python与深度学习(十一):CNN和猫狗大战

news2025/1/21 12:06:50

目录

  • 1. 说明
  • 2. 猫狗大战
    • 2.1 导入相关库
    • 2.2 建立模型
    • 2.3 模型编译
    • 2.4 数据生成器
    • 2.5 模型训练
    • 2.6 模型保存
    • 2.7 模型训练结果的可视化
  • 3. 猫狗大战的CNN模型可视化结果图
  • 4. 完整代码
  • 5. 猫狗大战的迁移学习

1. 说明

本篇文章是CNN的另外一个例子,猫狗大战,是自制数据集的例子。之前的例子都是python中库自带的,但是这次的例子是自己搜集数据集,如下图所示整理,数据集的链接会放在评论区。
在这里插入图片描述
在这里插入图片描述

2. 猫狗大战

2.1 导入相关库

以下第三方库是python专门用于深度学习的库

from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout, BatchNormalization
from keras.optimizers import RMSprop, Adam
from keras.preprocessing.image import ImageDataGenerator
import sys, os  # 目录结构
from keras.layers import MaxPool2D
import matplotlib.pyplot as plt
import pandas
from keras.callbacks import EarlyStopping, ReduceLROnPlateau

2.2 建立模型

这是采用另外一种书写方式建立模型。
构建了三层卷积层,三层池化层,然后是展平层(将二维特征图拉直输入给全连接层),然后是三层全连接层,并且加入了dropout层。

"1.模型建立"
# 1.卷积层,输入图片大小(150, 150, 3), 卷积核个数16,卷积核大小(5, 5), 激活函数'relu'
conv_layer1 = Conv2D(input_shape=(150, 150, 3), filters=16, kernel_size=(5, 5), activation='relu')
# 2.最大池化层,池化层大小(2, 2), 步长为2
max_pool1 = MaxPool2D(pool_size=(2, 2), strides=2)
# 3.卷积层,卷积核个数32,卷积核大小(5, 5), 激活函数'relu'
conv_layer2 = Conv2D(filters=32, kernel_size=(5, 5), activation='relu')
# 4.最大池化层,池化层大小(2, 2), 步长为2
max_pool2 = MaxPool2D(pool_size=(2, 2), strides=2)
# 5.卷积层,卷积核个数64,卷积核大小(5, 5), 激活函数'relu'
conv_layer3 = Conv2D(filters=64, kernel_size=(5, 5), activation='relu')
# 6.最大池化层,池化层大小(2, 2), 步长为2
max_pool3 = MaxPool2D(pool_size=(2, 2), strides=2)
# 7.卷积层,卷积核个数128,卷积核大小(5, 5), 激活函数'relu'
conv_layer4 = Conv2D(filters=128, kernel_size=(5, 5), activation='relu')
# 8.最大池化层,池化层大小(2, 2), 步长为2
max_pool4 = MaxPool2D(pool_size=(2, 2), strides=2)
# 9.展平层
flatten_layer = Flatten()
# 10.Dropout层, Dropout(0.2)
third_dropout = Dropout(0.2)
# 11.全连接层/隐藏层1,240个节点, 激活函数'relu'
hidden_layer1 = Dense(240, activation='relu')
# 12.全连接层/隐藏层2,84个节点, 激活函数'relu'
hidden_layer3 = Dense(84, activation='relu')
# 13.Dropout层, Dropout(0.2)
fif_dropout = Dropout(0.5)
# 14.输出层,输出节点个数1, 激活函数'sigmoid'
output_layer = Dense(1, activation='sigmoid')
model = Sequential([conv_layer1, max_pool1, conv_layer2, max_pool2,
                    conv_layer3, max_pool3, conv_layer4, max_pool4,
                    flatten_layer, third_dropout, hidden_layer1,
                    hidden_layer3, fif_dropout, output_layer])

2.3 模型编译

模型的优化器是Adam,学习率是0.01,
损失函数是binary_crossentropy,二分类交叉熵,
性能指标是正确率accuracy,
另外还加入了回调机制。
回调机制简单理解为训练集的准确率持续上升,而验证集准确率基本不变,此时已经出现过拟合,应该调制学习率,让验证集的准确率也上升。

"2.模型编译"
# 模型编译,2分类:binary_crossentropy
model.compile(optimizer=Adam(lr=0.0001),  # 优化器选择Adam,初始学习率设置为0.0001
              loss='binary_crossentropy',  # 代价函数选择 binary_crossentropy
              metrics=['accuracy'])  # 设置指标为准确率
model.summary()  # 模型统计

# 回调机制 动态调整学习率
reduce = ReduceLROnPlateau(monitor='val_accuracy',  # 设置监测的值为val_accuracy
                               patience=2,  # 设置耐心容忍次数为2
                               verbose=1,  #
                               factor=0.5,  # 缩放学习率的值为0.5,学习率将以lr = lr*factor的形式被减少
                               min_lr=0.000001  # 学习率最小值0.000001
                               )   # 监控val_accuracy增加趋势

2.4 数据生成器

加载自制数据集
利用数据生成器对数据进行数据加强,即每次训练时输入的图片会是原图片的翻转,平移,旋转,缩放,这样是为了降低过拟合的影响。
然后通过迭代器进行数据加载,目标图像大小统一尺寸1501503,设置每次加载到训练网络的图像数目,设置而分类模型(默认one-hot编码),并且数据打乱。

"3.数据生成器"
# 生成器对象1:  归一化
gen = ImageDataGenerator(rescale=1 / 255.0)
# 生成器对象2:  归一化 + 数据加强
gen1 = ImageDataGenerator(
    rescale=1 / 255.0,
    rotation_range=5,  # 图片随机旋转的角度5度
    width_shift_range=0.1,
    height_shift_range=0.1,  # 水平和竖直方向随机移动0.1
    shear_range=0.1,  # 剪切变换的程度0.1
    zoom_range=0.1,  # 随机放大的程度0.1
    fill_mode='nearest')  # 当需要进行像素填充时选择最近的像素进行填充
# 拼接训练和验证的两个路径
train_path = os.path.join(sys.path[0], 'dog-cats', 'train')
val_path = os.path.join(sys.path[0], 'dog-cats', 'val')
print('训练数据路径: ', train_path)
print('验证数据路径: ', val_path)
# 训练和验证的两个迭代器
train_iter = gen1.flow_from_directory(train_path,  # 训练train目录路径
                                      target_size=(150, 150),  # 目标图像大小统一尺寸150
                                      batch_size=8,  # 设置每次加载到内存的图像大小
                                      class_mode='binary',  # 设置分类模型(默认one-hot编码)
                                      shuffle=True)  # 是否打乱
val_iter = gen.flow_from_directory(val_path,  # 测试val目录路径
                                   target_size=(150, 150),  # 目标图像大小统一尺寸150
                                   batch_size=8,  # 设置每次加载到内存的图像大小
                                   class_mode='binary',  # 设置分类模型(默认one-hot编码)
                                   shuffle=True)  # 是否打乱

2.5 模型训练

模型训练的次数是20,每1次循环进行测试

"4.模型训练"
# 模型的训练, model.fit
result = model.fit(train_iter,  # 设置训练数据的迭代器
                   epochs=20,  # 循环次数20次
                   validation_data=val_iter,  # 验证数据的迭代器
                   callbacks=[reduce],  # 回调机制设置为reduce
                   verbose=1)

2.6 模型保存

以.h5文件格式保存模型

"5.模型保存"
# 保存训练好的模型
model.save('my_cnn_cat_dog.h5')

2.7 模型训练结果的可视化

对模型的训练结果进行可视化,可视化的结果用曲线图的形式展现

"6.模型训练时的可视化"
# 显示训练集和验证集的acc和loss曲线
acc = result.history['accuracy']  # 获取模型训练中的accuracy
val_acc = result.history['val_accuracy']  # 获取模型训练中的val_accuracy
loss = result.history['loss']  # 获取模型训练中的loss
val_loss = result.history['val_loss']  # 获取模型训练中的val_loss
# 绘值acc曲线
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.savefig('cat_dog_acc.png', dpi=600)
# 绘制loss曲线
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.savefig('cat_dog_loss.png', dpi=600)
plt.show()  # 将结果显示出来

3. 猫狗大战的CNN模型可视化结果图

Epoch 1/20
250/250 [==============================] - 59s 231ms/step - loss: 0.6940 - accuracy: 0.4925 - val_loss: 0.6899 - val_accuracy: 0.5050 - lr: 1.0000e-04
Epoch 2/20
250/250 [==============================] - 55s 219ms/step - loss: 0.6891 - accuracy: 0.5125 - val_loss: 0.6787 - val_accuracy: 0.5880 - lr: 1.0000e-04
Epoch 3/20
250/250 [==============================] - 54s 216ms/step - loss: 0.6791 - accuracy: 0.5840 - val_loss: 0.6655 - val_accuracy: 0.6080 - lr: 1.0000e-04
Epoch 4/20
250/250 [==============================] - 60s 238ms/step - loss: 0.6628 - accuracy: 0.6040 - val_loss: 0.6501 - val_accuracy: 0.6300 - lr: 1.0000e-04
Epoch 5/20
250/250 [==============================] - 57s 226ms/step - loss: 0.6480 - accuracy: 0.6400 - val_loss: 0.6281 - val_accuracy: 0.6590 - lr: 1.0000e-04
Epoch 6/20
250/250 [==============================] - 67s 268ms/step - loss: 0.6275 - accuracy: 0.6565 - val_loss: 0.6160 - val_accuracy: 0.6690 - lr: 1.0000e-04
Epoch 7/20
250/250 [==============================] - 62s 247ms/step - loss: 0.6252 - accuracy: 0.6570 - val_loss: 0.6026 - val_accuracy: 0.6790 - lr: 1.0000e-04
Epoch 8/20
250/250 [==============================] - 63s 251ms/step - loss: 0.5915 - accuracy: 0.6770 - val_loss: 0.5770 - val_accuracy: 0.6960 - lr: 1.0000e-04
Epoch 9/20
250/250 [==============================] - 57s 228ms/step - loss: 0.5778 - accuracy: 0.6930 - val_loss: 0.5769 - val_accuracy: 0.6880 - lr: 1.0000e-04
Epoch 10/20
250/250 [==============================] - 55s 219ms/step - loss: 0.5532 - accuracy: 0.7085 - val_loss: 0.5601 - val_accuracy: 0.6970 - lr: 1.0000e-04
Epoch 11/20
250/250 [==============================] - 55s 221ms/step - loss: 0.5408 - accuracy: 0.7370 - val_loss: 0.6002 - val_accuracy: 0.6810 - lr: 1.0000e-04
Epoch 12/20
250/250 [==============================] - ETA: 0s - loss: 0.5285 - accuracy: 0.7350
Epoch 12: ReduceLROnPlateau reducing learning rate to 4.999999873689376e-05.
250/250 [==============================] - 56s 226ms/step - loss: 0.5285 - accuracy: 0.7350 - val_loss: 0.5735 - val_accuracy: 0.6960 - lr: 1.0000e-04
Epoch 13/20
250/250 [==============================] - 70s 280ms/step - loss: 0.4969 - accuracy: 0.7595 - val_loss: 0.5212 - val_accuracy: 0.7410 - lr: 5.0000e-05
Epoch 14/20
250/250 [==============================] - 73s 292ms/step - loss: 0.4776 - accuracy: 0.7740 - val_loss: 0.5146 - val_accuracy: 0.7470 - lr: 5.0000e-05
Epoch 15/20
250/250 [==============================] - 71s 285ms/step - loss: 0.4605 - accuracy: 0.7930 - val_loss: 0.5180 - val_accuracy: 0.7530 - lr: 5.0000e-05
Epoch 16/20
250/250 [==============================] - 74s 298ms/step - loss: 0.4619 - accuracy: 0.7825 - val_loss: 0.5100 - val_accuracy: 0.7510 - lr: 5.0000e-05
Epoch 17/20
250/250 [==============================] - 72s 289ms/step - loss: 0.4558 - accuracy: 0.7885 - val_loss: 0.4991 - val_accuracy: 0.7630 - lr: 5.0000e-05
Epoch 18/20
250/250 [==============================] - 75s 300ms/step - loss: 0.4498 - accuracy: 0.7900 - val_loss: 0.4966 - val_accuracy: 0.7580 - lr: 5.0000e-05
Epoch 19/20
250/250 [==============================] - 61s 243ms/step - loss: 0.4269 - accuracy: 0.8060 - val_loss: 0.5000 - val_accuracy: 0.7690 - lr: 5.0000e-05
Epoch 20/20
250/250 [==============================] - 56s 224ms/step - loss: 0.4202 - accuracy: 0.8090 - val_loss: 0.4845 - val_accuracy: 0.7700 - lr: 5.0000e-05

在这里插入图片描述
在这里插入图片描述
从以上结果可知,模型的准确率达到了77%。可以发现并不是很高,因此采用下面的迁移学习。

4. 完整代码

from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout, BatchNormalization
from keras.optimizers import RMSprop, Adam
from keras.preprocessing.image import ImageDataGenerator
import sys, os  # 目录结构
from keras.layers import MaxPool2D
import matplotlib.pyplot as plt
import pandas
from keras.callbacks import EarlyStopping, ReduceLROnPlateau

"1.模型建立"
# 1.卷积层,输入图片大小(150, 150, 3), 卷积核个数16,卷积核大小(5, 5), 激活函数'relu'
conv_layer1 = Conv2D(input_shape=(150, 150, 3), filters=16, kernel_size=(5, 5), activation='relu')
# 2.最大池化层,池化层大小(2, 2), 步长为2
max_pool1 = MaxPool2D(pool_size=(2, 2), strides=2)
# 3.卷积层,卷积核个数32,卷积核大小(5, 5), 激活函数'relu'
conv_layer2 = Conv2D(filters=32, kernel_size=(5, 5), activation='relu')
# 4.最大池化层,池化层大小(2, 2), 步长为2
max_pool2 = MaxPool2D(pool_size=(2, 2), strides=2)
# 5.卷积层,卷积核个数64,卷积核大小(5, 5), 激活函数'relu'
conv_layer3 = Conv2D(filters=64, kernel_size=(5, 5), activation='relu')
# 6.最大池化层,池化层大小(2, 2), 步长为2
max_pool3 = MaxPool2D(pool_size=(2, 2), strides=2)
# 7.卷积层,卷积核个数128,卷积核大小(5, 5), 激活函数'relu'
conv_layer4 = Conv2D(filters=128, kernel_size=(5, 5), activation='relu')
# 8.最大池化层,池化层大小(2, 2), 步长为2
max_pool4 = MaxPool2D(pool_size=(2, 2), strides=2)
# 9.展平层
flatten_layer = Flatten()
# 10.Dropout层, Dropout(0.2)
third_dropout = Dropout(0.2)
# 11.全连接层/隐藏层1,240个节点, 激活函数'relu'
hidden_layer1 = Dense(240, activation='relu')
# 12.全连接层/隐藏层2,84个节点, 激活函数'relu'
hidden_layer3 = Dense(84, activation='relu')
# 13.Dropout层, Dropout(0.2)
fif_dropout = Dropout(0.5)
# 14.输出层,输出节点个数1, 激活函数'sigmoid'
output_layer = Dense(1, activation='sigmoid')
model = Sequential([conv_layer1, max_pool1, conv_layer2, max_pool2,
                    conv_layer3, max_pool3, conv_layer4, max_pool4,
                    flatten_layer, third_dropout, hidden_layer1,
                    hidden_layer3, fif_dropout, output_layer])
"2.模型编译"
# 模型编译,2分类:binary_crossentropy
model.compile(optimizer=Adam(lr=0.0001),  # 优化器选择Adam,初始学习率设置为0.0001
              loss='binary_crossentropy',  # 代价函数选择 binary_crossentropy
              metrics=['accuracy'])  # 设置指标为准确率
model.summary()  # 模型统计

# 回调机制 动态调整学习率
reduce = ReduceLROnPlateau(monitor='val_accuracy',  # 设置监测的值为val_accuracy
                               patience=2,  # 设置耐心容忍次数为2
                               verbose=1,  #
                               factor=0.5,  # 缩放学习率的值为0.5,学习率将以lr = lr*factor的形式被减少
                               min_lr=0.000001  # 学习率最小值0.000001
                               )   # 监控val_accuracy增加趋势
"3.数据生成器"
# 生成器对象1:  归一化
gen = ImageDataGenerator(rescale=1 / 255.0)
# 生成器对象2:  归一化 + 数据加强
gen1 = ImageDataGenerator(
    rescale=1 / 255.0,
    rotation_range=5,  # 图片随机旋转的角度5度
    width_shift_range=0.1,
    height_shift_range=0.1,  # 水平和竖直方向随机移动0.1
    shear_range=0.1,  # 剪切变换的程度0.1
    zoom_range=0.1,  # 随机放大的程度0.1
    fill_mode='nearest')  # 当需要进行像素填充时选择最近的像素进行填充
# 拼接训练和验证的两个路径
train_path = os.path.join(sys.path[0], 'dog-cats', 'train')
val_path = os.path.join(sys.path[0], 'dog-cats', 'val')
print('训练数据路径: ', train_path)
print('验证数据路径: ', val_path)
# 训练和验证的两个迭代器
train_iter = gen1.flow_from_directory(train_path,  # 训练train目录路径
                                      target_size=(150, 150),  # 目标图像大小统一尺寸150
                                      batch_size=8,  # 设置每次加载到内存的图像大小
                                      class_mode='binary',  # 设置分类模型(默认one-hot编码)
                                      shuffle=True)  # 是否打乱
val_iter = gen.flow_from_directory(val_path,  # 测试val目录路径
                                   target_size=(150, 150),  # 目标图像大小统一尺寸150
                                   batch_size=8,  # 设置每次加载到内存的图像大小
                                   class_mode='binary',  # 设置分类模型(默认one-hot编码)
                                   shuffle=True)  # 是否打乱
"4.模型训练"
# 模型的训练, model.fit
result = model.fit(train_iter,  # 设置训练数据的迭代器
                   epochs=20,  # 循环次数20次
                   validation_data=val_iter,  # 验证数据的迭代器
                   callbacks=[reduce],  # 回调机制设置为reduce
                   verbose=1)

"5.模型保存"
# 保存训练好的模型
model.save('my_cnn_cat_dog.h5')

"6.模型训练时的可视化"
# 显示训练集和验证集的acc和loss曲线
acc = result.history['accuracy']  # 获取模型训练中的accuracy
val_acc = result.history['val_accuracy']  # 获取模型训练中的val_accuracy
loss = result.history['loss']  # 获取模型训练中的loss
val_loss = result.history['val_loss']  # 获取模型训练中的val_loss
# 绘值acc曲线
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.savefig('cat_dog_acc.png', dpi=600)
# 绘制loss曲线
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.savefig('cat_dog_loss.png', dpi=600)
plt.show()  # 将结果显示出来


5. 猫狗大战的迁移学习

迁移学习简单来说就是将别人已经训练好的模型拿来自己用。

from keras.applications import DenseNet121
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout, BatchNormalization
from keras.optimizers import RMSprop, Adam
from keras.preprocessing.image import ImageDataGenerator
import sys, os  # 目录结构
from keras.layers import MaxPool2D
import matplotlib.pyplot as plt
import pandas
from keras.callbacks import EarlyStopping, ReduceLROnPlateau

"1.模型建立"
# 加载DenseNet网络模型,并去掉最后一层全连接层,最后一个池化层设置为max pooling
net = DenseNet121(weights='imagenet', include_top=False, pooling='max')
# 设计为不参与优化,即MobileNet这部分参数固定不动
net.trainable = False
newnet = Sequential([
    net,  # 去掉最后一层的DenseNet121
    Dense(1024, activation='relu'),  # 追加全连接层
    BatchNormalization(),  # 追加BN层
    Dropout(rate=0.5),  # 追加Dropout层,防止过拟合
    Dense(1,activation='sigmoid') # 根据宝可梦数据的任务,设置最后一层输出节点数为5
])
newnet.build(input_shape=(None, 150, 150, 3))

"2.模型编译"
newnet.compile(optimizer=Adam(lr=0.0001), loss="binary_crossentropy", metrics=["accuracy"])
newnet.summary()

# 回调机制 动态调整学习率
reduce = ReduceLROnPlateau(monitor='val_accuracy',  # 设置监测的值为val_accuracy
                               patience=2,  # 设置耐心容忍次数为2
                               verbose=1,  #
                               factor=0.5,  # 缩放学习率的值为0.5,学习率将以lr = lr*factor的形式被减少
                               min_lr=0.000001  # 学习率最小值0.000001
                               )   # 监控val_accuracy增加趋势

"3.数据生成器"
# 生成器对象1:  归一化
gen = ImageDataGenerator(rescale=1 / 255.0)
# 生成器对象2:  归一化 + 数据加强
gen1 = ImageDataGenerator(
    rescale=1 / 255.0,
    rotation_range=5,  # 图片随机旋转的角度5度
    width_shift_range=0.1,
    height_shift_range=0.1,  # 水平和竖直方向随机移动0.1
    shear_range=0.1,  # 剪切变换的程度0.1
    zoom_range=0.1,  # 随机放大的程度0.1
    fill_mode='nearest')  # 当需要进行像素填充时选择最近的像素进行填充
# 拼接训练和验证的两个路径
train_path = os.path.join(sys.path[0], 'dog-cats', 'train')
val_path = os.path.join(sys.path[0], 'dog-cats', 'val')
print('训练数据路径: ', train_path)
print('验证数据路径: ', val_path)
# 训练和验证的两个迭代器
train_iter = gen1.flow_from_directory(train_path,  # 训练train目录路径
                                      target_size=(150, 150),  # 目标图像大小统一尺寸150
                                      batch_size=10,  # 设置每次加载到内存的图像大小
                                      class_mode='binary',  # 设置分类模型(默认one-hot编码)
                                      shuffle=True)  # 是否打乱
val_iter = gen.flow_from_directory(val_path,  # 测试val目录路径
                                   target_size=(150, 150),  # 目标图像大小统一尺寸150
                                   batch_size=10,  # 设置每次加载到内存的图像大小
                                   class_mode='binary',  # 设置分类模型(默认one-hot编码)
                                   shuffle=True)  # 是否打乱
"4.模型训练"
# 模型的训练, newnet.fit
result = newnet.fit(train_iter,  # 设置训练数据的迭代器
                    epochs=20,  # 循环次数20次
                    validation_data=val_iter,  # 验证数据的迭代器
                    callbacks=[reduce],  # 回调机制设置为reduce
                    verbose=1)

"5.模型保存"
# 保存训练好的模型
newnet.save('my_cnn_cat_dog_3.h5')

"6.模型训练时的可视化"
# 显示训练集和验证集的acc和loss曲线
acc = result.history['accuracy']  # 获取模型训练中的accuracy
val_acc = result.history['val_accuracy']  # 获取模型训练中的val_accuracy
loss = result.history['loss']  # 获取模型训练中的loss
val_loss = result.history['val_loss']  # 获取模型训练中的val_loss
# 绘值acc曲线
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.savefig('cat_dog_acc_3.png', dpi=600)
# 绘制loss曲线
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.savefig('cat_dog_loss_3.png', dpi=600)
plt.show()  # 将结果显示出来


在这里插入图片描述
在这里插入图片描述
可以发现,通过迁移学习之后的模型准确率达到了96%。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/812980.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

建立动态数组,输入5个学生的,另外用一个函数检查其中有无低于60分的,输出不合格的成绩。

题为c程序设计(第五版)谭浩强 例8.30 文章目录 前言一、pandas是什么?二、使用步骤 1.引入库2.读入数据总结 前言 这篇博客,让我们一起来学习内存的动态分配。 那么,什么是内存的动态分配呢?C语言允许建立…

RS485或RS232转ETHERCAT连接ethercat转换器

最近,生产管理设备中经常会遇到两种协议不相同的情况,这严重阻碍了设备之间的通讯,串口设备的数据不能直接传输给ETHERCAT。这可怎么办呢? 别担心,捷米JM-ECT-RS485/232来了!这是一款自主研发的ETHERCAT从站…

FreeRTOS源码分析-7 消息队列

目录 1 消息队列的概念和作用 2 应用 2.1功能需求 2.2接口函数API 2.3 功能实现 3 消息队列源码分析 3.1消息队列控制块 3.2消息队列创建 3.3消息队列删除 3.4消息队列在任务中发送 3.5消息队列在中断中发送 3.6消息队列在任务中接收 3.7消息队列在中断中接收 1 消…

【RTT驱动框架分析03】- sfus flash 操作库的分析和基于STM32F103RCT6+CUBEMX的SFUS移植教程

sfus flash 操作库的分析 sfus 抽象 /*** serial flash device*/ typedef struct {char *name; /**< serial flash name */size_t index; /**< index of flash device information table see flash_…

filter shape、padding、strides三者之间的关系

filter shape 在深度学习中&#xff0c;“filter shape”&#xff08;滤波器形状&#xff09;指的是卷积神经网络中滤波器&#xff08;也称为卷积核&#xff09;的维度或大小。滤波器是用于在卷积层中提取特征的重要组件。 滤波器形状通常是一个四维张量&#xff0c;具体取决…

小研究 - 一种复杂微服务系统异常行为分析与定位算法(二)

针对极端学生化偏差&#xff08;&#xff25;&#xff58;&#xff54;&#xff52;&#xff45;&#xff4d;&#xff45; &#xff33;&#xff54;&#xff55;&#xff44;&#xff45;&#xff4e;&#xff54;&#xff49;&#xff5a;&#xff45;&#xff44; &#…

并发编程 - CompletableFuture

文章目录 Pre概述FutureFuture的缺陷类继承关系功能概述API提交任务的相关API结果转换的相关APIthenApplyhandlethenRunthenAcceptthenAcceptBoththenCombinethenCompose 回调方法的相关API异常处理的相关API获取结果的相关API DEMO实战注意事项 Pre 每日一博 - Java 异步编程…

DPN(Dual Path Network)网络结构详解

论文&#xff1a;Dual Path Networks 论文链接&#xff1a;https://arxiv.org/abs/1707.01629 代码&#xff1a;https://github.com/cypw/DPNs MXNet框架下可训练模型的DPN代码&#xff1a;https://github.com/miraclewkf/DPN 我们知道ResNet&#xff0c;ResNeXt&#xff0c;D…

面向对象【对象数组的使用与内存分析、方法重载、可变个数形参】

文章目录 对象数组实例对象内存分析 方法的重载重载方法调用打印方法的重载 可变个数形参的方法特点传递任意数量的参数与其他参数共存传递数组或多个参数 对象数组 存储对象引用的数组。它允许您在单个数组中存储多个对象&#xff0c;并通过索引访问和操作这些对象。 实例 创…

使用SpringBoot+SpringMVC+Mybatis+Redis实现个人博客管理平台

文章目录 前言1. 项目概述2. 项目需求2.1功能需求2.2 其他需求2.3 系统功能模块图 3. 开发环境4. 项目结构5. 部分功能介绍5.1 数据库密码密文存储5.2 统一数据格式返回5.3 登录拦截器 6. 项目展示 前言 在几个月前实现了一个servlet版本的博客系统&#xff0c;本项目则是在原…

JWT无状态理解

JSON Web Tokens (JWT) 被称为无状态&#xff0c;因为授权服务器不需要维护任何状态&#xff1b;令牌本身就是验证令牌持有者授权所需的全部内容。 JWTs都签订使用数字签名算法&#xff08;例如RSA&#xff09;不能被伪造。因此&#xff0c;任何信任签名者证书的人都可以放心地…

二维深度卷积网络模型下的轴承故障诊断

1.数据集 使用凯斯西储大学轴承数据集&#xff0c;一共有4种负载下采集的数据&#xff0c;每种负载下有10种 故障状态&#xff1a;三种不同尺寸下的内圈故障、三种不同尺寸下的外圈故障、三种不同尺寸下的滚动体故障和一种正常状态 2.模型&#xff08;二维CNN&#xff09; 使…

基于传统检测算法hog+svm实现图像多分类

直接上效果图&#xff1a; 代码仓库和视频演示b站视频005期&#xff1a; 到此一游7758258的个人空间-到此一游7758258个人主页-哔哩哔哩视频 代码展示&#xff1a; 数据集在datasets文件夹下 运行01train.py即可训练 训练结束后会保存模型在本地 运行02pyqt.py会有一个可视化…

iOS开发-自定义TabbarController与Tabbar按钮Badge角标

iOS开发-自定义Tabbar按钮Badge角标 Tabbar是放在APP底部的控件。UITabbarController是一个非常常见的一种展示模式了。比如微信、QQ都是使用tabbar来进行功能分类的管理。 一、实现自定义Tabbar 我这里Tabbar继承于系统的UITabBar&#xff0c;定义背景图、线条的颜色、tab…

Redis系列 2- Redis 的持久化

Redis系列 2- Redis 的持久化 1、关于 Redis 持久化2、RDB 持久化2.1、RDB 文件的创建与载入2.2、RDB 自动间隔性保存的配置2.3、Redis 快照2.4、RDB 重点总结 3、AOF 持久化3.1、命令追加(append)3.2、AOF 文件的写入与同步3.3、AOF 工作原理3.4、AOF 的文件载入与数据还原3.5…

QGIS3.28的二次开发一:编译工程

环境&#xff1a;VS2019OSGeo4WCMake_3.26Cygwin64QGIS_3.28 注意&#xff1a;一定要按照步骤顺序来&#xff01; 一、配置环境 &#xff08;一&#xff09;VS2019 VS2019下载链接https://my.visualstudio.com/Downloads?qvisual%20studio%202019&wt.mc_ido~msft~vsco…

day50-Insect Catch Game(捉虫游戏)

50 天学习 50 个项目 - HTMLCSS and JavaScript day50-Insect Catch Game&#xff08;捉虫游戏&#xff09; 效果 index.html <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport"…

基于SpringBoot+Vue的大学生租房系统设计与实现(源码+LW+部署文档等)

博主介绍&#xff1a; 大家好&#xff0c;我是一名在Java圈混迹十余年的程序员&#xff0c;精通Java编程语言&#xff0c;同时也熟练掌握微信小程序、Python和Android等技术&#xff0c;能够为大家提供全方位的技术支持和交流。 我擅长在JavaWeb、SSH、SSM、SpringBoot等框架…

第 356 场力扣周赛题解

A 满足目标工作时长的员工数目 签到题 class Solution { public:int numberOfEmployeesWhoMetTarget(vector<int> &hours, int target) {int res 0;for (auto x: hours)if (x > target)res;return res;} };B 统计完全子数组的数目 枚举子数组&#xff1a;枚举子数…

小研究 - 主动式微服务细粒度弹性缩放算法研究(四)

微服务架构已成为云数据中心的基本服务架构。但目前关于微服务系统弹性缩放的研究大多是基于服务或实例级别的水平缩放&#xff0c;忽略了能够充分利用单台服务器资源的细粒度垂直缩放&#xff0c;从而导致资源浪费。为此&#xff0c;本文设计了主动式微服务细粒度弹性缩放算法…