29.利用fminbnd 求解 最大容积问题(matlab程序)

news2024/11/16 11:37:48

1.简述

      

 

用于求某个给定函数的最小值点。

使用方法是:

x=fminbnd(func,x1,x2)

func是函数句柄,然后x1和x2就是函数的区间,得到的结果就是使func取最小值的x值

当然也可以使用[x,fv]=fminbnd(func,x1,x2)的方式,这个时候fv就是函数 的最小值,即有:fv=f(x)

测试程序如下:

>> f=@(x) exp(x)-4*sin(x)+5;

>> [x,fv]=fminbnd(f,0,1)

x =

0.9048

fv =

4.3262

当然,如果在某个区间上是单调的,结果就有点意思了:

>> clear

>> f=@(x) x^-2*x-3;

>> [x,fv]=fminbnd(f,2,3)

x =

2.9999

fv =

-2.6667

看样子MATLAB是使用了定长小区间的方式计算的,而且结果也是错误的,这不免让人对这个函数的可靠性产生怀疑……

2.代码

 

主程序:

 

%%   最大容积问题
[xo,fo]=fminbnd('f1216',0,2)

 

子程序:

function [xf,fval,exitflag,output] = fminbnd(funfcn,ax,bx,options,varargin)
%FMINBND Single-variable bounded nonlinear function minimization.
%   X = FMINBND(FUN,x1,x2) attempts to find  a local minimizer X of the function 
%   FUN in the interval x1 < X < x2.  FUN is a function handle.  FUN accepts 
%   scalar input X and returns a scalar function value F evaluated at X.
%
%   X = FMINBND(FUN,x1,x2,OPTIONS) minimizes with the default optimization
%   parameters replaced by values in the structure OPTIONS, created with
%   the OPTIMSET function. See OPTIMSET for details. FMINBND uses these
%   options: Display, TolX, MaxFunEval, MaxIter, FunValCheck, PlotFcns, 
%   and OutputFcn.
%
%   X = FMINBND(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a
%   structure with the function FUN in PROBLEM.objective, the interval
%   in PROBLEM.x1 and PROBLEM.x2, the options structure in PROBLEM.options,
%   and solver name 'fminbnd' in PROBLEM.solver. 
%
%   [X,FVAL] = FMINBND(...) also returns the value of the objective function,
%   FVAL, computed in FUN, at X.
%
%   [X,FVAL,EXITFLAG] = FMINBND(...) also returns an EXITFLAG that
%   describes the exit condition. Possible values of EXITFLAG and the
%   corresponding exit conditions are
%
%    1  FMINBND converged with a solution X based on OPTIONS.TolX.
%    0  Maximum number of function evaluations or iterations reached.
%   -1  Algorithm terminated by the output function.
%   -2  Bounds are inconsistent (that is, ax > bx).
%
%   [X,FVAL,EXITFLAG,OUTPUT] = FMINBND(...) also returns a structure
%   OUTPUT with the number of iterations taken in OUTPUT.iterations, the
%   number of function evaluations in OUTPUT.funcCount, the algorithm name 
%   in OUTPUT.algorithm, and the exit message in OUTPUT.message.
%
%   Examples
%     FUN can be specified using @:
%        X = fminbnd(@cos,3,4)
%      computes pi to a few decimal places and gives a message upon termination.
%        [X,FVAL,EXITFLAG] = fminbnd(@cos,3,4,optimset('TolX',1e-12,'Display','off'))
%      computes pi to about 12 decimal places, suppresses output, returns the
%      function value at x, and returns an EXITFLAG of 1.
%
%     FUN can be an anonymous function:
%        X = fminbnd(@(x) sin(x)+3,2,5)
%
%     FUN can be a parameterized function.  Use an anonymous function to
%     capture the problem-dependent parameters:
%        f = @(x,c) (x-c).^2;  % The parameterized function.
%        c = 1.5;              % The parameter.
%        X = fminbnd(@(x) f(x,c),0,1)
%
%   See also OPTIMSET, FMINSEARCH, FZERO, FUNCTION_HANDLE.

%   References:
%   "Algorithms for Minimization Without Derivatives",
%   R. P. Brent, Prentice-Hall, 1973, Dover, 2002.
%
%   "Computer Methods for Mathematical Computations",
%   Forsythe, Malcolm, and Moler, Prentice-Hall, 1976.

%   Original coding by Duane Hanselman, University of Maine.
%   Copyright 1984-2018 The MathWorks, Inc.

% Set default options
defaultopt = struct( ...
    'Display','notify', ...
    'FunValCheck','off', ...
    'MaxFunEvals',500, ...
    'MaxIter',500, ...
    'OutputFcn',[], ...
    'PlotFcns',[], ...
    'TolX',1e-4);

% If just 'defaults' passed in, return the default options in X
if nargin==1 && nargout <= 1 && strcmpi(funfcn,'defaults')
    xf = defaultopt;
    return
end

% initialization
if nargin<4
    options = [];
end

% Detect problem structure input
problemInput = false;
if nargin == 1
    if isa(funfcn,'struct')
        problemInput = true;
        [funfcn,ax,bx,options] = separateOptimStruct(funfcn);
    else % Single input and non-structure.
        error('MATLAB:fminbnd:InputArg',...
            getString(message('MATLAB:optimfun:fminbnd:InputArg')));
    end
end

if nargin < 3 && ~problemInput
    error('MATLAB:fminbnd:NotEnoughInputs',...
        getString(message('MATLAB:optimfun:fminbnd:NotEnoughInputs')));
end

% Check for non-double inputs
if ~isa(ax,'double') || ~isa(bx,'double')
  error('MATLAB:fminbnd:NonDoubleInput',...
    getString(message('MATLAB:optimfun:fminbnd:NonDoubleInput')));
end

% Check that options is a struct
if ~isempty(options) && ~isa(options,'struct')
    error('MATLAB:fminbnd:ArgNotStruct',...
        getString(message('MATLAB:optimfun:commonMessages:ArgNotStruct', 4)));
end

printtype = optimget(options,'Display',defaultopt,'fast');
tol = optimget(options,'TolX',defaultopt,'fast');
funValCheck = strcmp(optimget(options,'FunValCheck',defaultopt,'fast'),'on');

maxfun = optimget(options,'MaxFunEvals',defaultopt,'fast');
maxiter = optimget(options,'MaxIter',defaultopt,'fast');

% Check that MaxFunEvals and MaxIter are scalar double values; 
% Their default values for some solvers are strings
if ischar(maxfun) || isstring(maxfun)
    error('MATLAB:fminbnd:CharMaxFunEvals',...
        getString(message('MATLAB:optimfun:fminbnd:CharMaxFunEvals')));
end
if ischar(maxiter) || isstring(maxiter)
    error('MATLAB:fminbnd:CharMaxIter',...
        getString(message('MATLAB:optimfun:fminbnd:CharMaxIter')));
end

funccount = 0;
iter = 0;
xf = []; fx = [];

switch printtype
    case {'notify','notify-detailed'}
        print = 1;
    case {'none','off'}
        print = 0;
    case {'iter','iter-detailed'}
        print = 3;
    case {'final','final-detailed'}
        print = 2;
    otherwise
        print = 1;
end
% Handle the output
outputfcn = optimget(options,'OutputFcn',defaultopt,'fast');
if isempty(outputfcn)
    haveoutputfcn = false;
else
    haveoutputfcn = true;
    % Parse OutputFcn which is needed to support cell array syntax for OutputFcn.
    outputfcn = createCellArrayOfFunctions(outputfcn,'OutputFcn');
end
% Handle the plot
plotfcns = optimget(options,'PlotFcns',defaultopt,'fast');
if isempty(plotfcns)
    haveplotfcn = false;
else
    haveplotfcn = true;
    % Parse PlotFcns which is needed to support cell array syntax for PlotFcns.
    plotfcns = createCellArrayOfFunctions(plotfcns,'PlotFcns');
end

% checkbounds
if ax > bx
    exitflag = -2;
    xf=[]; fval = [];
    msg=getString(message('MATLAB:optimfun:fminbnd:ExitingLowerBoundExceedsUpperBound'));
    if print > 0
        disp(' ')
        disp(msg)
    end
    output.iterations = 0;
    output.funcCount = 0;
    output.algorithm = 'golden section search, parabolic interpolation';
    output.message = msg;
    % Have not initialized OutputFcn; do not need to call it before returning
    return
end

% Assume we'll converge
exitflag = 1;

header = ' Func-count     x          f(x)         Procedure';
procedure='       initial';

% Convert to function handle as needed.
if isstring(funfcn)
    funfcn = char(funfcn);
end
funfcn = fcnchk(funfcn,length(varargin));

if funValCheck
    % Add a wrapper function, CHECKFUN, to check for NaN/complex values without
    % having to change the calls that look like this:
    % f = funfcn(x,varargin{:});
    % x is the first argument to CHECKFUN, then the user's function,
    % then the elements of varargin. To accomplish this we need to add the 
    % user's function to the beginning of varargin, and change funfcn to be
    % CHECKFUN.
    varargin = [{funfcn}, varargin];
    funfcn = @checkfun;
end

% Initialize the output and plot functions.
if haveoutputfcn || haveplotfcn
    [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,xf,'init',funccount,iter, ...
        fx,procedure,varargin{:});
    if stop
        [xf,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
        if  print > 0
            disp(output.message)
        end
        return;
    end
end

% Compute the start point
seps = sqrt(eps);
c = 0.5*(3.0 - sqrt(5.0));
a = ax; b = bx;
v = a + c*(b-a);
w = v; xf = v;
d = 0.0; e = 0.0;
x= xf; fx = funfcn(x,varargin{:});
funccount = funccount + 1;

% Check that the objective value is a scalar
if numel(fx) ~= 1
   error('MATLAB:fminbnd:NonScalarObj',...
    getString(message('MATLAB:optimfun:fminbnd:NonScalarObj')));
end

% Display the start point if required
if print > 2
    disp(' ')
    disp(header)
    fprintf('%5.0f   %12.6g %12.6g %s\n',funccount,xf,fx,procedure)
end

% OutputFcn and PlotFcns call
% Last x passed to outputfcn/plotfcns; has the input x's shape
if haveoutputfcn || haveplotfcn
    [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,xf,'iter',funccount,iter, ...
        fx,procedure,varargin{:});
    if stop  % Stop per user request.
        [xf,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
        if  print > 0
            disp(output.message)
        end
        return;
    end
end

fv = fx; fw = fx;
xm = 0.5*(a+b);
tol1 = seps*abs(xf) + tol/3.0;
tol2 = 2.0*tol1;

% Main loop
while ( abs(xf-xm) > (tol2 - 0.5*(b-a)) )
    gs = 1;
    % Is a parabolic fit possible
    if abs(e) > tol1
        % Yes, so fit parabola
        gs = 0;
        r = (xf-w)*(fx-fv);
        q = (xf-v)*(fx-fw);
        p = (xf-v)*q-(xf-w)*r;
        q = 2.0*(q-r);
        if q > 0.0,  p = -p; end
        q = abs(q);
        r = e;  e = d;

        % Is the parabola acceptable
        if ( (abs(p)<abs(0.5*q*r)) && (p>q*(a-xf)) && (p<q*(b-xf)) )

            % Yes, parabolic interpolation step
            d = p/q;
            x = xf+d;
            procedure = '       parabolic';

            % f must not be evaluated too close to ax or bx
            if ((x-a) < tol2) || ((b-x) < tol2)
                si = sign(xm-xf) + ((xm-xf) == 0);
                d = tol1*si;
            end
        else
            % Not acceptable, must do a golden section step
            gs=1;
        end
    end
    if gs
        % A golden-section step is required
        if xf >= xm
            e = a-xf;
        else
            e = b-xf;
        end
        d = c*e;
        procedure = '       golden';
    end

    % The function must not be evaluated too close to xf
    si = sign(d) + (d == 0);
    x = xf + si * max( abs(d), tol1 );
    fu = funfcn(x,varargin{:});
    funccount = funccount + 1;

    iter = iter + 1;
    if print > 2
        fprintf('%5.0f   %12.6g %12.6g %s\n',funccount, x, fu, procedure);
    end
    % OutputFcn and PlotFcns call
    if haveoutputfcn || haveplotfcn
        [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,x,'iter',funccount,iter, ...
            fu,procedure,varargin{:});
        if stop  % Stop per user request.
            [xf,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
            if  print > 0
                disp(output.message);
            end
            return;
        end
    end

    % Update a, b, v, w, x, xm, tol1, tol2
    if fu <= fx
        if x >= xf
            a = xf;
        else
            b = xf;
        end
        v = w; fv = fw;
        w = xf; fw = fx;
        xf = x; fx = fu;
    else % fu > fx
        if x < xf
            a = x;
        else
            b = x;
        end
        if ( (fu <= fw) || (w == xf) )
            v = w; fv = fw;
            w = x; fw = fu;
        elseif ( (fu <= fv) || (v == xf) || (v == w) )
            v = x; fv = fu;
        end
    end
    xm = 0.5*(a+b);
    tol1 = seps*abs(xf) + tol/3.0; tol2 = 2.0*tol1;

    if funccount >= maxfun || iter >= maxiter
        exitflag = 0;
        output.iterations = iter;
        output.funcCount = funccount;
        output.algorithm = 'golden section search, parabolic interpolation';
        fval = fx;
        msg = terminate(xf,exitflag,fval,funccount,maxfun,iter,maxiter,tol,print);
        output.message = msg;
        % OutputFcn and PlotFcns call
        if haveoutputfcn || haveplotfcn
            callOutputAndPlotFcns(outputfcn,plotfcns,xf,'done',funccount,iter,fval,procedure,varargin{:});
        end
        return
    end
end % while

fval = fx;
output.iterations = iter;
output.funcCount = funccount;
output.algorithm = 'golden section search, parabolic interpolation';
msg = terminate(xf,exitflag,fval,funccount,maxfun,iter,maxiter,tol,print);
output.message = msg;
% OutputFcn and PlotFcns call
if haveoutputfcn || haveplotfcn
    callOutputAndPlotFcns(outputfcn,plotfcns,xf,'done',funccount,iter,fval,procedure,varargin{:});
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function msg = terminate(~,exitflag,finalf,funccount,maxfun,~,~,tol,print)

switch exitflag
    case 1
        msg = ...
            getString(message('MATLAB:optimfun:fminbnd:OptimizationTerminatedXSatisfiesCriteria', sprintf('%e',tol)));
        if print > 1 % only print msg if not 'off' or 'notify'
            disp(' ')
            disp(msg)
        end
    case 0
        if funccount >= maxfun
            msg = getString(message('MATLAB:optimfun:fminbnd:ExitingMaxFunctionEvals', sprintf('%f',finalf)));
            if print > 0
                disp(' ')
                disp(msg)
            end
        else
            msg = getString(message('MATLAB:optimfun:fminbnd:ExitingMaxIterations', sprintf('%f',finalf)));
            if print > 0
                disp(' ')
                disp(msg)
            end
        end
end

%--------------------------------------------------------------------------
function [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,x,state,funccount,iter,  ...
    f,procedure,varargin)
% CALLOUTPUTANDPLOTFCNS assigns values to the struct OptimValues and then calls the
% outputfcn/plotfcns.  outputfcn and plotfcns are assumed to not be string
% objects but can be strings or handles.
%
% state - can have the values 'init','iter', or 'done'.

% For the 'done' state we do not check the value of 'stop' because the
% optimization is already done.
optimValues.funccount = funccount;
optimValues.iteration = iter;
optimValues.fval = f;
optimValues.procedure = procedure;

xOutputfcn = x;  % Set xOutputfcn to be x
stop = false;
state = char(state); % in case string objects are ever passed in the future
% Call output functions
if ~isempty(outputfcn)
    switch state
        case {'iter','init'}
            stop = callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,varargin{:}) || stop;
        case 'done'
            callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,varargin{:});
    end
end
% Call plot functions
if ~isempty(plotfcns)
    switch state
        case {'iter','init'}
            stop = callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,varargin{:}) || stop;
        case 'done'
            callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,varargin{:});

    end
end

%--------------------------------------------------------------------------
function [x,FVAL,EXITFLAG,OUTPUT] = cleanUpInterrupt(xOutputfcn,optimValues)
% CLEANUPINTERRUPT updates or sets all the output arguments of FMINBND when the optimization
% is interrupted.

% Call plot function driver to finalize the plot function figure window. If
% no plot functions have been specified or the plot function figure no
% longer exists, this call just returns.
callAllOptimPlotFcns('cleanuponstopsignal');

x = xOutputfcn;
FVAL = optimValues.fval;
EXITFLAG = -1;
OUTPUT.iterations = optimValues.iteration;
OUTPUT.funcCount = optimValues.funccount;
OUTPUT.algorithm = 'golden section search, parabolic interpolation';
OUTPUT.message = getString(message('MATLAB:optimfun:fminbnd:OptimizationTerminatedPrematurelyByUser'));

%--------------------------------------------------------------------------
function f = checkfun(x,userfcn,varargin)
% CHECKFUN checks for complex or NaN results from userfcn.

f = userfcn(x,varargin{:});
% Note: we do not check for Inf as FMINBND handles it naturally.
if isnan(f)
    error('MATLAB:fminbnd:checkfun:NaNFval',...
        getString(message('MATLAB:optimfun:fminbnd:checkfun:NaNFval', localChar( userfcn ), sprintf( '%g', x ))));
elseif ~isreal(f)
    error('MATLAB:fminbnd:checkfun:ComplexFval',...
        getString(message('MATLAB:optimfun:fminbnd:checkfun:ComplexFval', localChar( userfcn ), sprintf( '%g', x ))));
end


%--------------------------------------------------------------------------
function strfcn = localChar(fcn)
% Convert the fcn to a character array for printing

if ischar(fcn)
    strfcn = fcn;
elseif isstring(fcn) || isa(fcn,'inline')
    strfcn = char(fcn);
elseif isa(fcn,'function_handle')
    strfcn = func2str(fcn);
else
    try
        strfcn = char(fcn);
    catch
        strfcn = getString(message('MATLAB:optimfun:fminbnd:NameNotPrintable'));
    end
end
 

 

 

3.运行结果

 

90e7a3ff939e4c79948af009b413b909.png

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/817283.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

项目实战 — 消息队列(2){数据库操作}

目录 一、SQLite &#x1f345; 1、添加依赖 &#x1f345; 2、修改配置文件后缀&#xff08;properties -> yaml&#xff09; &#x1f345; 3、编写配置文件 二、建立数据表 三、添加插入和删除方法 四、整合数据库操作&#xff08;DataBaseManger类&#xff09; &a…

螺旋矩阵(JS)

螺旋矩阵 题目 给你一个正整数 n &#xff0c;生成一个包含 1 到 n2 所有元素&#xff0c;且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;[[1,2,3],[8,9,4],[7,6,5]]示例 2&#xff1a; 输入&#xff…

【自动化运维】编写LNMP分布式剧本

目录 一 playbook编写LNMP1.1环境设置1.2编写Nginx剧本1.3、编写Mysql剧本1.4准备PHP剧本 一 playbook编写LNMP 1.1环境设置 ip服务192.168.243.100ansible192.168.243.102nginx192.168.243.103PHP192.168.243.104mysql 1.2编写Nginx剧本 1.编写Nginx源 mkdir -p /etc/ans…

Linux之 centos、Ubuntu 安装常见程序

CentOS 安装 MySql 注意 需要有root权限 安装5.7版本 – 由于MySql并不在CentOS的官方仓库中&#xff0c;所以需要通过rmp命令&#xff1a; 导入MySQL仓库密钥 1、配置MySQL的yum仓库 配置yum仓库 更新密钥 rpm --import https://repo.mysql.com/RPM-GPG-KEY-mysql-2022 安装…

【AHB-Lite总线】hreadyin和hreadyout的区别

AHB-Lite总线协议请查看 AHB-Lite总线协议 首先看下hreadyin和hreadyout在系统中的位置 从图中可以看到&#xff0c;每个AHB从设备都有一个HREADY输出信号&#xff08;hreadyout&#xff09;&#xff0c;它连接到多路复用器。该多路复用器的输出是AHB主机看到的全局hready信…

看完ChatGPT的两个比喻,更加确信为什么人人都应该去使用它

​ ChatGPT就像火 丹尼刘是悉尼大学教育创新临时学术总监。去年年底&#xff0c;在一次工作组会议上&#xff0c;他第一次向同事展示了ChatGPT。同事说出了让刘大吃一惊的话。 “他说&#xff0c;‘哇&#xff0c;这就像火一样&#xff0c;’”刘回忆道。 刘一开始觉得这个…

《JavaSE-第二十二章》之线程安全问题

前言 在你立足处深挖下去,就会有泉水涌出!别管蒙昧者们叫嚷:“下边永远是地狱!” 博客主页&#xff1a;KC老衲爱尼姑的博客主页 博主的github&#xff0c;平常所写代码皆在于此 共勉&#xff1a;talk is cheap, show me the code 作者是爪哇岛的新手&#xff0c;水平很有限&…

安卓相关内容

adb环境变量设置完之后&#xff0c;要重启一次“终端”窗口。 adb安装apk到手机 Android开发&#xff1a;用adb命令安装apk到手机-腾讯云开发者社区-腾讯云 This adb servers $ADB_VENDOR_KEYS is not set frida 出现问题&#xff1a;unable to start: address already in …

软件测试面试题——接口自动化测试怎么做?

面试过程中&#xff0c;也问了该问题&#xff0c;以下是自己的回答&#xff1a; 接口自动化测试&#xff0c;之前做过&#xff0c;第一个版本是用jmeter 做的&#xff0c;1 主要是将P0级别的功能接口梳理出来&#xff0c;根据业务流抓包获取相关接口&#xff0c;并在jmeter中跑…

ES开启身份认证

文章目录 X-Pack简介之前的安全方案ES开启认证ES服务升级https协议开启集群节点之间的证书认证 X-Pack简介 X-Pack是Elastic Stack扩展功能&#xff0c;提供安全性&#xff0c;警报&#xff0c;监视&#xff0c;报告&#xff0c;机器学习和许多其他功能。 X-Pack的发展演变&am…

聊聊拉长LLaMA的一些经验

Sequence Length是指LLM能够处理的文本的最大长度&#xff0c;越长&#xff0c;自然越有优势&#xff1a; 更强的记忆性。更多轮的历史对话被拼接到对话中&#xff0c;减少出现遗忘现象 长文本场景下体验更佳。比如文档问答、小说续写等 当今开源LLM中的当红炸子鸡——LLaMA…

开放麒麟1.0发布一个月后,到底怎么样?另一款操作系统引发热议

具有里程碑意义 7月5日&#xff0c;国产首个开源桌面操作系统“开放麒麟1.0”正式发布。 标志着我国拥有了操作系统组件自主选型、操作系统独立构建的能力&#xff0c;填补了我国在这一领域的空白。 举国欢庆&#xff0c;算的上是里程碑意义了&#xff01; 发布后用着如何&a…

Linux系统下U盘打不开: No application is registered as handling this file

简述 系统是之前就安装好使用的Ubuntu14.04&#xff0c;不过由于某些原因只安装到了机械硬盘中&#xff1b;最近新买了一块固态硬盘&#xff0c;所以打算把Ubuntu系统迁移到新的固态硬盘上&#xff1b; 当成功的迁移了系统之后发现其引导有点问题&#xff0c;导致多个系统启动不…

所有流的知识都有,IO流原理及流的分类

1、Java IO流原理 I/O是Input/Output的缩写&#xff0c; I/O技术是非常实用的技术&#xff0c;用于处理设备之间的数据传输。如读/写文件&#xff0c;网络通讯等。 Java程序中&#xff0c;对于数据的输入/输出操作以”流(stream)” 的方式进行。java.io包下提供了各种“流”类…

C++语法(27)--- 类型转换和C++线程库

C语法&#xff08;26&#xff09;--- 特殊类设计_哈里沃克的博客-CSDN博客https://blog.csdn.net/m0_63488627/article/details/131879800?spm1001.2014.3001.5501 目录 1.类型转换 1.C语言的转换模式 2.C四种类型转换 1.static_cast 2.reinterpret_cast 3.const_cast …

ALLEGRO之Logic

本文主要讲述ALLEGRO的Logic菜单。 &#xff08;1&#xff09;Net Logic&#xff1a;暂不清楚&#xff1b; &#xff08;2&#xff09;Net Schedule&#xff1a;暂不清楚&#xff1b; &#xff08;3&#xff09;AssignDifferential Pair&#xff1a;暂不清楚&#xff1b; &a…

OR-Tool 报INFEASIBLE

OR-Tool 使用Minimum Cost Flows报 There was an issue with the min cost flow input. Status: Status.INFEASIBLE 这是因为node的编号需要是连续的&#xff0c;比如下面这样不行 修改为连续的

【已解决】如果将MySQL数据库中的表生成PDM

数据库表PDM关系图 | 原创作者/编辑&#xff1a;凯哥Java | 分类&#xff1a;经验分享 有时候&#xff0c;我们需要MySQL数据库中的表生成对应的PDM文件&#xff0c;这里凯哥就讲讲第一种将MySQL数据库的表生成对应的PDM文件。 环境准备&#xff1a; MySQL数据库连接客户端&…

中文多模态医学大模型智能分析X光片,实现影像诊断,完成医生问诊多轮对话

项目设计集合&#xff08;人工智能方向&#xff09;&#xff1a;助力新人快速实战掌握技能、自主完成项目设计升级&#xff0c;提升自身的硬实力&#xff08;不仅限NLP、知识图谱、计算机视觉等领域&#xff09;&#xff1a;汇总有意义的项目设计集合&#xff0c;助力新人快速实…

费舍尔线性分辩分析(Fisher‘s Linear Discriminant Analysis, FLDA)

费舍尔线性分辩分析(Fisher’s Linear Discriminant Analysis, FLDA) 目录 费舍尔线性分辩分析(Fishers Linear Discriminant Analysis, FLDA)1. 问题描述2. 二分类情况3. 多分类情况4. 代码实现4.1 二分类情况4.2 多分类情况 5. 参考资料 1. 问题描述 为解决两个或多个类别的…