STM32存储左右互搏 I2C总线读写EEPROM ZD24C1MA

news2024/11/14 2:19:46

STM32存储左右互搏 I2C总线读写EEPROM ZD24C1MA

在较低容量存储领域,EEPROM是常用的存储介质,不同容量的EEPROM的地址对应位数不同,在发送字节的格式上有所区别。EEPROM是非快速访问存储,因为EEPROM按页进行组织,在连续操作模式,当跨页时访问地址不是跳到下一页到开始,而是跳到当前页的首地址,因此跨页时要重新指定起始地址。而在控制端发送写操作I2C数据后还需要有等待EEPROM内部操作完成的时间才能进行下一次操作。ZD24C1MA是1M bit / 128K Byte容量的EEPROM,ZD24C1MA的管脚定义为:
在这里插入图片描述
这里介绍STM32访问1Mbit EEPROM ZD24C1MA的例程。采用STM32CUBEIDE开发平台,以STM32F401CCU6芯片为例,通过STM32 I2C硬件电路实现读写操作,通过UART串口进行控制。

STM32工程配置

首先建立基本工程并设置时钟:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
配置硬件I2C接口:
在这里插入图片描述
在这里插入图片描述
配置UART1作为通讯串口:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
保存并生成初始工程代码:
在这里插入图片描述

STM32工程代码

这里的测试逻辑比较简单:
当串口收到指令0x01时向EEPROM 地址0写入预设的256个字节0x00~0xFF(不跨页),然后读出并通过串口打印出
当串口收到指令0x02时向EEPROM 地址600写入预设的256个字节0xFF~0x00(跨页),然后读出并通过串口打印出

ZD24C1MA的设备默认访问地址为0xA0, ZD24C1MA的存储单元地址访问略为特殊,17位地址分为两部分,最高位的1位放置于I2C设备默认访问地址的第1位,I2C设备默认访问地址第0位仍然为读写控制位,由于采用硬件I2C控制,库函数自行通过识别调用的是发送还是接收函数对第0位进行发送前设置,因此,不管是调用库函数的I2C写操作还是读操作,提供的地址相同。17位地址的低16位通过在发送设备地址后的作为跟随的第一,二个字节发送。

建立ZD24C1MA.h库头文件

#ifndef INC_ZD24C1MA_H_
#define INC_ZD24C1MA_H_

#include "main.h"

void PY_Delay_us_t(uint32_t Delay);
void ZD24C1MA_Read(uint32_t addr, uint8_t * data, uint32_t len);
void ZD24C1MA_Write(uint32_t addr, uint8_t * data, uint32_t len);

#endif

建立ZD24C1MA.c库源文件:


#include <string.h>
#include <ZD24C1MA.h>

#define Page_Size 256
#define Delay_Param 5
extern I2C_HandleTypeDef hi2c1;
extern uint8_t ZD24C1MA_Default_I2C_Addr ;


void ZD24C1MA_Read(uint32_t addr, uint8_t * data, uint32_t len)
{
	uint8_t ZD24C1MA_I2C_Addr;

	ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | ((addr>>16)<<1); //highest 1-bit access address placed into I2C address

	uint8_t RA[2];
	RA[0] = (addr & 0xFF00)>>8; //high 8-bit access address placed into I2C first data
	RA[1] =addr & 0x00FF; //low 8-bit access address placed into I2C first data

	HAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, &RA[0], 2, 2700); //Write address for read
	HAL_I2C_Master_Receive(&hi2c1, ZD24C1MA_I2C_Addr, data, len, 2700); //Read data

}

void ZD24C1MA_Write(uint32_t addr, uint8_t * data, uint32_t len)
{

	uint8_t ZD24C1MA_I2C_Addr;

	uint32_t addr_page = addr/Page_Size;
	uint32_t addr_index = addr%Page_Size;
	uint32_t TLEN;
    uint8_t TAD[Page_Size+2];
    uint32_t i=0;

    if(len<=(Page_Size-addr_index))
    {
    	TAD[0] = (addr & 0xFF00) >> 8;
    	TAD[1] = addr & 0x00FF ;
    	memcpy(TAD+2, data, len);

    	ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | ((addr>>16)<<1); //highest 1-bit access address placed into I2C address
    	HAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, len+2, 2700);  //Write data
    	PY_Delay_us_t(Delay_Param*1000);
    }
    else
    {
    	TAD[0] = (addr & 0xFF00) >> 8;
    	TAD[1] = addr & 0x00FF ;
    	memcpy(TAD+2, data, (Page_Size-addr_index));

    	ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | ((addr>>16)<<1); //highest 1-bit access address placed into I2C address
    	HAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, (Page_Size-addr_index)+2, 2700);  //Write data
    	PY_Delay_us_t(Delay_Param*1000);

    	TLEN = (len-(Page_Size-addr_index));
    	while( TLEN >= Page_Size )
    	{
    		addr_page += 1;

        	TAD[0] = ((addr_page*Page_Size) & 0xFF00 ) >> 8;
        	TAD[1] = (addr_page*Page_Size) & 0x00FF ;
        	memcpy(TAD+2, data + (Page_Size-addr_index) + i*Page_Size, Page_Size);

        	ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | (((addr_page*Page_Size)>>16)<<1); //highest 1-bit access address placed into I2C address
        	HAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, Page_Size+2, 2700);  //Write data
        	HAL_Delay(Delay_Param);

        	i++;
        	TLEN -= Page_Size;
        	PY_Delay_us_t(Delay_Param*1000);
    	}

    	if(TLEN>0)
    	{
    		addr_page += 1;

        	TAD[0] = ((addr_page*Page_Size) & 0xFF00 ) >> 8;
        	TAD[1] = (addr_page*Page_Size) & 0x00FF ;
        	memcpy(TAD+2, data + (Page_Size-addr_index) + i*Page_Size, TLEN);

        	ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | (((addr_page*Page_Size)>>16)<<1); //highest 1-bit access address placed into I2C address
        	HAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, TLEN+2, 2700);  //Write data
        	PY_Delay_us_t(Delay_Param*1000);
    	}


    }

}


完成的main.c文件代码如下:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
//Written by Pegasus Yu in 2023
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <string.h>
#include <ZD24C1MA.h>
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}

void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;

UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t cmd=0;          //for status control
uint8_t * RData;        //USB rx data pointer
uint32_t RDataLen;      //USB rx data length
uint8_t * TData;        //USB tx data pointer
uint32_t TDataLen;      //USB tx data length

uint8_t ZD24C1MA_Default_I2C_Addr =  0xA0; //Pin A2=A1=0

uint32_t ZD24C1MA_Access_Addr = 0;   //ZD24C1MA access address (17-bit)

uint8_t testdata[256];

uint8_t URX;
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */


  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_I2C1_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();

  HAL_UART_Receive_IT(&huart1, &URX, 1);

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
		if(cmd==1)
		{
			cmd=0;

			  for(uint32_t j=0; j<256; j++)
			  {
				   testdata[j] = j;
			  }

				ZD24C1MA_Access_Addr = 0;  //Set access address here
				ZD24C1MA_Write(ZD24C1MA_Access_Addr, testdata, 256); //Write data

				memset(testdata, 0, 256);

				ZD24C1MA_Read(ZD24C1MA_Access_Addr, testdata, 256); //Read data
				HAL_UART_Transmit(&huart1, testdata, 256, 2700);

		}

		if(cmd==2)
		{
			cmd=0;

			  for(uint32_t j=0; j<256; j++)
			  {
				   testdata[j] = 255-j;
			  }

				ZD24C1MA_Access_Addr = 600;  //Set access address here
				ZD24C1MA_Write(ZD24C1MA_Access_Addr, testdata, 256); //Write data

				memset(testdata, 0, 256);

				ZD24C1MA_Read(ZD24C1MA_Access_Addr, testdata, 256); //Read data
				HAL_UART_Transmit(&huart1, testdata, 256, 2700);
		}

		PY_Delay_us_t(100);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 25;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief I2C1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_I2C1_Init(void)
{

  /* USER CODE BEGIN I2C1_Init 0 */

  /* USER CODE END I2C1_Init 0 */

  /* USER CODE BEGIN I2C1_Init 1 */

  /* USER CODE END I2C1_Init 1 */
  hi2c1.Instance = I2C1;
  hi2c1.Init.ClockSpeed = 400000;
  hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  hi2c1.Init.OwnAddress1 = 0;
  hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  hi2c1.Init.OwnAddress2 = 0;
  hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN I2C1_Init 2 */

  /* USER CODE END I2C1_Init 2 */

}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
	if(huart==&huart1)
	{
      cmd = URX;
      HAL_UART_Receive_IT(&huart1, &URX, 1);


	}

}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

STM32范例测试

上述范例的测试效果如下:
指令0x01不跨页写读:
在这里插入图片描述
指令0x02跨页写读:
在这里插入图片描述

STM32例程下载

STM32F401CCU6 I2C总线读写EEPROM ZD24C1MA例程

–End–

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/823622.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

c 语言解析 时间字符串

#include <iostream> #include <ctime>int main(int argc, char *argv[]) {struct tm timeinfo;char cur_time[] "current time: 2021-09-06 23:50:13";// 解析时间到timeinfo中strptime(cur_time, "current time: %Y-%m-%d %H:%M:%S", &…

数据库管理员知识图谱

初入职场的程序猿&#xff0c;需要为自己做好职业规划&#xff0c;在职场的赛道上&#xff0c;需要保持学习&#xff0c;并不断点亮自己的技能树。  成为一名DBA需要掌握什么技能呢&#xff0c;先让Chat-GPT为我们回答一下&#xff1a; 数据库管理系统 (DBMS)知识&#xff…

加强Web应用程序安全:防止SQL注入

数据库在Web应用程序中存储和组织数据时起着至关重要的作用&#xff0c;它是存储用户信息、内容和其他应用程序数据的中央存储库。而数据库实现了高效的数据检索、操作和管理&#xff0c;使Web应用程序能够向用户提供动态和个性化的内容。然而&#xff0c;数据库和网络应用程序…

微信小程序原生写法传递参数

微信小程序原生写法传递参数 data-xxx 自定义参数名 &#xff0c;接收参数&#xff1a;方法&#xff08;变量名&#xff09; checkVip:function(event) {let that thisconsole.log(event,event)console.log(event.currentTarget.dataset.idx,index)let index Number(eve…

SpringBoot复习:(13)Banner是怎么打印出来的?

SpringApplication的run方法代码&#xff1a; public ConfigurableApplicationContext run(String... args) {long startTime System.nanoTime();DefaultBootstrapContext bootstrapContext createBootstrapContext();ConfigurableApplicationContext context null;configur…

<C++> 三、内存管理

1.C/C内存分布 我们先来看下面的一段代码和相关问题 int globalVar 1; static int staticGlobalVar 1; void Test() {static int staticVar 1;int localVar 1;int num1[10] {1, 2, 3, 4};char char2[] "abcd";const char *pChar3 "abcd";int *ptr1…

重学C++系列之异常

一、什么是异常 异常一般是指程序运行期发生的非正常情况。异常一般是不可预测的&#xff0c;如&#xff1a;内存不足&#xff0c;打开文件失败&#xff0c;数组越界&#xff0c;范围溢出等。 在某段程序发生无法继续正常执行的情况时&#xff0c;C允许程序进行所谓抛出异常&am…

实现Feed流的三种模式:拉模式、推模式和推拉结合模式

在互联网产品中&#xff0c;Feed流是一种常见的功能&#xff0c;它可以帮助我们实时获取我们关注的用户的最新动态。Feed流的实现有多种模式&#xff0c;包括拉模式、推模式和推拉结合模式。在本文中&#xff0c;我们将详细介绍这三种模式&#xff0c;并通过Java代码示例来实现…

0801|IO进程线程day4(文件IO函数)

作业1&#xff1a;从终端获取一个文件的路径以及名字 若该文件是目录文件&#xff0c;则将该文件下的所有文件的属性显示到终端&#xff0c;类似ls -l该文件夹若该文件不是目录文件&#xff0c;则显示该文件的属性到终端上&#xff0c;类似ls -l这单个文件 以下代码只能跑本目录…

IDEA中修改类头的文档注释信息

IDEA中修改类头的文档注释信息 选择File--Settings--Editor--File and Code Templates--Includes&#xff0c;可以把文档注释写成这种的 /**author: Arbicoralcreate: ${YEAR}-${MONTH}-${DAY} ${TIME}Description: */这样回看就可以很清楚的看到自己创建脚本的时间&#xff…

Vue2 第十三节 使用Vue脚手架(一)

1.初始化脚手架 2.分析脚手架结构 3.修改默认配置 一.初始化脚手架 1.Vue脚手架式Vue官方提供的标准化开发工具 2.具体步骤 ① 如果下载缓慢&#xff0c;需要配置npm淘宝镜像 npm config set registry http://registry.npm.taobao.org ② 全局安装: npm install -g vu…

Jenkins配置流水线

一、新建任务 这个任务名称将会是Jenkins的workspace路径下的一个目录&#xff0c;如我建立了一个test任务&#xff0c;那么Jenkins会生成一个/jenkins_home/workspace/test目录&#xff0c;用来拉取代码编译等。所以请谨慎设置任务名称。

直线模组如何进行精度校准?

直线模组是一种高精度的传动元件&#xff0c;而精度是直线模组的重要指标&#xff0c;在直线模组的使用中&#xff0c;我们应该尽可能的避免直线模组的精度受损&#xff0c;这样才能够有真正的发挥出直线模组的稳定性。 直线模组的精度一般是指重复定位精度和导向精度&#xff…

puppeteer监听response并封装为express服务调用

const express require(express); const puppeteer require(puppeteer); const app express(); let browser; // 声明一个全局变量来存储浏览器实例app.get(/getInfo, async (req, res) > {try {const page_param req.query.page; // 获取名为"page"的查询参数…

汉王人脸考勤管理系统SQL注入RCE

忘掉&#xff01;忘掉温暖&#xff0c;忘掉温柔&#xff0c;忘掉一切享乐&#xff0c;而把饥饿、寒冷、受辱、受苦当做自己的正常生活 漏洞描述 汉王人脸考勤管理系统存在SQL注入漏洞&#xff0c;攻击者可利用该漏洞获取数据库敏感信息并Getshell。 漏洞复现 访问漏洞url&a…

MySQL多版本并发控制

1. 什么是MVCC MVCC(Multiversion Concyrrency Contril)&#xff0c;多版本并发控制。顾名思义&#xff0c;MVCC是通过数据行的多个版本来管理实现数据库的 并发控制。这项技术使得在innodb的事务隔离级别下执行 一致性读 操作有了保证。换言之&#xff0c;就是为了查询一些正在…

2023.7月最新ORACLE考试通过|微思-ORACLE官方授权中心

微思-ORACLE官方授权培训中心 2022 ORACLE OCP考试战报https://blog.csdn.net/XMWS_IT/article/details/125866726?ops_request_misc%257B%2522request%255Fid%2522%253A%2522169089281916800182194373%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&r…

Linux系统编程 - 基础IO(IO操作)

目录 预备知识 复习C文件IO相关操作 printf相关函数 fprintf snprintf 读取文件 系统文件IO操作 open函数 umask()函数 open函数返回值 预备知识 1.你真的理解文件原理和操作了吗&#xff1f; 不是语言问题&#xff0c;是系统问题 2.是不是只有C/C有文件操作呢&…

IP地址转换函数

#include<string.h> #include<arpa/inet.h> #include<stdio.h>int main(void){char ip[]"1.2.3.4";//字符串struct sockaddr_in server_addr;inet_pton(AF_INET,ip,&server_addr.sin_addr.s_addr);//字符串 to 网络字节序printf("s_addr …

AI情绪鼓励师(基于PALM 2.0 finetune)

AI情绪鼓励师&#xff08;基于PALM 2.0 finetune) 目录 一、写在前面的话 二、前言 三、获取用于finetune的“夸夸”数据集 四、 获取并finetune PALM 2.0 预训练生成模型 模型 五、模型调用应用 一、写在前面的话 从小我就是极端内向和社恐的孩子&#xff0c;我普通之极…