一、概论
1.1 什么是DataX
DataX 是阿里巴巴开源的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等各种异构数据源之间稳定高效的数据同步功能。
1.2 DataX 的设计
为了解决异构数据源同步问题,DataX 将复杂的网状的同步链路变成了星型数据链路,DataX 作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到 DataX,便能跟已有的数据源做到无缝数据同步。
1.3 框架设计
- Reader:数据采集模块,负责采集数据源的数据,将数据发给Framework。
- Wiriter: 数据写入模块,负责不断向Framwork取数据,并将数据写入到目的端。
- Framework:用于连接read和writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。
运行原理 - Job:单个作业的管理节点,负责数据清理、子任务划分、TaskGroup监控管理。
- Task:由Job切分而来,是DataX作业的最小单元,每个Task负责一部分数据的同步工作。
- Schedule:将Task组成TaskGroup,单个TaskGroup的并发数量为5。
- TaskGroup:负责启动Task。
1.4 Datax所支持的渠道
类型 | 数据源 | 读者 | 作家(写) | 文件 |
---|---|---|---|---|
RDBMS关系型数据库 | MySQL | √ | √ | 读,写 |
甲骨文 | √ | √ | 读,写 | |
SQL服务器 | √ | √ | 读,写 | |
PostgreSQL的 | √ | √ | 读,写 | |
DRDS | √ | √ | 读,写 | |
通用RDBMS(支持所有关系型数据库) | √ | √ | 读,写 | |
阿里云数仓数据存储 | ODPS | √ | √ | 读,写 |
美国存托凭证 | √ | 写 | ||
开源软件 | √ | √ | 读,写 | |
OCS | √ | √ | 读,写 | |
NoSQL数据存储 | OTS | √ | √ | 读,写 |
Hbase0.94 | √ | √ | 读,写 | |
Hbase1.1 | √ | √ | 读,写 | |
凤凰4.x | √ | √ | 读,写 | |
凤凰5.x | √ | √ | 读,写 | |
MongoDB | √ | √ | 读,写 | |
蜂巢 | √ | √ | 读,写 | |
卡桑德拉 | √ | √ | 读,写 | |
无结构化数据存储 | 文本文件 | √ | √ | 读,写 |
的FTP | √ | √ | 读,写 | |
HDFS | √ | √ | 读,写 | |
弹性搜索 | √ | 写 | ||
时间序列数据库 | OpenTSDB | √ | 读 | |
技术开发局 | √ | √ | 读,写 |
二、快速入门
2.1 环境搭建
下载地址: http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz
源码地址: https://github.com/alibaba/DataX
配置要求:
- Linux
- JDK(1.8以上 建议1.8) 下载
- Python(推荐 Python2.6.X)下载
安装:
1) 将下载好的datax.tar.gz上传到服务器的任意节点,我这里上传到node01上的/exprot/soft
2)解压到/export/servers/
[root@node01 soft]# tar -zxvf datax.tar.gz -C ../servers/
3)运行自检脚本
出现以下结果说明你得环境没有问题
[/opt/module/datax/plugin/reader/._hbase094xreader/plugin.json]不存在. 请检查您的配置文件.
2.2搭建环境注意事项
[/opt/module/datax/plugin/reader/._hbase094xreader/plugin.json]不存在. 请检查您的配置文件.
参考:
find ./* -type f -name ".*er" | xargs rm -rf
find: paths must precede expression: |
Usage: find [-H] [-L] [-P] [-Olevel] [-D help|tree|search|stat|rates|opt|exec] [path...] [expression]
find /datax/plugin/reader/ -type f -name "._*er" | xargs rm -rf
find /datax/plugin/writer/ -type f -name "._*er" | xargs rm -rf
这里的/datax/plugin/writer/要改为你自己的目录
原文链接:https://blog.csdn.net/dz77dz/article/details/127055299
2.3读取Mysql中的数据写入到HDFS
准备
创建数据库和表并加载测试数据
create database test;
use test;
create table c_s(
id varchar(100) null,
c_id int null,
s_id varchar(20) null
);
INSERT INTO test.c_s (id, c_id, s_id) VALUES ('123', 1, '201967');
INSERT INTO test.c_s (id, c_id, s_id) VALUES ('123', 2, '201967');
INSERT INTO test.c_s (id, c_id, s_id) VALUES ('123', 3, '201967');
INSERT INTO test.c_s (id, c_id, s_id) VALUES ('123', 5, '201967');
INSERT INTO test.c_s (id, c_id, s_id) VALUES ('123', 6, '201967');
查看官方提供的模板
[root@node01 datax]# bin/datax.py -r mysqlreader -w hdfswriter
DataX (DATAX-OPENSOURCE-3.0), From Alibaba !
Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved.
Please refer to the mysqlreader document:
https://github.com/alibaba/DataX/blob/master/mysqlreader/doc/mysqlreader.md
Please refer to the hdfswriter document:
https://github.com/alibaba/DataX/blob/master/hdfswriter/doc/hdfswriter.md
Please save the following configuration as a json file and use
python {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json
to run the job.
{
"job": {
"content": [
{
"reader": {
"name": "mysqlreader",
"parameter": {
"column": [],
"connection": [
{
"jdbcUrl": [],
"table": []
}
],
"password": "",
"username": "",
"where": ""
}
},
"writer": {
"name": "hdfswriter",
"parameter": {
"column": [],
"compress": "",
"defaultFS": "",
"fieldDelimiter": "",
"fileName": "",
"fileType": "",
"path": "",
"writeMode": ""
}
}
}
],
"setting": {
"speed": {
"channel": ""
}
}
}
}
根据官网模板进行修改
[root@node01 datax]# vim job/mysqlToHDFS.json
{
"job": {
"content": [
{
"reader": {
"name": "mysqlreader",
"parameter": {
"column": [
"id",
"c_id",
"s_id"
],
"connection": [
{
"jdbcUrl": [
"jdbc:mysql://node02:3306/test"
],
"table": [
"c_s"
]
}
],
"password": "123456",
"username": "root"
}
},
"writer": {
"name": "hdfswriter",
"parameter": {
"column": [
{
"name": "id",
"type": "string"
},
{
"name": "c_id",
"type": "int"
},
{
"name": "s_id",
"type": "string"
}
],
"defaultFS": "hdfs://node01:8020",
"fieldDelimiter": "\t",
"fileName": "c_s.txt",
"fileType": "text",
"path": "/",
"writeMode": "append"
}
}
}
],
"setting": {
"speed": {
"channel": "1"
}
}
}
}
HDFS的端口号注意版本,2.7.4 是9000;hdfs://node01:9000
MySQL的参数介绍
HDFS参数介绍
运行脚本
[root@node01 datax]# bin/datax.py job/mysqlToHDFS.json
2020-10-02 16:12:16.358 [job-0] INFO HookInvoker - No hook invoked, because base dir not exists or is a file: /export/servers/datax/hook
2020-10-02 16:12:16.359 [job-0] INFO JobContainer -
[total cpu info] =>
averageCpu | maxDeltaCpu | minDeltaCpu
-1.00% | -1.00% | -1.00%
[total gc info] =>
NAME | totalGCCount | maxDeltaGCCount | minDeltaGCCount | totalGCTime | maxDeltaGCTime | minDeltaGCTime
PS MarkSweep | 1 | 1 | 1 | 0.245s | 0.245s | 0.245s
PS Scavenge | 1 | 1 | 1 | 0.155s | 0.155s | 0.155s
2020-10-02 16:12:16.359 [job-0] INFO JobContainer - PerfTrace not enable!
2020-10-02 16:12:16.359 [job-0] INFO StandAloneJobContainerCommunicator - Total 5 records, 50 bytes | Speed 5B/s, 0 records/s | Error 0 records, 0 bytes | All Task WaitWriterTime 0.000s | All Task WaitReaderTime 0.000s | Percentage 100.00%
2020-10-02 16:12:16.360 [job-0] INFO JobContainer -
任务启动时刻 : 2020-10-02 16:12:04
任务结束时刻 : 2020-10-02 16:12:16
任务总计耗时 : 12s
任务平均流量 : 5B/s
记录写入速度 : 0rec/s
读出记录总数 : 5
读写失败总数 : 0
2.4 读取HDFS中的数据写入到Mysql
准备工作
create database test;
use test;
create table c_s2(
id varchar(100) null,
c_id int null,
s_id varchar(20) null
);
查看官方提供的模板
[root@node01 datax]# bin/datax.py -r hdfsreader -w mysqlwriter
DataX (DATAX-OPENSOURCE-3.0), From Alibaba !
Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved.
Please refer to the hdfsreader document:
https://github.com/alibaba/DataX/blob/master/hdfsreader/doc/hdfsreader.md
Please refer to the mysqlwriter document:
https://github.com/alibaba/DataX/blob/master/mysqlwriter/doc/mysqlwriter.md
Please save the following configuration as a json file and use
python {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json
to run the job.
{
"job": {
"content": [
{
"reader": {
"name": "hdfsreader",
"parameter": {
"column": [],
"defaultFS": "",
"encoding": "UTF-8",
"fieldDelimiter": ",",
"fileType": "orc",
"path": ""
}
},
"writer": {
"name": "mysqlwriter",
"parameter": {
"column": [],
"connection": [
{
"jdbcUrl": "",
"table": []
}
],
"password": "",
"preSql": [],
"session": [],
"username": "",
"writeMode": ""
}
}
}
],
"setting": {
"speed": {
"channel": ""
}
}
}
}
根据官方提供模板进行修改
[root@node01 datax]# vim job/hdfsTomysql.json
{
"job": {
"content": [
{
"reader": {
"name": "hdfsreader",
"parameter": {
"column": [
"*"
],
"defaultFS": "hdfs://node01:8020",
"encoding": "UTF-8",
"fieldDelimiter": "\t",
"fileType": "text",
"path": "/c_s.txt"
}
},
"writer": {
"name": "mysqlwriter",
"parameter": {
"column": [
"id",
"c_id",
"s_id"
],
"connection": [
{
"jdbcUrl": "jdbc:mysql://node02:3306/test",
"table": [
"c_s2"
]
}
],
"password": "123456",
"username": "root",
"writeMode": "replace"
}
}
}
],
"setting": {
"speed": {
"channel": "1"
}
}
}
}
脚本运行
[root@node01 datax]# bin/datax.py job/hdfsTomysql.json
[total cpu info] =>
averageCpu | maxDeltaCpu | minDeltaCpu
-1.00% | -1.00% | -1.00%
[total gc info] =>
NAME | totalGCCount | maxDeltaGCCount | minDeltaGCCount | totalGCTime | maxDeltaGCTime | minDeltaGCTime
PS MarkSweep | 1 | 1 | 1 | 0.026s | 0.026s | 0.026s
PS Scavenge | 1 | 1 | 1 | 0.015s | 0.015s | 0.015s
2020-10-02 16:57:13.152 [job-0] INFO JobContainer - PerfTrace not enable!
2020-10-02 16:57:13.152 [job-0] INFO StandAloneJobContainerCommunicator - Total 5 records, 50 bytes | Speed 5B/s, 0 records/s | Error 0 records, 0 bytes | All Task WaitWriterTime 0.000s | All Task WaitReaderTime 0.033s | Percentage 100.00%
2020-10-02 16:57:13.153 [job-0] INFO JobContainer -
任务启动时刻 : 2020-10-02 16:57:02
任务结束时刻 : 2020-10-02 16:57:13
任务总计耗时 : 11s
任务平均流量 : 5B/s
记录写入速度 : 0rec/s
读出记录总数 : 5
读写失败总数 : 0
2.5将Mysql表导入Hive
1.在hive中建表
-- hive建表
CREATE TABLE student2 (
classNo string,
stuNo string,
score int)
row format delimited fields terminated by ',';
-- 构造点mysql数据
create table if not exists student2(
classNo varchar ( 50 ),
stuNo varchar ( 50 ),
score int
)
insert into student2 values('1001','1012ww10087',63);
insert into student2 values('1002','1012aa10087',63);
insert into student2 values('1003','1012bb10087',63);
insert into student2 values('1004','1012cc10087',63);
insert into student2 values('1005','1012dd10087',63);
insert into student2 values('1006','1012ee10087',63);
2.编写mysql2hive.json配置文件
{
"job": {
"setting": {
"speed": {
"channel": 1
}
},
"content": [
{
"reader": {
"name": "mysqlreader",
"parameter": {
"username": "root",
"password": "root",
"connection": [
{
"table": [
"student2"
],
"jdbcUrl": [
"jdbc:mysql://192.168.43.10:3306/mytestmysql"
]
}
],
"column": [
"classNo",
"stuNo",
"score"
]
}
},
"writer": {
"name": "hdfswriter",
"parameter": {
"defaultFS": "hdfs://192.168.43.10:9000",
"path": "/hive/warehouse/home/myhive.db/student2",
"fileName": "myhive",
"writeMode": "append",
"fieldDelimiter": ",",
"fileType": "text",
"column": [
{
"name": "classNo",
"type": "string"
},
{
"name": "stuNo",
"type": "string"
},
{
"name": "score",
"type": "int"
}
]
}
}
}
]
}
}
3.运行脚本
bin/datax.py job/mysql2hive.json
4.查看hive表是否有数据
2.6将Hive表数据导入Mysql
1.要先在mysql建好表
create table if not exists student(
classNo varchar ( 50 ),
stuNo varchar ( 50 ),
score int
)
2.hive2mysql.json配置文件
{
"job": {
"setting": {
"speed": {
"channel": 3
}
},
"content": [
{
"reader": {
"name": "hdfsreader",
"parameter": {
"path": "/hive/warehouse/home/myhive.db/student/*",
"defaultFS": "hdfs://192.168.43.10:9000",
"column": [
{
"index": 0,
"type": "string"
},
{
"index": 1,
"type": "string"
},
{
"index": 2,
"type": "Long"
}
],
"fileType": "text",
"encoding": "UTF-8",
"fieldDelimiter": ","
}
},
"writer": {
"name": "mysqlwriter",
"parameter": {
"writeMode": "insert",
"username": "root",
"password": "root",
"column": [
"classNo",
"stuNo",
"score"
],
"preSql": [
"delete from student"
],
"connection": [
{
"jdbcUrl": "jdbc:mysql://192.168.43.10:3306/mytestmysql?useUnicode=true&characterEncoding=utf8",
"table": [
"student"
]
}
]
}
}
}
]
}
}
注意事项:
在Hive的ODS层建表语句中,以“,”为分隔符;
fields terminated by ','
在DataX的json文件中,也以“,”为分隔符。
"fieldDelimiter": "," 与hive表里面的分隔符保持一致即可
由于DataX不能完全支持所有Hive表的数据类型,应将DataX启动文件中的hdfsreader中的column字段的类型改成DataX支持的类型