϕ(α)C1[f(xk)]TPk

关于仅与参数 C 1 \mathcal C_1 C1相关的武断做法

如果将这些没有竞争力的点去除掉,保留剩余的点,结合 Armijo \text{Armijo} Armijo准则,会有如下的步长 α \alpha α选择方式

  • 其中 ϕ ′ ( α ) = ∂ f ( x k + α ⋅ P k ) ∂ α = [ ∇ f ( x k + α ⋅ P k ) ] T P k \begin{aligned}\phi'(\alpha) = \frac{\partial f(x_k + \alpha \cdot \mathcal P_k)}{\partial \alpha} = [\nabla f(x_k + \alpha \cdot \mathcal P_k)]^T \mathcal P_k\end{aligned} ϕ(α)=αf(xk+αPk)=[f(xk+αPk)]TPk,在后续的计算中均简化写作 ϕ ′ ( α ) \phi'(\alpha) ϕ(α)
  • 关于斜率 ϕ ′ ( α ) ≤ C 1 ⋅ [ ∇ f ( x k ) ] T P k \phi'(\alpha)\leq \mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k ϕ(α)C1[f(xk)]TPk点不再理会,而 [ ∇ f ( x k ) ] T P k [\nabla f(x_k)]^T \mathcal P_k [f(xk)]TPk ϕ ( 0 ) \phi(0) ϕ(0)的斜率,作为下界
    { ϕ ( α ) ≤ f ( x k ) + C 1 ⋅ [ ∇ f ( x k ) ] T P k ⋅ α ϕ ′ ( α ) ≥ C 1 ⋅ [ ∇ f ( x k ) ] T P k C 1 ∈ ( 0 , 1 ) \begin{cases} \phi(\alpha) \leq f(x_k) + \mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k \cdot \alpha \\ \phi'(\alpha) \geq \mathcal C_1 \cdot [\nabla f(x_{k})]^T \mathcal P_k \\ \mathcal C_1 \in (0,1) \end{cases} ϕ(α)f(xk)+C1[f(xk)]TPkαϕ(α)C1[f(xk)]TPkC1(0,1)

基于上述逻辑,被选择的 ϕ ( α ) \phi(\alpha) ϕ(α)见下图:
其中 A ′ \mathcal A' A点表示该图像中斜率与 L ( α ) \mathcal L(\alpha) L(α)相同的其他位置的点。
被选择的phi(alpha)

上述这种方式可取吗 ? ? ?逻辑角度上是可行的,但不可取

关于 C 1 \mathcal C_1 C1武断做法不可取的逻辑解释

  • 由于 C 1 ∈ ( 0 , 1 ) \mathcal C_1 \in (0,1) C1(0,1),因而 C 1 ⋅ [ ∇ f ( x k ) ] T P k < 0 \mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k < 0 C1[f(xk)]TPk<0恒成立。也就是说:无论 C 1 \mathcal C_1 C1如何趋近于 0 0 0 Armijo \text{Armijo} Armijo准则划分边界 L ( α ) \mathcal L(\alpha) L(α)如何趋近于 ϕ ( α ) = f ( x k ) \phi(\alpha) = f(x_k) ϕ(α)=f(xk),都无法获取使 ϕ ′ ( α ) = 0 \phi'(\alpha) = 0 ϕ(α)=0的极值解
    很简单,就是因为取不到~

    而与此同时,我们为了追求这个极值解,可能反而会损失一系列 ϕ ( α ) \phi(\alpha) ϕ(α)优质 α \alpha α
    如果仅使用 C 1 \mathcal C_1 C1一个参数,那么要去除的点在 Armijo \text{Armijo} Armijo准则划分边界 L ( α ) \mathcal L(\alpha) L(α)确定的那一刻就已经被确定了,这势必会误伤一些 ϕ ( α ) \phi(\alpha) ϕ(α)优质的 α \alpha α结果

  • 其次,这里的操作是非精确搜索,因而不执著去追求极值解(那不就变成精确搜索了吗~),并且这仅仅是一次迭代的计算过程,没有必要消耗计算代价去追求更优质 ϕ ( α ) \phi(\alpha) ϕ(α),这也是我们希望尽量保留 ϕ ( α ) \phi(\alpha) ϕ(α)优质解的核心原因:
    与上一张图被选择的 ϕ ( α ) \phi(\alpha) ϕ(α)值对比观察,红色椭圆形虚线区域中描述的 ϕ ( α ) \phi(\alpha) ϕ(α)值是比较优质的,但因为 C 1 \mathcal C_1 C1的原因导致该部分结果被‘一刀切’了。这并不是我们希望看到的结果。
    一刀切描述

关于 C 1 \mathcal C_1 C1武断做法的改进: Wolfe Condition \text{Wolfe Condition} Wolfe Condition

如何避免上述一刀切的情况出现 ? ? ? Wolfe \text{Wolfe} Wolfe准则提供了而一种更软性的操作。

设置一个参数 C 2 ∈ ( C 1 , 1 ) \mathcal C_2 \in (\mathcal C_1,1) C2(C1,1),该参数对应的斜率表示为 C 2 ⋅ [ ∇ f ( x k ) ] T P k \mathcal C_2 \cdot [\nabla f(x_k)]^T \mathcal P_k C2[f(xk)]TPk,而该斜率在 ( [ ∇ f ( x k ) ] T P k , C 1 ⋅ [ ∇ f ( x k ) ] T P k ) ([\nabla f(x_k)]^T \mathcal P_k,\mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k ) ([f(xk)]TPk,C1[f(xk)]TPk)之间滑动(变换)。此时会出现一种缓和的情况:即便假设 C 1 \mathcal C_1 C1无限接近于 0 0 0,但由于 C 2 \mathcal C_2 C2的作用,使 ϕ ( α ) \phi(\alpha) ϕ(α)点的选择与 C 1 \mathcal C_1 C1没有太大关联

  • 这里相当于将斜率 C 1 ⋅ [ ∇ f ( x k ) ] T P k \mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k C1[f(xk)]TPk视作一个边界。
  • 上面的一刀切情况相当于 C 1 ⇒ 0 \mathcal C_1 \Rightarrow 0 C10的同时, C 2 ⇒ C 1 \mathcal C_2 \Rightarrow\mathcal C_1 C2C1的情况。
  • 由于 C 2 ∈ ( C 1 , 1 ) \mathcal C_2 \in (\mathcal C_1,1) C2(C1,1)因而完全可以通过调整 C 2 \mathcal C_2 C2针对那些斜率小于 C 1 ⋅ [ ∇ f ( x k ) ] T P k \mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k C1[f(xk)]TPk,但 ϕ ( α ) \phi(\alpha) ϕ(α)优质的结果进行酌情选择

最终根据 Armijo \text{Armijo} Armijo准则, Wolfe \text{Wolfe} Wolfe准则操作如下:
{ ϕ ( α ) ≤ f ( x k ) + C 1 [ ∇ f ( x k ) ] T P k ⋅ α ϕ ′ ( α ) ≥ C 2 ⋅ [ ∇ f ( x k ) ] T P k C 1 ∈ ( 0 , 1 ) C 2 ∈ ( C 1 , 1 ) \begin{cases} \phi(\alpha) \leq f(x_k) + \mathcal C_1 [\nabla f(x_k)]^T \mathcal P_k \cdot \alpha \\ \phi'(\alpha) \geq \mathcal C_2 \cdot [\nabla f(x_k)]^T \mathcal P_k \\ \mathcal C_1 \in (0,1) \\ \mathcal C_2 \in (\mathcal C_1,1) \end{cases} ϕ(α)f(xk)+C1[f(xk)]TPkαϕ(α)C2[f(xk)]TPkC1(0,1)C2(C1,1)

个人理解: Wolfe \text{Wolfe} Wolfe准则与 Armijo \text{Armijo} Armijo准则

在开头部分提到关于 Armijio \text{Armijio} Armijio准则的弊端,在介绍完 Wolfe \text{Wolfe} Wolfe准则之后,有种 Armijo \text{Armijo} Armijo准则的弊端卷土重来的感觉。个人认为: Wolfe \text{Wolfe} Wolfe准则提出的这种基于 C 2 ∈ ( C 1 , 1 ) \mathcal C_2 \in (\mathcal C_1,1) C2(C1,1)软性下界同样也在影响 C 1 \mathcal C_1 C1的选择

  • 如果是单纯的 Armijo \text{Armijo} Armijo准则,我们可能更偏好 C 1 \mathcal C_1 C1远离 0 0 0一些。因为 C 1 ⇒ 0 \mathcal C_1 \Rightarrow 0 C10意味着这种状态越趋近优化算法(四)中描述的必要不充分条件;这种 C 1 \mathcal C_1 C1的选择方式也势必会增加 Armijo \text{Armijo} Armijo准则弊端的风险
  • Wolfe \text{Wolfe} Wolfe准则中,即便 C 1 \mathcal C_1 C1偏向 0 0 0方向,我们依然可以通过调整 C 2 \mathcal C_2 C2对相对不优质的 ϕ ( α ) \phi(\alpha) ϕ(α)点进行过滤。从剩余的优质点中选择并进行迭代。

相关参考:
【优化算法】线搜索方法-步长-Wolfe Condition

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/828926.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CDH基于Kerberos开启身份验证实践总结

CDH基于Kerberos开启身份验证实践总结 前言简介Kerberos是什么Kerberos解决什么问题 Kerberos基本概念Kerberos认证流程Kerberos基本配置principalkeytabkrb5.confkdc.confkadm5.aclkerberos数据库 访问示例数据库访问信息 其他kerberos常用命令[Git Bash支持make命令](https:/…

在线餐饮油烟实时监测系统的设计与实现

安科瑞 华楠 摘 要&#xff1a;为了解决传统油烟检测方法中成本高、效率低、实时性差等问题&#xff0c;设计开发了一种在线油烟实时监测系统&#xff1b;系统由采集、通讯、服务器和用户交互四个模块组成&#xff1b;采集模块采集油烟数据&#xff0c;通过GPRS通讯技术将数据发…

13.元素尺寸与位置

原理&#xff1a;通过js的方式&#xff0c;得到元素在页面中的位置 13.1 元素尺寸与位置-尺寸 1.获取宽高: ●获取元素的自身宽高、包含元素自身设置的宽高、padding、border ● offsetWidth和offsetHeight ●获取出来的是数值&#xff0c;方便计算 ●注意&#xff1a;获取的…

基于DCT变换和huffman编码的语音压缩算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 多通道滤波 4.2 DCT变换 4.3 量化 4.3 哈夫曼编码 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ................................…

HTTP杂谈之Referer和Origin请求头再探

一 关于Referer和Origin的汇总 1) 知识是凌乱的,各位看官看个热闹即可2) 内容不断更新1、理解有盲区,需要及时纠正2、内容交叉有重复,需要适当删减3、扩展视野3) 以下内容都与Referer和Origin请求头有关联 nginx防盗链 HTTP杂谈之Referrer-Policy响应头 iframe标签referre…

go练习 day01

DTO: note_dto.go package dtoimport "king/model"type NoteAddDTO struct {ID uintTitle string json:"title" form:"title" binding:"required" message:"标题不能为空"Content string json:"conten…

青少年软件编程(Python六级)等级考试试卷(2022年9月)

青少年软件编程&#xff08;Python六级&#xff09;等级考试试卷&#xff08;2022年9月&#xff09; 第 1 题 单选题 以下关于Python二维数据的描述中&#xff0c;错误的是&#xff1f;&#xff08; &#xff09; A. 表格数据属于二维数据&#xff0c;由整数索引的数据构成 …

[自学记录05|百人计划]Early-Z和Z-Prepass

其实这篇我是不想写的&#xff0c;因为网上资料真的非常非常多很多人都写过&#xff0c;但是我后来想了想&#xff0c;做笔记不就是这样吗&#xff0c;所以就写吧~。前置知识&#xff1a;深度测试Z-Buffer[计算机图形学]可见性与遮挡,Z-Buffer(前瞻预习/复习回顾)__Yhisken的博…

Vue 自定义事件绑定与解绑

绑定自定义事件 说到 Vue 自定义事件&#xff0c;那就需要搞清楚一个问题&#xff0c;为啥有这个玩意。 说到自定义事件之前&#xff0c;需要理解 组件基础的概念。理解了基础概念之后&#xff0c;我们就知道 Vue 的父子之间的通信&#xff0c; 一是 父组件通过 Prop 向子组件…

CK_Label_V1 CK_Label_V9 CK_Label_V11 System Developer‘s Manual

一、Register PTL You should register the PTL to our Management System first&#xff1b; 1、Register CK_Label_V1 Quickly press the side button three times Register ok&#xff1a;The led will turn off after flashing red light and the buzzer will beep once…

一个3年Android的找工作记录

作者&#xff1a;Petterp 这是我最近 1个月 的找工作记录&#xff0c;希望这些经历对你会有所帮助。 有时机会就像一阵风&#xff0c;如果没有握住&#xff0c;那下一阵风什么时候吹来&#xff0c;往往是个运气问题。 写在开始 先说背景: 自考本&#xff0c;3年经验&#xff0…

【JVM】(二)深入理解Java类加载机制与双亲委派模型

文章目录 前言一、类加载过程1.1 加载&#xff08;Loading&#xff09;1.2 验证&#xff08;Verification&#xff09;1.3 准备&#xff08;Preparation&#xff09;1.4 解析&#xff08;Resolution&#xff09;1.5 初始化&#xff08;Initialization&#xff09; 二、双亲委派…

在线/开源GNSS处理软件/平台介绍

当前&#xff0c;存在较多的GNSS开源/免费软件&#xff0c;可用于质量检核、RTK解算和PPP解算等&#xff0c;本文总结了部分常用的处理软件&#xff0c;其详细信息如表1和表2所示。 表1 常用GNSS预处理&#xff08;格式转换、质量检核&#xff09;软件&#xff1a; 软件名称 …

RunnerGo五种压测模式你会配置吗

我们在做性能测试时需要根据性能需求配置不同的压测模式如&#xff1a;阶梯模式。使用jmeter时我们需要安装插件来配置测试模式&#xff0c;为了方便用户使用&#xff0c;RunnerGo内嵌了压测模式这一选项&#xff0c;今天给大家介绍一下RunnerGo的几种压测模式和怎么根据性能需…

基于各种方式划分 vlan

划分VLAN的方式有&#xff1a;基于接口、基于MAC地址、基于IP子网、基于协议、基于策略&#xff08;MAC地址、IP地址、接口&#xff09;。 VLAN&#xff08;虚拟局域网&#xff09;可以按照以下几种方式进行划分&#xff1a; 端口划分方式 将交换机端口按照需要划分成不同的…

低碳 Web 实践指南

现状和问题 2023年7月6日&#xff0c;世界迎来有记录以来最热的一天。气候变化是如今人类面临的最大健康威胁。据世界卫生组织预测2030年至2050年期间&#xff0c;气候变化预计每年将造成约25万人死亡。这是人们可以真切感受到的变化&#xff0c;而背后的主要推手是碳排放。 …

软件定时器

Q: 什么是定时器&#xff1f; A: 其实在单片机的学习中&#xff0c;已经接触过无数次定时器了&#xff0c;所谓定时器&#xff0c;简单可以理解为闹钟&#xff0c;到达指定一段时间后&#xff0c;就会响铃。 STM32 芯片自带硬件定时器&#xff0c;精度较高&#xff0c;达到定时…

一年级数学 数一数(一到十)

今天我们来学习数一数 有一些老人 眼睛可能花了 需要我们在动物园数清楚是多少个动物 然后告诉他们 可能有的小朋友 不知道某些数字怎么读 您可以打开地址 https://fanyi.baidu.com/?aldtype16047#zh/en/ 将数字 输入到 输入框内 然后点击 下面的小话筒 系统就会读出来了 小…

Java课题笔记~ MyBatis缓存

为了减少重复查询给数据库带来的压力&#xff0c;MyBatis提供了缓存机制&#xff0c;这种机制能够缓存查询的结果&#xff0c;避免重复的查询。 MyBatis提供了两种缓存方式&#xff1a; 一种为针对于SqlSession的缓存【默认开启】 另一种为针对于全局的缓存【手动开启】 一…

社科院与杜兰大学金融管理硕士为什么值得?来这里一探究竟

金融管理方向是近年来考研的热门专业&#xff0c;越来越多的学生在择校时也会将院校专业作为优先考虑的标准。而社科院与杜兰大学金融管理硕士项目作为热门中的热门&#xff0c;究竟为什么值得读呢&#xff1f;下面我们一起去探个究竟吧 一、中美名校强强联合&#xff0c;顶级师…