前言
今天要跟大家分享的是一个导出数据进度条的简单实现,适用场景用在数据量大、组织数据耗时的情况下的简单实现。
一、设计思路
1、导出数据生成文件上传到OSS,
2、导出数据状态存redis缓存,
3、前端发导出请求后,返回的文件key
4、请求后端,后端查询缓存情况返回
5、前端解析是否完成标值,如果完成结束轮询,执行下载get下载,如果未完成,等待下一次轮询
二、设计时序图
三、核心代码
1.导出请求
下载请求
/**
* 因子达标分析汇总表导出
*
* @param airEnvQualityQueryVo 因子达标分析汇总表导出
* @return 统一出参
*/
@PostMapping("/propSummaryData/export")
@ApiOperation("因子达标分析汇总表导出")
public RestMessage propSummaryData4Export(@RequestBody AirEnvQualityQueryVo airEnvQualityQueryVo) {
Assert.notNull(airEnvQualityQueryVo, "查询参数不能为空");
Assert.notNull(airEnvQualityQueryVo.getStartTime(), "开始时间不能为空");
Assert.notNull(airEnvQualityQueryVo.getEndTime(),"结束时间不能为空");
Assert.isTrue(StringUtils.isNotBlank(airEnvQualityQueryVo.getQueryType()),"查询类型不能为空");
SimpleDateFormat formatter = new SimpleDateFormat("yyyyMMddHHmmss");
String key = "propSummaryData:"+formatter.format(new Date());
AsyncUtil.submitTask(key,() ->{
//获取并组织excel数据
String url;
try {
url = airEnvironmentExportService.propSummaryData4Export(airEnvQualityQueryVo,key);
} catch (Exception e) {
throw new BusinessException(e.getMessage());
}
return url;
});
return RestBuilders.successBuilder().data(key).build();
}
serviceImpl
/**
* 因子达标分析汇总表导出
*
* @param airEnvQualityQueryVo 因子达标分析汇总表导出
* @return 统一出参
*/
@Override
public String propSummaryData4Export(AirEnvQualityQueryVo airEnvQualityQueryVo, String key) throws IOException {
//获取汇聚数据
AirEnvQualityResultOverviewVo resultOverviewVo = airEnvironmentQualityStatisticsService.getAirEnvQualityResultOverviewVo(airEnvQualityQueryVo);
//数据转换
resultOverviewVo.setTqRateCompStr(rateHandlerStr(resultOverviewVo.getTqRateComp()));
resultOverviewVo.setSqRateCompStr(rateHandlerStr(resultOverviewVo.getSqRateComp()));
//获取或者数据
List<AirEnvQualityPropSummaryVo> airEnvQualityPropSummaryVos = airEnvironmentQualityStatisticsService.propSummaryData(airEnvQualityQueryVo);
AtomicInteger done = new AtomicInteger();
AsyncUtil.setTotal(key,airEnvQualityPropSummaryVos.size());
airEnvQualityPropSummaryVos.forEach(vo ->{
//数据转换
vo.setBqReachRateStr(rateHandler(vo.getBqReachRate()));
vo.setTqReachRateCompStr(rateHandlerStr(vo.getTqReachRateComp()));
vo.setSqReachRateCompStr(rateHandlerStr(vo.getSqReachRateComp()));
vo.setBqExceedRateStr(rateHandler(vo.getBqExceedRate()));
vo.setTqExceedRateCompStr(rateHandlerStr(vo.getTqExceedRateComp()));
vo.setSqExceedRateCompStr(rateHandlerStr(vo.getSqExceedRateComp()));
done.getAndIncrement();
AsyncUtil.setDone(key,done.get());
});
//组织导出数据
Map<String,Object> map = new HashMap<>();
map.put("p",resultOverviewVo);
map.put("w",airEnvQualityPropSummaryVos);
String url = getExcelUrl(map, "propSum.xlsx", "因子分析汇总");
return url;
}
2.核心工具类
AsyncUtil负责异步更新生成文件数据组织情况更新,存储到缓存
import cn.hutool.core.collection.CollectionUtil;
import com.easylinkin.oss.OSSBaseService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import java.io.BufferedInputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Optional;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicReference;
import java.util.function.Supplier;
@Component
public class AsyncUtil implements ApplicationContextAware {
static Logger LOG = LoggerFactory.getLogger(AsyncUtil.class);
public static ExecutorService executor = Executors.newFixedThreadPool(40);
public static ScheduledExecutorService ex = Executors.newScheduledThreadPool(1);
static List<String> keys = new ArrayList<>();
static boolean scheduleIsStart = false;
private static OSSBaseService ossService;
@Override
public void setApplicationContext(ApplicationContext applicationContext) throws BeansException {
ossService = applicationContext.getBean(OSSBaseService.class);
}
public static RedisTemplate<String, RedisAsyResultData> getRedisTemplate() {
return SpringUtils.getBean("redisTemplate", RedisTemplate.class);
}
static void updateKeyLiveTime() {
if (!scheduleIsStart) {
// 更新redis中缓存的过期时间
ex.scheduleAtFixedRate(() -> {
try {
LOG.info("----- update AsyncResult keys length:{} -----",
keys.size());
if (CollectionUtil.isNotEmpty(keys)) {
List<RedisAsyResultData> multiGet =
getRedisTemplate().opsForValue().multiGet(keys);
for (RedisAsyResultData result : multiGet) {
if (result != null) {
String key = result.getRedisKey();
getRedisTemplate()
.expire(key, 5, TimeUnit.MINUTES);
}
}
}
} catch (Exception e) {
scheduleIsStart = false;
LOG.error(e.getMessage(), e);
}
}, 1, 3, TimeUnit.MINUTES);
scheduleIsStart = true;
}
}
public static RedisAsyResultData submitExportTask(String key, Supplier supplier) {
RedisAsyResultData rs = new RedisAsyResultData();
rs.setSuccess(false);
rs.setRedisKey(key);
rs.setDone(0);
rs.setTotal(100);
setToRedis(rs, key);
if (!keys.contains(key)) {
keys.add(key);
}
String finalKey = key;
executor.submit(() -> {
String msg = null;
try {
Object o = supplier.get();
rs.setData(o);
rs.setFlag(true);
} catch (Exception e) {
rs.setFlag(false);
msg = e.getMessage();
LOG.error(e.getMessage(), e);
}
rs.setSuccess(true);
rs.setDone(rs.getTotal());
if (null != msg) {
rs.setError(msg);
}
keys.remove(finalKey);
setToRedis(rs, finalKey);
});
updateKeyLiveTime();
return rs;
}
/**
* 设置进度
* @param key
* @param done
* @return
*/
public static void setDone(String key,Integer done){
RedisAsyResultData result = getResult(key);
Optional.ofNullable(result).ifPresent(re -> {
re.setDone(done);
saveResult(key,result);
});
}
/**
* 设置总数
* @param key
* @param total
* @return
*/
public static void setTotal(String key,Integer total){
RedisAsyResultData result = getResult(key);
Optional.ofNullable(result).ifPresent(re -> {
re.setTotal(total);
saveResult(key,result);
});
}
public static RedisAsyResultData submitTask(String key, Supplier supplier) {
AtomicReference<RedisAsyResultData> rs = new AtomicReference<>(new RedisAsyResultData());
rs.get().setSuccess(false);
rs.get().setRedisKey(key);
rs.get().setDone(0);
rs.get().setTotal(100);
setToRedis(rs.get(), key);
if (!keys.contains(key)) {
keys.add(key);
}
String finalKey = key;
executor.submit(() -> {
String msg = null;
try {
Object o = supplier.get();
RedisAsyResultData result = getResult(key);
if (null != result){
rs.set(result);
}
rs.get().setData(o);
rs.get().setFlag(true);
} catch (Exception e) {
rs.get().setFlag(false);
msg = e.getMessage();
LOG.error(e.getMessage(), e);
}
rs.get().setSuccess(true);
rs.get().setDone(rs.get().getTotal());
if (null != msg) {
rs.get().setError(msg);
}
keys.remove(finalKey);
setToRedis(rs.get(), finalKey);
});
updateKeyLiveTime();
return rs.get();
}
private static void setToRedis(RedisAsyResultData result, String redisKey) {
getRedisTemplate().opsForValue().set(redisKey, result, 5, TimeUnit.MINUTES);
}
public static RedisAsyResultData getResult(String key) {
RedisAsyResultData excelResult =
getRedisTemplate().opsForValue().get(key);
if (null != excelResult) {
return excelResult;
}
return null;
}
public static void saveResult(String key, RedisAsyResultData result) {
setToRedis(result, key);
}
public static byte[] FileToByte(String filePath) throws Exception{
FileInputStream fis = null;
BufferedInputStream bis = null;
try {
fis = new FileInputStream(filePath);
bis = new BufferedInputStream(fis);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
int c = bis.read();
while (c != -1) {
// 数据存储到ByteArrayOutputStream中
baos.write(c);
c = bis.read();
}
fis.close();
bis.close();
// 转换成二进制
byte[] bytes = baos.toByteArray();
return bytes;
}catch (Exception e){
e.printStackTrace();
throw e;
}finally {
try {
if (fis != null ) {
fis.close();
}
} catch (IOException e) {
e.printStackTrace();
throw e;
} finally {
try {
if (bis != null ) {
bis.close();
}
} catch (IOException e) {
e.printStackTrace();
throw e;
}
}
}
}
}
3.查询导出文件生成情况接口
/**
* 根据key获取导出接口
* @param key
* @return
*/
@GetMapping("getRedisResult/{key}")
public RestMessage getRedisResult(@PathVariable String key){
Assert.hasLength(key,"key不能为空");
return RestBuilders.successBuilder().data(AsyncUtil.getResult(key)).build();
}
key为导出请求返回的
四、效果
前端进度条由每一次轮询请求返回的total、done计算
最后一次轮询,判断flag的值true,或者自行判断total与done相等,又或者判断data是否又返回url表示是否生成完成,然后用返回的url进行get请求执行下载。
总结
- 简单的实现进度条,用在数据需要长时间一条条生成时,看进度条特别明显
- 轮询其实也可以用websocket替代(这样可以离开页面做其他操作,当然这样也是可以的,就是轮询要做到全局请求了,业务模块多的下载的时候前后端都压力变大)
- 这里其实还用到了easypoi的模板导出,大家可以自己看看api
就写到这里,希望能帮到大家,uping!