华为开源自研AI框架昇思MindSpore应用案例:Vision Transformer图像分类

news2024/11/17 13:47:47

目录

  • 一、环境准备
    • 1.进入ModelArts官网
    • 2.使用CodeLab体验Notebook实例
  • 二、环境准备与数据读取
  • 三、模型解析
    • Transformer基本原理
      • Attention模块
    • Transformer Encoder
    • ViT模型的输入
    • 整体构建ViT
  • 四、模型训练与推理
    • 模型训练
    • 模型验证
    • 模型推理

近些年,随着基于自注意(Self-Attention)结构的模型的发展,特别是Transformer模型的提出,极大地促进了自然语言处理模型的发展。由于Transformers的计算效率和可扩展性,它已经能够训练具有超过100B参数的空前规模的模型。
ViT则是自然语言处理和计算机视觉两个领域的融合结晶。在不依赖卷积操作的情况下,依然可以在图像分类任务上达到很好的效果。
模型结构
ViT模型的主体结构是基于Transformer模型的Encoder部分(部分结构顺序有调整,如:Normalization的位置与标准Transformer不同),其结构图[1]如下:
在这里插入图片描述
模型特点
ViT模型主要应用于图像分类领域。因此,其模型结构相较于传统的Transformer有以下几个特点:
数据集的原图像被划分为多个patch后,将二维patch(不考虑channel)转换为一维向量,再加上类别向量与位置向量作为模型输入。
模型主体的Block结构是基于Transformer的Encoder结构,但是调整了Normalization的位置,其中,最主要的结构依然是Multi-head Attention结构。
模型在Blocks堆叠后接全连接层,接受类别向量的输出作为输入并用于分类。通常情况下,我们将最后的全连接层称为Head,Transformer Encoder部分为backbone。

下面将通过代码实例来详细解释基于ViT实现ImageNet分类任务。

如果你对MindSpore感兴趣,可以关注昇思MindSpore社区

在这里插入图片描述

在这里插入图片描述

一、环境准备

1.进入ModelArts官网

云平台帮助用户快速创建和部署模型,管理全周期AI工作流,选择下面的云平台以开始使用昇思MindSpore,获取安装命令,安装MindSpore2.0.0-alpha版本,可以在昇思教程中进入ModelArts官网

在这里插入图片描述

选择下方CodeLab立即体验

在这里插入图片描述

等待环境搭建完成

在这里插入图片描述

2.使用CodeLab体验Notebook实例

下载NoteBook样例代码Vision Transformer图像分类.ipynb为样例代码

在这里插入图片描述

选择ModelArts Upload Files上传.ipynb文件

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

选择Kernel环境

在这里插入图片描述

切换至GPU环境,切换成第一个限时免费

在这里插入图片描述

进入昇思MindSpore官网,点击上方的安装

在这里插入图片描述

获取安装命令

在这里插入图片描述

回到Notebook中,在第一块代码前加入命令
在这里插入图片描述

conda update -n base -c defaults conda

在这里插入图片描述

安装MindSpore 2.0 GPU版本

conda install mindspore=2.0.0a0 -c mindspore -c conda-forge

在这里插入图片描述

安装mindvision

pip install mindvision

在这里插入图片描述

安装下载download

pip install download

在这里插入图片描述

二、环境准备与数据读取

开始实验之前,请确保本地已经安装了Python环境并安装了MindSpore。

首先我们需要下载本案例的数据集,可通过http://image-net.org下载完整的ImageNet数据集,本案例应用的数据集是从ImageNet中筛选出来的子集。

运行第一段代码时会自动下载并解压,请确保你的数据集路径如以下结构。

.dataset/
    ├── ILSVRC2012_devkit_t12.tar.gz
    ├── train/
    ├── infer/
    └── val/

在这里插入图片描述

from download import download

dataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/vit_imagenet_dataset.zip"
path = "./"

path = download(dataset_url, path, kind="zip", replace=True)

在这里插入图片描述

import os

import mindspore as ms
from mindspore.dataset import ImageFolderDataset
import mindspore.dataset.vision as transforms


data_path = './dataset/'
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]

dataset_train = ImageFolderDataset(os.path.join(data_path, "train"), shuffle=True)

trans_train = [
    transforms.RandomCropDecodeResize(size=224,
                                      scale=(0.08, 1.0),
                                      ratio=(0.75, 1.333)),
    transforms.RandomHorizontalFlip(prob=0.5),
    transforms.Normalize(mean=mean, std=std),
    transforms.HWC2CHW()
]

dataset_train = dataset_train.map(operations=trans_train, input_columns=["image"])
dataset_train = dataset_train.batch(batch_size=16, drop_remainder=True)

在这里插入图片描述

三、模型解析

下面将通过代码来细致剖析ViT模型的内部结构。

Transformer基本原理

Transformer模型源于2017年的一篇文章[2]。在这篇文章中提出的基于Attention机制的编码器-解码器型结构在自然语言处理领域获得了巨大的成功。模型结构如下图所示:

在这里插入图片描述
其主要结构为多个Encoder和Decoder模块所组成,其中Encoder和Decoder的详细结构如下图[2]所示:

在这里插入图片描述
Encoder与Decoder由许多结构组成,如:多头注意力(Multi-Head Attention)层,Feed
Forward层,Normaliztion层,甚至残差连接(Residual
Connection,图中的“Add”)。不过,其中最重要的结构是多头注意力(Multi-Head
Attention)结构,该结构基于自注意力(Self-Attention)机制,是多个Self-Attention的并行组成。

所以,理解了Self-Attention就抓住了Transformer的核心。

Attention模块

from mindspore import nn, ops


class Attention(nn.Cell):
    def __init__(self,
                 dim: int,
                 num_heads: int = 8,
                 keep_prob: float = 1.0,
                 attention_keep_prob: float = 1.0):
        super(Attention, self).__init__()

        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = ms.Tensor(head_dim ** -0.5)

        self.qkv = nn.Dense(dim, dim * 3)
        self.attn_drop = nn.Dropout(p=1.0-attention_keep_prob)
        self.out = nn.Dense(dim, dim)
        self.out_drop = nn.Dropout(p=1.0-keep_prob)
        self.attn_matmul_v = ops.BatchMatMul()
        self.q_matmul_k = ops.BatchMatMul(transpose_b=True)
        self.softmax = nn.Softmax(axis=-1)

    def construct(self, x):
        """Attention construct."""
        b, n, c = x.shape
        qkv = self.qkv(x)
        qkv = ops.reshape(qkv, (b, n, 3, self.num_heads, c // self.num_heads))
        qkv = ops.transpose(qkv, (2, 0, 3, 1, 4))
        q, k, v = ops.unstack(qkv, axis=0)
        attn = self.q_matmul_k(q, k)
        attn = ops.mul(attn, self.scale)
        attn = self.softmax(attn)
        attn = self.attn_drop(attn)
        out = self.attn_matmul_v(attn, v)
        out = ops.transpose(out, (0, 2, 1, 3))
        out = ops.reshape(out, (b, n, c))
        out = self.out(out)
        out = self.out_drop(out)

        return out

在这里插入图片描述

Transformer Encoder

在了解了Self-Attention结构之后,通过与Feed Forward,Residual
Connection等结构的拼接就可以形成Transformer的基础结构,下面代码实现了Feed Forward,Residual
Connection结构。

from typing import Optional, Dict


class FeedForward(nn.Cell):
    def __init__(self,
                 in_features: int,
                 hidden_features: Optional[int] = None,
                 out_features: Optional[int] = None,
                 activation: nn.Cell = nn.GELU,
                 keep_prob: float = 1.0):
        super(FeedForward, self).__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.dense1 = nn.Dense(in_features, hidden_features)
        self.activation = activation()
        self.dense2 = nn.Dense(hidden_features, out_features)
        self.dropout = nn.Dropout(p=1.0-keep_prob)

    def construct(self, x):
        """Feed Forward construct."""
        x = self.dense1(x)
        x = self.activation(x)
        x = self.dropout(x)
        x = self.dense2(x)
        x = self.dropout(x)

        return x


class ResidualCell(nn.Cell):
    def __init__(self, cell):
        super(ResidualCell, self).__init__()
        self.cell = cell

    def construct(self, x):
        """ResidualCell construct."""
        return self.cell(x) + x

在这里插入图片描述

接下来就利用Self-Attention来构建ViT模型中的TransformerEncoder部分,类似于构建了一个Transformer的编码器部分,如下图[1]所示:

在这里插入图片描述

vit-encoder

ViT模型中的基础结构与标准Transformer有所不同,主要在于Normalization的位置是放在Self-Attention和Feed
Forward之前,其他结构如Residual Connection,Feed
Forward,Normalization都如Transformer中所设计。

从Transformer结构的图片可以发现,多个子encoder的堆叠就完成了模型编码器的构建,在ViT模型中,依然沿用这个思路,通过配置超参数num_layers,就可以确定堆叠层数。

Residual
Connection,Normalization的结构可以保证模型有很强的扩展性(保证信息经过深层处理不会出现退化的现象,这是Residual
Connection的作用),Normalization和dropout的应用可以增强模型泛化能力。

从以下源码中就可以清晰看到Transformer的结构。将TransformerEncoder结构和一个多层感知器(MLP)结合,就构成了ViT模型的backbone部分。

class TransformerEncoder(nn.Cell):
    def __init__(self,
                 dim: int,
                 num_layers: int,
                 num_heads: int,
                 mlp_dim: int,
                 keep_prob: float = 1.,
                 attention_keep_prob: float = 1.0,
                 drop_path_keep_prob: float = 1.0,
                 activation: nn.Cell = nn.GELU,
                 norm: nn.Cell = nn.LayerNorm):
        super(TransformerEncoder, self).__init__()
        layers = []

        for _ in range(num_layers):
            normalization1 = norm((dim,))
            normalization2 = norm((dim,))
            attention = Attention(dim=dim,
                                  num_heads=num_heads,
                                  keep_prob=keep_prob,
                                  attention_keep_prob=attention_keep_prob)

            feedforward = FeedForward(in_features=dim,
                                      hidden_features=mlp_dim,
                                      activation=activation,
                                      keep_prob=keep_prob)

            layers.append(
                nn.SequentialCell([
                    ResidualCell(nn.SequentialCell([normalization1, attention])),
                    ResidualCell(nn.SequentialCell([normalization2, feedforward]))
                ])
            )
        self.layers = nn.SequentialCell(layers)

    def construct(self, x):
        """Transformer construct."""
        return self.layers(x)

在这里插入图片描述

ViT模型的输入

传统的Transformer结构主要用于处理自然语言领域的词向量(Word Embedding or Word Vector),词向量与传统图像数据的主要区别在于,词向量通常是一维向量进行堆叠,而图片则是二维矩阵的堆叠,多头注意力机制在处理一维词向量的堆叠时会提取词向量之间的联系也就是上下文语义,这使得Transformer在自然语言处理领域非常好用,而二维图片矩阵如何与一维词向量进行转化就成为了Transformer进军图像处理领域的一个小门槛。

在ViT模型中:

通过将输入图像在每个channel上划分为16*16个patch,这一步是通过卷积操作来完成的,当然也可以人工进行划分,但卷积操作也可以达到目的同时还可以进行一次而外的数据处理;例如一幅输入224
x 224的图像,首先经过卷积处理得到16 x 16个patch,那么每一个patch的大小就是14 x 14。
再将每一个patch的矩阵拉伸成为一个一维向量,从而获得了近似词向量堆叠的效果。上一步得到的14 x 14的patch就转换为长度为196的向量。
这是图像输入网络经过的第一步处理。具体Patch Embedding的代码如下所示:

class PatchEmbedding(nn.Cell):
    MIN_NUM_PATCHES = 4

    def __init__(self,
                 image_size: int = 224,
                 patch_size: int = 16,
                 embed_dim: int = 768,
                 input_channels: int = 3):
        super(PatchEmbedding, self).__init__()

        self.image_size = image_size
        self.patch_size = patch_size
        self.num_patches = (image_size // patch_size) ** 2
        self.conv = nn.Conv2d(input_channels, embed_dim, kernel_size=patch_size, stride=patch_size, has_bias=True)

    def construct(self, x):
        """Path Embedding construct."""
        x = self.conv(x)
        b, c, h, w = x.shape
        x = ops.reshape(x, (b, c, h * w))
        x = ops.transpose(x, (0, 2, 1))

        return x

在这里插入图片描述

输入图像在划分为patch之后,会经过pos_embedding 和 class_embedding两个过程。

class_embedding主要借鉴了BERT模型的用于文本分类时的思想,在每一个word
vector之前增加一个类别值,通常是加在向量的第一位,上一步得到的196维的向量加上class_embedding后变为197维。

增加的class_embedding是一个可以学习的参数,经过网络的不断训练,最终以输出向量的第一个维度的输出来决定最后的输出类别;由于输入是16 x 16个patch,所以输出进行分类时是取 16 x 16个class_embedding进行分类。

pos_embedding也是一组可以学习的参数,会被加入到经过处理的patch矩阵中。

由于pos_embedding也是可以学习的参数,所以它的加入类似于全链接网络和卷积的bias。这一步就是创造一个长度维197的可训练向量加入到经过class_embedding的向量中。

实际上,pos_embedding总共有4种方案。但是经过作者的论证,只有加上pos_embedding和不加pos_embedding有明显影响,至于pos_embedding是一维还是二维对分类结果影响不大,所以,在我们的代码中,也是采用了一维的pos_embedding,由于class_embedding是加在pos_embedding之前,所以pos_embedding的维度会比patch拉伸后的维度加1。

总的而言,ViT模型还是利用了Transformer模型在处理上下文语义时的优势,将图像转换为一种“变种词向量”然后进行处理,而这样转换的意义在于,多个patch之间本身具有空间联系,这类似于一种“空间语义”,从而获得了比较好的处理效果。

整体构建ViT

以下代码构建了一个完整的ViT模型。

from mindspore.common.initializer import Normal
from mindspore.common.initializer import initializer
from mindspore import Parameter


def init(init_type, shape, dtype, name, requires_grad):
    """Init."""
    initial = initializer(init_type, shape, dtype).init_data()
    return Parameter(initial, name=name, requires_grad=requires_grad)


class ViT(nn.Cell):
    def __init__(self,
                 image_size: int = 224,
                 input_channels: int = 3,
                 patch_size: int = 16,
                 embed_dim: int = 768,
                 num_layers: int = 12,
                 num_heads: int = 12,
                 mlp_dim: int = 3072,
                 keep_prob: float = 1.0,
                 attention_keep_prob: float = 1.0,
                 drop_path_keep_prob: float = 1.0,
                 activation: nn.Cell = nn.GELU,
                 norm: Optional[nn.Cell] = nn.LayerNorm,
                 pool: str = 'cls') -> None:
        super(ViT, self).__init__()

        self.patch_embedding = PatchEmbedding(image_size=image_size,
                                              patch_size=patch_size,
                                              embed_dim=embed_dim,
                                              input_channels=input_channels)
        num_patches = self.patch_embedding.num_patches

        self.cls_token = init(init_type=Normal(sigma=1.0),
                              shape=(1, 1, embed_dim),
                              dtype=ms.float32,
                              name='cls',
                              requires_grad=True)

        self.pos_embedding = init(init_type=Normal(sigma=1.0),
                                  shape=(1, num_patches + 1, embed_dim),
                                  dtype=ms.float32,
                                  name='pos_embedding',
                                  requires_grad=True)

        self.pool = pool
        self.pos_dropout = nn.Dropout(p=1.0-keep_prob)
        self.norm = norm((embed_dim,))
        self.transformer = TransformerEncoder(dim=embed_dim,
                                              num_layers=num_layers,
                                              num_heads=num_heads,
                                              mlp_dim=mlp_dim,
                                              keep_prob=keep_prob,
                                              attention_keep_prob=attention_keep_prob,
                                              drop_path_keep_prob=drop_path_keep_prob,
                                              activation=activation,
                                              norm=norm)
        self.dropout = nn.Dropout(p=1.0-keep_prob)
        self.dense = nn.Dense(embed_dim, num_classes)

    def construct(self, x):
        """ViT construct."""
        x = self.patch_embedding(x)
        cls_tokens = ops.tile(self.cls_token.astype(x.dtype), (x.shape[0], 1, 1))
        x = ops.concat((cls_tokens, x), axis=1)
        x += self.pos_embedding

        x = self.pos_dropout(x)
        x = self.transformer(x)
        x = self.norm(x)
        x = x[:, 0]
        if self.training:
            x = self.dropout(x)
        x = self.dense(x)

        return x

在这里插入图片描述

整体流程图如下所示:

在这里插入图片描述

四、模型训练与推理

模型训练

from mindspore.nn import LossBase
from mindspore.train import LossMonitor, TimeMonitor, CheckpointConfig, ModelCheckpoint
from mindspore import train

# define super parameter
epoch_size = 10
momentum = 0.9
num_classes = 1000
resize = 224
step_size = dataset_train.get_dataset_size()

# construct model
network = ViT()

# load ckpt
vit_url = "https://download.mindspore.cn/vision/classification/vit_b_16_224.ckpt"
path = "./ckpt/vit_b_16_224.ckpt"

vit_path = download(vit_url, path, replace=True)
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)

# define learning rate
lr = nn.cosine_decay_lr(min_lr=float(0),
                        max_lr=0.00005,
                        total_step=epoch_size * step_size,
                        step_per_epoch=step_size,
                        decay_epoch=10)

# define optimizer
network_opt = nn.Adam(network.trainable_params(), lr, momentum)


# define loss function
class CrossEntropySmooth(LossBase):
    """CrossEntropy."""

    def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
        super(CrossEntropySmooth, self).__init__()
        self.onehot = ops.OneHot()
        self.sparse = sparse
        self.on_value = ms.Tensor(1.0 - smooth_factor, ms.float32)
        self.off_value = ms.Tensor(1.0 * smooth_factor / (num_classes - 1), ms.float32)
        self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)

    def construct(self, logit, label):
        if self.sparse:
            label = self.onehot(label, ops.shape(logit)[1], self.on_value, self.off_value)
        loss = self.ce(logit, label)
        return loss


network_loss = CrossEntropySmooth(sparse=True,
                                  reduction="mean",
                                  smooth_factor=0.1,
                                  num_classes=num_classes)

# set checkpoint
ckpt_config = CheckpointConfig(save_checkpoint_steps=step_size, keep_checkpoint_max=100)
ckpt_callback = ModelCheckpoint(prefix='vit_b_16', directory='./ViT', config=ckpt_config)

# initialize model
# "Ascend + mixed precision" can improve performance
ascend_target = (ms.get_context("device_target") == "Ascend")
if ascend_target:
    model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O2")
else:
    model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O0")

# train model
model.train(epoch_size,
            dataset_train,
            callbacks=[ckpt_callback, LossMonitor(125), TimeMonitor(125)],
            dataset_sink_mode=False,)

在这里插入图片描述

模型验证

dataset_val = ImageFolderDataset(os.path.join(data_path, "val"), shuffle=True)

trans_val = [
    transforms.Decode(),
    transforms.Resize(224 + 32),
    transforms.CenterCrop(224),
    transforms.Normalize(mean=mean, std=std),
    transforms.HWC2CHW()
]

dataset_val = dataset_val.map(operations=trans_val, input_columns=["image"])
dataset_val = dataset_val.batch(batch_size=16, drop_remainder=True)

# construct model
network = ViT()

# load ckpt
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)

network_loss = CrossEntropySmooth(sparse=True,
                                  reduction="mean",
                                  smooth_factor=0.1,
                                  num_classes=num_classes)

# define metric
eval_metrics = {'Top_1_Accuracy': train.Top1CategoricalAccuracy(),
                'Top_5_Accuracy': train.Top5CategoricalAccuracy()}

if ascend_target:
    model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O2")
else:
    model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O0")

# evaluate model
result = model.eval(dataset_val)
print(result)

在这里插入图片描述

模型推理

dataset_infer = ImageFolderDataset(os.path.join(data_path, "infer"), shuffle=True)

trans_infer = [
    transforms.Decode(),
    transforms.Resize([224, 224]),
    transforms.Normalize(mean=mean, std=std),
    transforms.HWC2CHW()
]

dataset_infer = dataset_infer.map(operations=trans_infer,
                                  input_columns=["image"],
                                  num_parallel_workers=1)
dataset_infer = dataset_infer.batch(1)

在这里插入图片描述

import os
import pathlib
import cv2
import numpy as np
from PIL import Image
from enum import Enum
from scipy import io


class Color(Enum):
    """dedine enum color."""
    red = (0, 0, 255)
    green = (0, 255, 0)
    blue = (255, 0, 0)
    cyan = (255, 255, 0)
    yellow = (0, 255, 255)
    magenta = (255, 0, 255)
    white = (255, 255, 255)
    black = (0, 0, 0)


def check_file_exist(file_name: str):
    """check_file_exist."""
    if not os.path.isfile(file_name):
        raise FileNotFoundError(f"File `{file_name}` does not exist.")


def color_val(color):
    """color_val."""
    if isinstance(color, str):
        return Color[color].value
    if isinstance(color, Color):
        return color.value
    if isinstance(color, tuple):
        assert len(color) == 3
        for channel in color:
            assert 0 <= channel <= 255
        return color
    if isinstance(color, int):
        assert 0 <= color <= 255
        return color, color, color
    if isinstance(color, np.ndarray):
        assert color.ndim == 1 and color.size == 3
        assert np.all((color >= 0) & (color <= 255))
        color = color.astype(np.uint8)
        return tuple(color)
    raise TypeError(f'Invalid type for color: {type(color)}')


def imread(image, mode=None):
    """imread."""
    if isinstance(image, pathlib.Path):
        image = str(image)

    if isinstance(image, np.ndarray):
        pass
    elif isinstance(image, str):
        check_file_exist(image)
        image = Image.open(image)
        if mode:
            image = np.array(image.convert(mode))
    else:
        raise TypeError("Image must be a `ndarray`, `str` or Path object.")

    return image


def imwrite(image, image_path, auto_mkdir=True):
    """imwrite."""
    if auto_mkdir:
        dir_name = os.path.abspath(os.path.dirname(image_path))
        if dir_name != '':
            dir_name = os.path.expanduser(dir_name)
            os.makedirs(dir_name, mode=777, exist_ok=True)

    image = Image.fromarray(image)
    image.save(image_path)


def imshow(img, win_name='', wait_time=0):
    """imshow"""
    cv2.imshow(win_name, imread(img))
    if wait_time == 0:  # prevent from hanging if windows was closed
        while True:
            ret = cv2.waitKey(1)

            closed = cv2.getWindowProperty(win_name, cv2.WND_PROP_VISIBLE) < 1
            # if user closed window or if some key pressed
            if closed or ret != -1:
                break
    else:
        ret = cv2.waitKey(wait_time)


def show_result(img: str,
                result: Dict[int, float],
                text_color: str = 'green',
                font_scale: float = 0.5,
                row_width: int = 20,
                show: bool = False,
                win_name: str = '',
                wait_time: int = 0,
                out_file: Optional[str] = None) -> None:
    """Mark the prediction results on the picture."""
    img = imread(img, mode="RGB")
    img = img.copy()
    x, y = 0, row_width
    text_color = color_val(text_color)
    for k, v in result.items():
        if isinstance(v, float):
            v = f'{v:.2f}'
        label_text = f'{k}: {v}'
        cv2.putText(img, label_text, (x, y), cv2.FONT_HERSHEY_COMPLEX,
                    font_scale, text_color)
        y += row_width
    if out_file:
        show = False
        imwrite(img, out_file)

    if show:
        imshow(img, win_name, wait_time)


def index2label():
    """Dictionary output for image numbers and categories of the ImageNet dataset."""
    metafile = os.path.join(data_path, "ILSVRC2012_devkit_t12/data/meta.mat")
    meta = io.loadmat(metafile, squeeze_me=True)['synsets']

    nums_children = list(zip(*meta))[4]
    meta = [meta[idx] for idx, num_children in enumerate(nums_children) if num_children == 0]

    _, wnids, classes = list(zip(*meta))[:3]
    clssname = [tuple(clss.split(', ')) for clss in classes]
    wnid2class = {wnid: clss for wnid, clss in zip(wnids, clssname)}
    wind2class_name = sorted(wnid2class.items(), key=lambda x: x[0])

    mapping = {}
    for index, (_, class_name) in enumerate(wind2class_name):
        mapping[index] = class_name[0]
    return mapping


# Read data for inference
for i, image in enumerate(dataset_infer.create_dict_iterator(output_numpy=True)):
    image = image["image"]
    image = ms.Tensor(image)
    prob = model.predict(image)
    label = np.argmax(prob.asnumpy(), axis=1)
    mapping = index2label()
    output = {int(label): mapping[int(label)]}
    print(output)
    show_result(img="./dataset/infer/n01440764/ILSVRC2012_test_00000279.JPEG",
                result=output,
                out_file="./dataset/infer/ILSVRC2012_test_00000279.JPEG")

在这里插入图片描述

推理过程完成后,在推理文件夹下可以找到图片的推理结果,可以看出预测结果是Doberman,与期望结果相同,验证了模型的准确性。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/800272.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring——Spring是什么?IoC容器是什么?

文章目录 前言一、Spring是什么1.IoC 容器 —— 容器2.IoC 容器 —— IoC传统程序开发控制反转式程序开发 3.Spring IoC 二、DI是什么总结 前言 本人是一个普通程序猿!分享一点自己的见解,如果有错误的地方欢迎各位大佬莅临指导,如果你也对编程感兴趣的话&#xff0c;互关一下…

Vue2基础四、生命周期

零、文章目录 Vue2基础四、生命周期 1、生命周期 Vue生命周期&#xff1a;一个Vue实例从 创建 到 销毁 的整个过程。生命周期四个阶段&#xff1a;① 创建 ② 挂载 ③ 更新 ④ 销毁 创建阶段&#xff1a;创建响应式数据挂载阶段&#xff1a;渲染模板更新阶段&#xff1a;修改…

基于K8s环境·使用ArgoCD部署Jenkins和静态Agent节点

今天是「DevOps云学堂」与你共同进步的第 47天 第⑦期DevOps实战训练营 7月15日已开营 实践环境升级基于K8s和ArgoCD 本文节选自第⑦期DevOps训练营 &#xff0c; 对于训练营的同学实践此文档依赖于基础环境配置文档&#xff0c; 运行K8s集群并配置NFS存储。实际上只要有个K8s集…

Spring Security内置过滤器详解

相关文章&#xff1a; OAuth2的定义和运行流程Spring Security OAuth实现Gitee快捷登录Spring Security OAuth实现GitHub快捷登录Spring Security的过滤器链机制Spring Security OAuth Client配置加载源码分析 文章目录 前言OAuth2AuthorizationRequestRedirectFilterOAuth2Log…

matlab多线程,parfor循环进度,matlab互斥锁

一. 内容简介 matlab多线程&#xff0c;parfor循环进度&#xff0c;matlab互斥锁 二. 软件环境 2.1 matlab 2022b 2.2代码链接 https://gitee.com/JJW_1601897441/csdn 三.主要流程 3.1 matlab多线程 有好几种&#xff0c;最简单的&#xff0c;最好理解的就是parfor&am…

cpolar内网穿透外网远程访问本地网站

文章目录 cpolar内网穿透外网远程访问本地网站 cpolar内网穿透外网远程访问本地网站 在现代人的生活中&#xff0c;电脑是离不开的重要设备&#xff0c;大家看到用到的各种物品都离不开电脑的支持。尽管移动电子设备发展十分迅速&#xff0c;由于其自身存在的短板&#xff0c;…

Leetcode-每日一题【剑指 Offer 66. 构建乘积数组】

题目 给定一个数组 A[0,1,…,n-1]&#xff0c;请构建一个数组 B[0,1,…,n-1]&#xff0c;其中 B[i] 的值是数组 A 中除了下标 i 以外的元素的积, 即 B[i]A[0]A[1]…A[i-1]A[i1]…A[n-1]。不能使用除法。 示例: 输入: [1,2,3,4,5]输出: [120,60,40,30,24] 提示&#xff1a; 所…

SSIS对SQL Server向Mysql数据转发表数据 (三)

1、在控制流界面&#xff0c;在左侧的组件里&#xff0c;添加一个“序列容器组件”和一个“数据流任务组件” 2、双击数据流任务&#xff0c;进入到数据流界面&#xff0c;然后再在左面添加一个OLE DB 源组件、目标源组件 3、右键源组件&#xff0c;编辑&#xff0c;选择好相关…

虎年现货黄金投资布局图

参与现货黄金交易的主要目的&#xff0c;是为了根据行情走势的变动&#xff0c;把握一些较佳的获利机会&#xff0c;在这样的一个过程中&#xff0c;如果投资者能够提前把布局的图表画好&#xff0c;那么就可能获得事半功倍的效果&#xff0c;而本文将为大家简单的介绍&#xf…

C++——STL容器之list链表的讲解

目录 一.list的介绍 二.list类成员函数的讲解 2.2迭代器 三.添加删除数据&#xff1a; 3.1添加&#xff1a; 3.2删除数据 四.排序及去重函数&#xff1a; 错误案例如下&#xff1a; 方法如下&#xff1a; 一.list的介绍 list列表是序列容器&#xff0c;允许在序列内的任何…

前端面试题 —— React (二)

目录 一、React 组件中怎么做事件代理&#xff1f;它的原理是什么&#xff1f; 二、React.Component 和 React.PureComponent 的区别 三、Component, Element, Instance 之间有什么区别和联系&#xff1f; 四、React声明组件有哪几种方法&#xff0c;有什么不同&#xff1f…

数学建模-MATLAB三维作图

导出图片用无压缩tif会更清晰 帮助文档&#xff1a;doc 函数名 matlab代码导出为PDF 新建实时脚本或右键文件转换为实时脚本实时编辑器-全部运行-内嵌显示保存为PDF

120个颠覆你认知的gpt使用案例汇总,办公效率提高500%

文章目录 介绍1.代码生成2.代码注释3.代码解释器4.充当 Linux 终端5.代码纠正6.英语口语练习7.专业的翻译8.面试官9.写任何考科目的作业10.快速解决学习中的任何问题11.网站推荐12.网络工具软件推荐13.快速学习新技能14.快速总结长文本的核心思想15.解决日常办公问题16.制作各种…

【CASA】生态系统NPP及碳源、碳汇模拟(土地利用变化、未来气候变化、空间动态模拟)

碳中和可以从碳排放&#xff08;碳源&#xff09;和碳固定&#xff08;碳汇&#xff09;这两个侧面来理解。陆地生态系统在全球碳循环过程中有着重要作用&#xff0c;准确地评估陆地生态系统碳汇及碳源变化对于研究碳循环过程、预测气候变化及制定合理政策具有重要意义。CASA(C…

【QT 网络云盘客户端】——实现文件属性窗口

目录 文件属性对话框 设置字体样式 获取文件的信息 显示文件属性对话框 当我们点击文件中的属性&#xff0c;则会弹出一个属性对话框&#xff1a; 实现过程&#xff1a; 0.设置 属性 菜单项的槽函数。 1.鼠获取鼠标选中的QListWidgetItem,它包含 图标和文件名 2.根据文件…

Dooring-Saas低代码技术详解

hello, 大家好, 我是徐小夕, 今天和大家分享一下基于 H5-Dooring零代码 开发的全新零代码搭建平台 Dooring-Saas 的技术架构和设计实现思路. 背景介绍 3年前我上线了第一版自研零代码引擎 H5-Dooring, 至今已迭代了 300 多个版本, 主要目的是快速且批量化的生产业务/营销过程中…

CSS Flex 笔记

1. Flexbox 术语 Flex 容器可以是<div> 等&#xff0c;对其设置属性&#xff1a;display: flex, justify-content 是沿主轴方向调整元素&#xff0c;align-items 是沿交叉轴对齐元素。 2. Cheatsheet 2.1 设置 Flex 容器&#xff0c;加粗的属性为默认值 2.1.1 align-it…

Spring 事务的使用、隔离级别、@Transactional的使用

Spring事务是Spring框架提供的一种机制&#xff0c;用于管理应用程序中的数据库事务。 事务是一组数据库操作的执行单元&#xff0c;要么全部成功提交&#xff0c;要么全部失败回滚&#xff0c;保证数据的一致性和完整性。 Spring事务提供了声明式事务和编程式事务两种方式&am…

[Tools: Camera Conventions] NeRF中的相机矩阵估计

参考&#xff1a;NeRF代码解读-相机参数与坐标系变换 - 知乎 在NeRF中&#xff0c;一个重要的步骤是确定射线&#xff08;rays&#xff09;的初始点和方向。根据射线的初始点和方向&#xff0c;和设定射线深度和采样点数量&#xff0c;可以估计该射线成像的像素值。估计得到的…

Live Market:中国“一带一路”十周年,品牌出海跨境电商成为新引擎

​中国提出的“一带一路”倡议已经迎来10周年。高质量共建“数字丝绸之路”是这一倡议的重点方向&#xff0c;能够巩固互联互通合作基础、拓展国际合作新空间、扎牢风险防控网络&#xff0c;实现更高合作水平、更高投入效益、更高供给质量、更高发展韧性&#xff0c;推动共建“…