【C++学习】STL容器——vector

news2025/1/12 19:00:52

目录

一、vector的介绍及使用

1.1 vector的介绍

1.2 vector的使用

1.2.1 vector的定义

1.2.2 vector iterator 的使用

 1.2.3 vector 空间增长问题

1.2.4 vector 增删查改

1.2.5 vector 迭代器失效问题(重点)

二、vector深度剖析及模拟实现 ​编辑

2.1 std::vector的核心框架接口的模拟实现casso::vector

2.2 使用memcpy拷贝问题

2.3 动态二维数组理解


一、vector的介绍及使用

1.1 vector的介绍

        1. vector是表示可变大小数组的序列容器。
        2. 就像数组一样, vector 也采用的连续存储空间来存储元素。也就是意味着可以采用下标对 vector的元素 进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自 动处理。
        3. 本质讲, vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小 为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是 一个相对代价高的任务,因为每当一个新的元素加入到容器的时候, vector 并不会每次都重新分配大 小。
        4. vector分配空间策略: vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存 储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是 对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
        5. 因此, vector 占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
        6. 与其它动态序列容器相比( deque, list and forward_list ), vector在访问元素的时候更加高效,在末 尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起 list forward_list 统一的迭代器和引用更好。
        使用STL 的三个境界:能用,明理,能扩展。

1.2 vector的使用

        vector学习时一定要学会查看文档: vector的文档介绍 vector 在实际中非常的重要,在实际中我们熟悉常见的接口就可以,下面列出了哪些接口是要重点掌握的
1.2.1 vector的定义
(constructor)构造函数声明接口说明
vector()(重点)无参构造
vectorsize_type n, const value_type& val=value_type()构造并初始化nval
vector (const vector& x); (重点)拷贝构造
vector (InputIterator first, InputIterator last);使用迭代器进行初始化构造
vector的构造代码演示:
#include <iostream>
using namespace std;
#include <vector>


//    vector的构造

int TestVector1()
{
    // constructors used in the same order as described above:
    vector<int> first;                                // empty vector of ints
    vector<int> second(4, 100);                       // four ints with value 100
    vector<int> third(second.begin(), second.end());  // iterating through second
    vector<int> fourth(third);                       // a copy of third

    // 下面涉及迭代器初始化的部分,我们学习完迭代器再来看这部分
    // the iterator constructor can also be used to construct from arrays:
    int myints[] = { 16,2,77,29 };
    vector<int> fifth(myints, myints + sizeof(myints) / sizeof(int));

    cout << "The contents of fifth are:";
    for (vector<int>::iterator it = fifth.begin(); it != fifth.end(); ++it)
        cout << ' ' << *it;
    cout << '\n';

    return 0;
}



//  vector的迭代器

void PrintVector(const vector<int>& v)
{
	// const对象使用const迭代器进行遍历打印
	vector<int>::const_iterator it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

void TestVector2()
{
	// 使用push_back插入4个数据
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);

	// 使用迭代器进行遍历打印
	vector<int>::iterator it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	// 使用迭代器进行修改
	it = v.begin();
	while (it != v.end())
	{
		*it *= 2;
		++it;
	}

	// 使用反向迭代器进行遍历再打印
	// vector<int>::reverse_iterator rit = v.rbegin();
	auto rit = v.rbegin();
	while (rit != v.rend())
	{
		cout << *rit << " ";
		++rit;
	}
	cout << endl;

	PrintVector(v);
}


//  vector的resize 和 reserve

// reisze(size_t n, const T& data = T())
// 将有效元素个数设置为n个,如果时增多时,增多的元素使用data进行填充
// 注意:resize在增多元素个数时可能会扩容
void TestVector3()
{
	vector<int> v;

	// set some initial content:
	for (int i = 1; i < 10; i++)
		v.push_back(i);

	v.resize(5);
	v.resize(8, 100);
	v.resize(12);

	cout << "v contains:";
	for (size_t i = 0; i < v.size(); i++)
		cout << ' ' << v[i];
	cout << '\n';
}

// 测试vector的默认扩容机制
// vs:按照1.5倍方式扩容
// linux:按照2倍方式扩容
void TestVectorExpand()
{
	size_t sz;
	vector<int> v;
	sz = v.capacity();
	cout << "making v grow:\n";
	for (int i = 0; i < 100; ++i) 
	{
		v.push_back(i);
		if (sz != v.capacity()) 
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}

// 往vecotr中插入元素时,如果大概已经知道要存放多少个元素
// 可以通过reserve方法提前将容量设置好,避免边插入边扩容效率低
void TestVectorExpandOP()
{
	vector<int> v;
	size_t sz = v.capacity();
	v.reserve(100);   // 提前将容量设置好,可以避免一遍插入一遍扩容
	cout << "making bar grow:\n";
	for (int i = 0; i < 100; ++i) 
	{
		v.push_back(i);
		if (sz != v.capacity())
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}


//  vector的增删改查

// 尾插和尾删:push_back/pop_back
void TestVector4()
{
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);

	auto it = v.begin();
	while (it != v.end()) 
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	v.pop_back();
	v.pop_back();

	it = v.begin();
	while (it != v.end()) 
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

// 任意位置插入:insert和erase,以及查找find
// 注意find不是vector自身提供的方法,是STL提供的算法
void TestVector5()
{
	// 使用列表方式初始化,C++11新语法
	vector<int> v{ 1, 2, 3, 4 };

	// 在指定位置前插入值为val的元素,比如:3之前插入30,如果没有则不插入
	// 1. 先使用find查找3所在位置
	// 注意:vector没有提供find方法,如果要查找只能使用STL提供的全局find
	auto pos = find(v.begin(), v.end(), 3);
	if (pos != v.end())
	{
		// 2. 在pos位置之前插入30
		v.insert(pos, 30);
	}

	vector<int>::iterator it = v.begin();
	while (it != v.end()) 
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	pos = find(v.begin(), v.end(), 3);
	// 删除pos位置的数据
	v.erase(pos);

	it = v.begin();
	while (it != v.end()) {
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

// operator[]+index 和 C++11中vector的新式for+auto的遍历
// vector使用这两种遍历方式是比较便捷的。
void TestVector6()
{
	vector<int> v{ 1, 2, 3, 4 };

	// 通过[]读写第0个位置。
	v[0] = 10;
	cout << v[0] << endl;

	// 1. 使用for+[]小标方式遍历
	for (size_t i = 0; i < v.size(); ++i)
		cout << v[i] << " ";
	cout << endl;

	vector<int> swapv;
	swapv.swap(v);

	cout << "v data:";
	for (size_t i = 0; i < v.size(); ++i)
		cout << v[i] << " ";
	cout << endl;

	// 2. 使用迭代器遍历
	cout << "swapv data:";
	auto it = swapv.begin();
	while (it != swapv.end())
	{
		cout << *it << " ";
		++it;
	}

	// 3. 使用范围for遍历
	for (auto x : v)
		cout << x << " ";
	cout << endl;
}

1.2.2 vector iterator 的使用
iterator的使用接口说明
begin + end (重点)
获取第一个数据位置的 iterator/const_iterator , 获取最后一个数据的下一个位置的iterator/const_iterator
rbegin + rend
获取最后一个数据位置的 reverse_iterator ,获取第一个数据前一个位置的reverse_iterator
 1.2.3 vector 空间增长问题
容量空间接口说明
size获取数据个数
capacity获取容量大小
empty判断是否为空
resize(重点)改变vectorsize
reserve (重点)改变vectorcapacity
  • capacity的代码在vsg++下分别运行会发现,vscapacity是按1.5倍增长的,g++是按2倍增长的。这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义的。vsPJ版本STLg++SGI版本STL
  • reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。
  • resize在开空间的同时还会进行初始化,影响size
// 测试vector的默认扩容机制
void TestVectorExpand()
{
    size_t sz;
    vector<int> v;
    sz = v.capacity();
    cout << "making v grow:\n";
    for (int i = 0; i < 100; ++i) 
    {
        v.push_back(i);
        if (sz != v.capacity()) 
        {
            sz = v.capacity();
            cout << "capacity changed: " << sz << '\n';
        }
    }
}

vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 3
capacity changed: 4
capacity changed: 6
capacity changed: 9
capacity changed: 13
capacity changed: 19
capacity changed: 28
capacity changed: 42
capacity changed: 63
capacity changed: 94
capacity changed: 141

g++运行结果:linux下使用的STL基本是按照2倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 4
capacity changed: 8
capacity changed: 16
capacity changed: 32
capacity changed: 64
capacity changed: 128
// 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够
// 就可以避免边插入边扩容导致效率低下的问题了
void TestVectorExpandOP()
{
    vector<int> v;
    size_t sz = v.capacity();
    v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容
    cout << "making bar grow:\n";
    for (int i = 0; i < 100; ++i) 
    {
        v.push_back(i);
        if (sz != v.capacity())
        {
            sz = v.capacity();
            cout << "capacity changed: " << sz << '\n';
        }
    }
}
1.2.4 vector 增删查改
vector增删查改接口说明
push_back(重点)尾插
pop_back (重点)尾删
find查找。(注意这个是算法模块实现,不是vector的成员接口)
insertposition之前插入val
erase删除position位置的数据
swap交换两个vector的数据空间
operator[] (重点)像数组一样访问
1.2.5 vector 迭代器失效问题(重点)
        迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了 封装 ,比如: vector 的迭代器就是原生态指针 T* 。因此 迭代器失效,实际就是迭代器底层对应指针所指向的 空间被销毁了,而使用一块已经被释放的空间 ,造成的后果是程序崩溃 ( 如果继续使用已经失效的迭代器, 程序可能会崩溃 )
对于 vector 可能会导致其迭代器失效的操作有:
  • 会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resizereserveinsertassign、 push_back等。
#include <iostream>
using namespace std;
#include <vector>
int main()
{
    vector<int> v{1,2,3,4,5,6};
 
    auto it = v.begin();
 
    // 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
    // v.resize(100, 8);
 
    // reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
    // v.reserve(100);
 
    // 插入元素期间,可能会引起扩容,而导致原空间被释放
    // v.insert(v.begin(), 0);
    // v.push_back(8);
 
    // 给vector重新赋值,可能会引起底层容量改变
    v.assign(100, 8);
 
    /*
    出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。
    解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。
    */
    while(it != v.end())
    {
        cout<< *it << " " ;
        ++it;
    }
    cout<<endl;
    return 0;
}
  • 指定位置元素的删除操作——erase
#include <iostream>
using namespace std;
#include <vector>
int main()
{
    int a[] = { 1, 2, 3, 4 };
    vector<int> v(a, a + sizeof(a) / sizeof(int));
    // 使用find查找3所在位置的iterator
    vector<int>::iterator pos = find(v.begin(), v.end(), 3);
    // 删除pos位置的数据,导致pos迭代器失效。
    v.erase(pos);
    cout << *pos << endl; // 此处会导致非法访问
    return 0;
}
        erase删除 pos 位置元素后, pos 位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代 器不应该会失效,但是:如果pos 刚好是最后一个元素,删完之后 pos 刚好是 end 的位置,而 end 位置是没有元素的,那么pos 就失效了。因此删除 vector 中任意位置上元素时, vs 就认为该位置迭代器失效了。
  • 注意:Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。
// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{
    vector<int> v{1,2,3,4,5};
    for(size_t i = 0; i < v.size(); ++i)
    cout << v[i] << " ";
    cout << endl;
    auto it = v.begin();
    cout << "扩容之前,vector的容量为: " << v.capacity() << endl;
    // 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效 
    v.reserve(100);
    cout << "扩容之后,vector的容量为: " << v.capacity() << endl;
 
    // 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会
    // 虽然可能运行,但是输出的结果是不对的
    while(it != v.end())
    {
        cout << *it << " ";
        ++it;
    }
    cout << endl;
    return 0;
}

/*
程序输出:
1 2 3 4 5
扩容之前,vector的容量为: 5
扩容之后,vector的容量为: 100
0 2 3 4 5 409 1 2 3 4 5
*/

// 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include <vector>
#include <algorithm>
int main()
{
    vector<int> v{1,2,3,4,5};
    vector<int>::iterator it = find(v.begin(), v.end(), 3);
    v.erase(it);
    cout << *it << endl;
    while(it != v.end())
    {
        cout << *it << " ";
        ++it;
    }
    cout << endl;
    return 0;
}

/*
程序可以正常运行,并打印:
4
4 5
*/
 
// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
// 此时迭代器是无效的,++it导致程序崩溃
int main()
{
    vector<int> v{1,2,3,4,5};
    // vector<int> v{1,2,3,4,5,6};
    auto it = v.begin();
    while(it != v.end())
    {
        if(*it % 2 == 0)
        v.erase(it);
        ++it;
    }
    for(auto e : v)
    cout << e << " ";
    cout << endl;
    return 0;
}

========================================================
// 使用第一组数据时,程序可以运行
[jyq@VM-0-3-centos 20230730]$ g++ testVector.cpp -std=c++11
[jyq@VM-0-3-centos 20230730]$ ./a.out
1 3 5
=========================================================
// 使用第二组数据时,程序最终会崩溃
[jyq@VM-0-3-centos 20230730]$ vim testVector.cpp
[jyq@VM-0-3-centos 20230730]$ g++ testVector.cpp -std=c++11
[jyq@VM-0-3-centos 20230730]$ ./a.out
Segmentation fault
        从上述三个例子中可以看到:SGI STL 中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不对,如果it 不在 begin end 范围内,肯定会崩溃的。
  • vector类似,string在插入+扩容操作+erase之后,迭代器也会失效
#include <string>
void TestString()
{
    string s("hello");
    auto it = s.begin();
    // 放开之后代码会崩溃,因为resize到20会string会进行扩容
    // 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了
    // 后序打印时,再访问it指向的空间程序就会崩溃
    //s.resize(20, '!');
    while (it != s.end())
    {
        cout << *it;
        ++it;
    }
    cout << endl;
    it = s.begin();
    while (it != s.end())
    {
        it = s.erase(it);
        // 按照下面方式写,运行时程序会崩溃,因为erase(it)之后
        // it位置的迭代器就失效了
        // s.erase(it); 
        ++it;
    }
}
        迭代器失效解决办法:在使用前,对迭代器重新赋值即可。

二、vector深度剖析及模拟实现

2.1 std::vector的核心框架接口的模拟实现casso::vector

vector的模拟实现:

#pragma once

#include <iostream>
using namespace std;
#include <assert.h>

namespace casso
{
	template<class T>
	class vector
	{
	public:
		// Vector的迭代器是一个原生指针
		typedef T* iterator;
		typedef const T* const_iterator;

		///
		// 构造和销毁
		vector()
			: _start(nullptr)
			, _finish(nullptr)
			, _endOfStorage(nullptr)
		{}

		vector(size_t n, const T& value = T())
			: _start(nullptr)
			, _finish(nullptr)
			, _endOfStorage(nullptr)
		{
			reserve(n);
			while (n--)
			{
				push_back(value);
			}
		}

		/*
		* 理论上将,提供了vector(size_t n, const T& value = T())之后
		* vector(int n, const T& value = T())就不需要提供了,但是对于:
		* vector<int> v(10, 5);
		* 编译器在编译时,认为T已经被实例化为int,而10和5编译器会默认其为int类型
		* 就不会走vector(size_t n, const T& value = T())这个构造方法,
		* 最终选择的是:vector(InputIterator first, InputIterator last)
		* 因为编译器觉得区间构造两个参数类型一致,因此编译器就会将InputIterator实例化为int
		* 但是10和5根本不是一个区间,编译时就报错了
		* 故需要增加该构造方法
		*/
		vector(int n, const T& value = T())
			: _start(new T[n])
			, _finish(_start+n)
			, _endOfStorage(_finish)
		{
			for (int i = 0; i < n; ++i)
			{
				_start[i] = value;
			}
		}

		// 若使用iterator做迭代器,会导致初始化的迭代器区间[first,last)只能是vector的迭代器
		// 重新声明迭代器,迭代器区间[first,last)可以是任意容器的迭代器
		template<class InputIterator>
		vector(InputIterator first, InputIterator last)
		{
			while (first != last)
			{
				push_back(*first);
				++first;
			}
		}

		vector(const vector<T>& v)
			: _start(nullptr)
			, _finish(nullptr)
			, _endOfStorage(nullptr)
		{
			reserve(v.capacity());
			iterator it = begin();
			const_iterator vit = v.cbegin();
			while (vit != v.cend())
			{
				*it++ = *vit++;
			}
			_finish = it;
		}

		vector<T>& operator=(vector<T> v)
		{
			swap(v);
			return *this;
		}

		~vector()
		{
			if (_start)
			{
				delete[] _start;
				_start = _finish = _endOfStorage = nullptr;
			}
		}

		/
		// 迭代器相关
		iterator begin()
		{
			return _start;
		}

		iterator end()
		{
			return _finish;
		}

		const_iterator cbegin() const
		{
			return _start;
		}

		const_iterator cend() const
		{
			return _finish;
		}

		//
		// 容量相关
		size_t size() const 
		{ 
			return _finish - _start; 
		}

		size_t capacity() const 
		{ 
			return _endOfStorage - _start; 
		}

		bool empty() const 
		{ 
			return _start == _finish; 
		}

		void reserve(size_t n)
		{
			if (n > capacity())
			{
				size_t oldSize = size();
				// 1. 开辟新空间
				T* tmp = new T[n];

				// 2. 拷贝元素
		        // 这里直接使用memcpy会有问题吗?同学们思考下
		        //if (_start)
		        //	memcpy(tmp, _start, sizeof(T)*size);

				if (_start)
				{
					for (size_t i = 0; i < oldSize; ++i)
						tmp[i] = _start[i];

					// 3. 释放旧空间
					delete[] _start;
				}

				_start = tmp;
				_finish = _start + oldSize;
				_endOfStorage = _start + n;
			}
		}

		void resize(size_t n, const T& value = T())
		{
			// 1.如果n小于当前的size,则数据个数缩小到n
			if (n <= size())
			{
				_finish = _start + n;
				return;
			}

			// 2.空间不够则增容
			if (n > capacity())
				reserve(n);

			// 3.将size扩大到n
			iterator it = _finish;
			_finish = _start + n;
			while (it != _finish)
			{
				*it = value;
				++it;
			}
		}

		///
		// 元素访问
		T& operator[](size_t pos) 
		{ 
			assert(pos < size());
			return _start[pos]; 
		}

		const T& operator[](size_t pos)const 
		{ 
			assert(pos < size());
			return _start[pos]; 
		}

		T& front()
		{
			return *_start;
		}

		const T& front()const
		{
			return *_start;
		}

		T& back()
		{
			return *(_finish - 1);
		}

		const T& back()const
		{
			return *(_finish - 1);
		}
		/
		// vector的修改操作
		void push_back(const T& x) 
		{ 
			insert(end(), x); 
		}

		void pop_back() 
		{ 
			erase(end() - 1); 
		}

		void swap(vector<T>& v)
		{
			std::swap(_start, v._start);
			std::swap(_finish, v._finish);
			std::swap(_endOfStorage, v._endOfStorage);
		}

		iterator insert(iterator pos, const T& x)
		{
			assert(pos <= _finish);

			// 空间不够先进行增容
			if (_finish == _endOfStorage)
			{
				//size_t size = size();
				size_t newCapacity = (0 == capacity()) ? 1 : capacity() * 2;
				reserve(newCapacity);

				// 如果发生了增容,需要重置pos
				pos = _start + size();
			}

			iterator end = _finish - 1;
			while (end >= pos)
			{
				*(end + 1) = *end;
				--end;
			}

			*pos = x;
			++_finish;
			return pos;
		}

		// 返回删除数据的下一个数据
		// 方便解决:一边遍历一边删除的迭代器失效问题
		iterator erase(iterator pos)
		{
			// 挪动数据进行删除
			iterator begin = pos + 1;
			while (begin != _finish) {
				*(begin - 1) = *begin;
				++begin;
			}

			--_finish;
			return pos;
		}
	private:
		iterator _start;		// 指向数据块的开始
		iterator _finish;		// 指向有效数据的尾
		iterator _endOfStorage;  // 指向存储容量的尾
	};
}

/// /
/// 对模拟实现的vector进行严格测试
void TestCassoVector1()
{
	casso::vector<int> v1;
	casso::vector<int> v2(10, 5);

	int array[] = { 1,2,3,4,5 };
	casso::vector<int> v3(array, array+sizeof(array)/sizeof(array[0]));

	casso::vector<int> v4(v3);

	for (size_t i = 0; i < v2.size(); ++i)
	{
		cout << v2[i] << " ";
	}
	cout << endl;

	auto it = v3.begin();
	while (it != v3.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	for (auto e : v4)
	{
		cout << e << " ";
	}
	cout << endl;
}

void TestCassoVector2()
{
	casso::vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);
	v.push_back(5);
	cout << v.size() << endl;
	cout << v.capacity() << endl;
	cout << v.front() << endl;
	cout << v.back() << endl;
	cout << v[0] << endl;
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;

	v.pop_back();
	v.pop_back();
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;

	v.insert(v.begin(), 0);
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;

	v.erase(v.begin() + 1);
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;
}

2.2 使用memcpy拷贝问题

假设模拟实现的 vector 中的 reserve 接口中,使用 memcpy 进行的拷贝,以下代码会发生什么问题?
int main()
{
    casso::vector<casso::string> v;
    v.push_back("1111");
    v.push_back("2222");
    v.push_back("3333");
    return 0;
}
问题分析:
  1. memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中;
  2. 如果拷贝的是自定义类型的元素,memcpy既高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅拷贝。  

 

        结论:如果对象中涉及到资源管理时,千万不能使用memcpy 进行对象之间的拷贝,因为 memcpy 浅拷贝,否则可能会引起内存泄漏甚至程序崩溃。

2.3 动态二维数组理解

// 以杨慧三角的前n行为例:假设n为5
void test2vector(size_t n)
{
    // 使用vector定义二维数组vv,vv中的每个元素都是
    casso::vector<casso::vector<int>> vv(n);
 
    // 将二维数组每一行中的vecotr<int>中的元素全部设置为1
    for (size_t i = 0; i < n; ++i)
        vv[i].resize(i + 1, 1);
    // 给杨慧三角出第一列和对角线的所有元素赋值
    for (int i = 2; i < n; ++i)
    {
        for (int j = 1; j < i; ++j)
        {
            vv[i][j] = vv[i - 1][j] + vv[i - 1][j - 1];
        }
    }
}
        casso::vector<casso::vector<int>> vv(n); 构造一个 vv 动态二维数组, vv 中总共有 n 个元素,每个元素都是 vector 类型的,每行没有包含任何元素,如果n 5 时如下所示:

 vv中元素填充完成之后,如下图所示:

使用标准库中vector构建动态二维数组时与上图实际是一致的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/811145.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【JavaSE】数组的定义与使用

【本节目标】 1. 理解数组基本概念 2. 掌握数组的基本用法 3. 数组与方法互操作 4. 熟练掌握数组相关的常见问题和代码 目录 1. 数组的基本概念 1.1什么是数组 1.2 数组的创建及初始化 1.3 数组的使用 2. 数组是引用类型 2.1基本类型变量与引用类型变量的区别 2.2再谈引用…

慎思笃行,兴业致远:金融行业的数据之道

《中庸》中说&#xff0c;“博学之&#xff0c;审问之&#xff0c;慎思之&#xff0c;明辨之&#xff0c;笃行之”。这段话穿越千年&#xff0c;指引着中国千行百业的发展。对于金融行业来说&#xff0c;庞大的数据量可以说是“博学”的来源。但庞大的数据体量&#xff0c;既是…

网络通讯(服务端搭建)

一.本篇概况 本篇文章主要以C语言为主&#xff0c;通过C语言中所设定的函数以及环境来将网络通讯的服务端进行搭建。注&#xff1a;本篇并未涉及服务端与客户端之间的收发数据。 二.代码实现 1.初始化套接字库&#xff1a; if(WSAStartup(MAKEWORD(2, 2), &wsaData) ! 0…

你真的了解Java中的数组吗?

你真的了解Java中的数组吗&#xff1f; 数组是基本上所有语言都会有的一种数据类型&#xff0c;它表示一组相同类型的数据的集合&#xff0c;具有固定的长度&#xff0c;并且在内存中占据连续的空间。在C&#xff0c;C等语言中&#xff0c;数组的定义简洁清晰&#xff0c;而在J…

PDF.js实现搜索关键词高亮显示效果

在static\PDF\web\viewer.js找到定义setInitialView方法 大约是在1202行&#xff0c;不同的pdf.js版本不同 在方法体最后面添加如下代码&#xff1a; // 高亮显示关键词---------------------------------------- var keyword new URL(decodeURIComponent(location)).searchP…

【C语言进阶篇】看完这篇结构体文章,我向数据结构又进了一大步!(结构体进阶详解)

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏:《C语言初阶篇》 《C语言进阶篇》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 &#x1f4cb; 前言1 结构体的声明1.1 结构的基础知识1.2 结构的声明1.2.1 . 匿名结构体类型声明1.2.2 匿名结构…

【深度学习实践】垃圾检测

简介 本项目使用深度学习目标检测开源框架PaddleDetection中的yolox算法实现了垃圾检测&#xff0c;本文包含了从头训练yolox模型和直接使用训练好的模型进行推理的代码及相关权重。 一、数据集准备 本次训练的数据集为coco格式&#xff0c;共包含150张垃圾的照片&#xff0…

每日一题——丢失的数字

丢失的数字 题目链接 注&#xff1a;这一题的解法建立在位运算——异或^的基础之上&#xff0c;如果位运算和异或操作符不太了解&#xff0c;建议先看看&#xff1a; 位运算详解 只出现一次的数字 思路 同样&#xff0c;这题要求时间复杂度为O(n)&#xff0c;空间复杂度为O…

二叉树中的深搜

一)计算布尔二叉树的值 2331. 计算布尔二叉树的值 - 力扣&#xff08;LeetCode&#xff09; 1)计算布尔二叉树需要从叶子节点向上进行计算&#xff0c;从下向上进行计算 2)完整二叉树是同时拥有左孩子和右孩子&#xff0c;或者是完全没有右孩子 3)当我只是盯着根节点来看的时候…

JSON Web 令牌 (JWT)攻击

一、什么是JSON Web 令牌 &#xff08;JWT&#xff09; JSON Web令牌&#xff08;JWT&#xff09;是一种开放标准&#xff08;RFC 7519&#xff09;&#xff0c;用于在网络应用间传递声明信息。它是一种轻量级、自包含的安全性传输格式&#xff0c;通常用于在身份验证和授权过程…

三更博客系统(完整笔记+前后台系统代码实现)

三更博客前后端分离系统 前后端分离博客系统1.技术栈2.创建工程3.博客前台3.0 准备工作3.1 SpringBoot和MybatisPuls整合配置测试 3.1 热门文章列表3.1.0 文章表分析3.1.1 需求3.1.2 接口设计3.1.3 基础版本代码实现3.1.4 使用VO优化3.1.5 字面值处理 3.2 Bean拷贝工具类封装3.…

C#百万数据处理

C#百万数据处理 在我们经验的不断增长中不可避免的会遇到一些数据量很大操作也复杂的业务 这种情况我们如何取优化如何去处理呢&#xff1f;一般都要根据业务逻辑和背景去进行合理的改进。 文章目录 C#百万数据处理前言一、项目业务需求和开发背景项目开发背景数据量计算业务需…

OpenFeign原理浅析

OpenFeign原理我个人觉得是非常简单的&#xff0c;如果你对Spring非常了解&#xff0c;知道FactoryBean&#xff0c;以及注入bean的方式&#xff0c;并掌握动态代理&#xff0c;那么自己实现一个类似这样的Http代理客户端是一点问题也没有的&#xff01; 使用流程 首先我们先过…

BLE连接、配对和绑定

参考&#xff1a;一篇文章带你解读蓝牙配对绑定 参考&#xff1a;BLE安全之SM剖析(1) 参考&#xff1a;BLE安全之SM剖析&#xff08;2&#xff09; 参考&#xff1a;BLE安全之SM剖析(3) 参考&#xff1a;https://blog.csdn.net/chengbaojin/article/details/103691046 参考&…

【MQTT5】原生PHP对接Uni H5、APP、微信小程序实时通讯消息服务

文章目录 视频演示效果前言一、分析二、全局注入MQTT连接1.引入库2.写入全局连接代码 二、PHP环境建立总结 视频演示效果 【uniapp】实现买定离手小游戏 前言 Mqtt不同环境问题太多&#xff0c;新手可以看下 《【MQTT】Esp32数据上传采集&#xff1a;最新mqtt插件&#xff08;支…

Flowable-服务-骆驼任务

目录 定义图形标记XML内容Flowable与Camel集成使用示例设计Came路由代码 定义 Camel 任务不是 BPMN 2.0 规范定义的官方任务&#xff0c;在 Flowable 中&#xff0c;Camel 任务是作为一种特殊的服务 任务来实现的。主要做路由工作的。 图形标记 由于 Camel 任务不是 BPMN 2.…

BMI指数计算小工具Java

现在越来越多的人关注健康&#xff0c;关注身材管理&#xff0c;不妨做个小工具&#xff0c;计算自己的BMI&#xff0c;给自己制定合理的健身或减肥计划&#xff0c;享受健康生活&#xff01;&#xff01;&#xff01;BMI的计算标准从网上找的&#xff0c;不知道是否准确&#…

❤ yarn 和npm 的使用

❤ yarn 和npm 的使用 yarn 版本1的使用 yarn 简介 Yarn是facebook发布的一款取代npm的包管理工具。 yarn特点&#xff1a; 1&#xff0c;速度超快。 Yarn 缓存了每个下载过的包&#xff0c;所以再次使用时无需重复下载。 同时利用并行下载以最大化资源利用率&#xff0c;因…

TransGPT 开源交通大模型开源

TransGPT 是开源交通大模型&#xff0c;主要致力于在真实交通行业中发挥实际价值。 它能够实现交通情况预测、智能咨询助手、公共交通服务、交通规划设计、交通安全教育、协助管理、交通事故报告和分析、自动驾驶辅助系统等功能。 TransGPT 作为一个通用常识交通大模型&#…

cmd相关操作命令

1.根据端口号查询对应进程的PID netstat -ano | findstr 端口号 例如&#xff1a;netstat -ano | findstr 9080&#xff1b;该端口所属进程的PID为6684 2.根据PID查询对应进程 tasklist | findstr PID 例如&#xff1a;tasklist | findstr 6684&#xff1b;该PID所属进程名为…