25.6 matlab里面的10中优化方法介绍——模拟退火算法(matlab程序)

news2024/11/17 7:39:43

1.简述

      

相信没有相关物理知识背景的小伙伴看到“退火”二字是一脸懵逼的...固体的退火过程指的是将固体加热至足够高的温度,再使其慢慢冷却的过程。在加热过程中,原本有序排列的内部粒子开始无序运动,此时固体的内能不断增大;而在降温过程中,粒子的排列又逐渐有序。

而物体系统总是趋向于保持能量最低的状态,理论上讲,在退火过程的降温过程中,如果降温过程足够的慢,可将每一时刻离散化,那么每一个温度下的固体都可能达到允许范围内的最小内能状态,而如何寻找该温度及状态即为模拟退火算法的核心问题。

模拟退火算法和遗传算法、粒子群算法等智能算法作为一种通用的概率算法,相关的知识可以去看看我之前的学习笔记:

Kezard:遗传算法1(GA)---基础概念及算法流程68 赞同 · 1 评论文章​编辑

Kezard:粒子群(PSO)算法概念及代码实现159 赞同 · 14 评论文章​编辑

该类智能算法都可用来寻找一个较大搜索空间之内的全局最优解。搜索空间之内的每一个元素都可能是问题的全局最优解,那么如何确立搜索方式、如何判断某一温度下的固体粒子内能状态便成为区分其他智能算法的核心工作。一般地,可以将温度T作为搜索空间;将实际情况中的目标函数值f看做内能E;而固体在某一温度下的状态看做问题的一个解x,即E=f(x);算法在一定的规则之下,控制温度T的降低,使固体的内能也随着最优值(内能最低)靠近,直至找到了全局最优解,就像固体退火过程一样。

如何判断内能减少?

Metropolis准则:从当前i状态发展到下一状态j,若新状态的内能小于状态i的内能,则接受j为新的状态,其对应的内能作为目前的最优解;否则,以概率] 接收该新解, 其中k为Boltzmann常数,T为目前的温度。在后续的判断过程中可加入计算机的蒙特卡罗实验模拟产生概率(随机数)。

算法设计为了寻找最小的内能,那可以对应到实际情况中的全局最小解,若要寻找全局最大值,在目标函数前添加“负号”即可。

算法基本步骤:

  1. 确定退火过程的温度初值 0 ,随机生成该温度下的粒子状态及一个解 0 ,计算目标函数值f即该状态下的内能 0 。
  2. 进入下一个冷却温度。
  3. 对当前的解 添加扰动,及产生个新的解  ,计算相应的内能 ,根据Metropolis准则判断是否接受新的解,更新局部最优解和全局最优解。
  4. 在不同的冷却温度 下,重复m次对x的扰动,即产生m个新的解,并执行2~3.
  5. 判断T是否已经到达了最低温度限制,一般设定为 0.01∼5 ,是则终止算法;否继续执行2~4.

算法实际上由两层循环所控制,外层循环控制降温过程的温度;内层循环控制对解x的扰动。算法的初始温度 0 较高,这样使得内能增大的初始解也可能被接受,因为能够跳出局部最小值的陷阱,然后通过慢慢的降低温度,对解不断地添加扰动,使得算法最终可能收敛到全局最优解。

前面的步骤5中谈到外层循环终止的条件为是否到达了最低温度限制,当然我们还可以引入一些提前终止降温过程的条件,比如最大寻找次数、满足最大精度设置等。

参数选择

一、控制参数T的初值 0

求解全局优化问题的随机搜索算法(例如遗传算法,粒子群算法)一般都采用全局粗略搜索与局部精细搜索相结合的策略。粗略搜索能够使得搜索过程跳出局部最优解的陷阱,而局部精细搜索便可以找到问题的全局最优解,一般而言,足够大的初值 0 才能遍历所有的可行解,过小的初值往往导致算法难以逾越局部最优解,从而不能找到全局最优解。所以在选取的时候应当适应的选取初值,并且与其他参数相协调。(我的程序中选择的初值为1000)

二、降温过程

降温参数,其取值为 0.5∼0.99 ,该参数决定了降温过程,其值选择的越大,则降温过程越慢,导致迭代次数的增加,当然更有可能寻找到全局最优解,若已经到达了热平衡,则仅需要少量的状态变换就可以达到准平衡,从而减少内层循环的长度(Markov链长度)

三、Markov链的长度(解的扰动变换次数)

选取原则是:在控制参数T的降温过程函数已选定的前提之下,从经验上来说,长度一般为 100� ,n为问题的规模。

模拟退火算法求解TSP问题的matlab求解

  1. TSP问题:TSP(Traveling salesman problem)即旅行商问题,旅行商希望在N个城市进行一次巡回旅行,可以恰好访问每一个城市一次,并且最终回到出发城市。并且要使得这次巡回旅行的总消耗最小(总距离或总花销等等),如何求这个路线?
  • TSP的解空间S是遍历每个城市恰好一次的所有回路(回到起点),那么一个可行解即为所有城市的一个排列,则解空间可以表示为:

即为每个城市的编号,其中的每一个排列即为一个离线,所以初始解就被表示成为了一个{1,2,...,N}的随机序列。

2. 目标函数

遍历所有城市的代价最小,此处我们将代价刻画为总路径最小 即为该最短路径(TSP问题的解即为城市标号的一个排列)

3. 新解的产生

  • 两点交换法:交换 ,的访问顺序
  • 三变换:任选序号 之间的路径插到 �之后访问。

4. Metropolis接收准则

以新解与当前解的目标函数差(内能之差)来定义接受概率:

2.代码

主程序:

%%   用模拟退火法计算函数的最小值
clear all
f = inline('5*sin(x(1)*x(2))+x(1)^2+x(2)^2','x');
l = [-5 -5]; %下限
u = [5 5]; %上限
x0 = [-4 0];
TolFun = 1e-9;
TolX=1e-5;
kmax = 800;
%%%%用Nelder-Meat法求
[xo_nd,fo] = Opt_Nelder(f,x0,TolX,TolFun,kmax) 
 %%%%用matlab内置函数验证
[xos,fos] = fminsearch(f,x0)
[xou,fou] = fminunc(f,x0)
%%%%用模拟退火法求
 q =0.8;
[xo_sa,fo_sa] =Opt_Simu(f,x0,l,u,kmax,q,TolFun)

子程序:

function [xo,fo] =Opt_Nelder(f,x0,TolX,TolFun,MaxIter)
%Nelder-Mead法用于多维变量的最优化问题,维数>=2.
N = length(x0);
if N == 1 %一维情况,用二次逼近计算
    [xo,fo] = Opt_Quadratic(f,x0,TolX,TolFun,MaxIter);
    return
end
S = eye(N);
for i = 1:N  %自变量维数大于2时,重复计算每个子平面的情况
    i1 = i + 1;
    if i1 > N
        i1 = 1;
    end
    abc = [x0; x0 + S(i,:); x0 + S(i1,:)]; %每一个定向子平面
    fabc = [feval(f,abc(1,:)); feval(f,abc(2,:)); feval(f,abc(3,:))];
    [x0,fo] = Nelder0(f,abc,fabc,TolX,TolFun,MaxIter);
    if N < 3  %二维情况不需重复
        break;
    end 
end
xo = x0;

3.运行结果

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/799045.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【GEC6818开发板简介】

(꒪ꇴ꒪ ),hello我是祐言博客主页&#xff1a;C语言基础,Linux基础,软件配置领域博主&#x1f30d;快上&#x1f698;&#xff0c;一起学习&#xff01;送给读者的一句鸡汤&#x1f914;&#xff1a;集中起来的意志可以击穿顽石!作者水平很有限&#xff0c;如果发现错误&#x…

计算机网络 day13 TCP拥塞控制 - tcpdump - DHCP协议 - DHCP服务器搭建 - DNS域名解析系统 - DNS域名解析过程

目录 TCP的流控机制 -- 拥塞控制 参考文章&#xff1a;什么是TCP拥塞控制算法&#xff1f; - 知乎 (zhihu.com) 拥塞控制主要是四个算法&#xff1a; 主机如何知道数据在传输的过程中&#xff0c;知道中间的网络堵塞了&#xff1f; TCP/IP协议栈 tcpdump抓包工具的学习使用…

AtcoderABC231场

A - Water PressureA - Water Pressure 题目大意 假设水压仅取决于深度&#xff0c;在深度为x米时&#xff0c;水压为x/100兆帕斯卡。 现在给定一个深度D米&#xff0c;需要计算在该深度下的水压是多少兆帕斯卡。 思路分析 直接将输入的深度除以100得到水压结果。 时间复杂…

【无标题】自定义类型:位段,枚举,联合

自定义类型&#xff1a;位段&#xff0c;枚举&#xff0c;联合 1. 位段1.1 什么是位段1.2 位段的内存分配1.3 位段的跨平台问题 2. 枚举2.1 枚举类型的定义2.2 枚举类型的优点2.3 枚举的使用 3. 联合&#xff08;共用体&#xff09;3.1 联合类型的定义3.2联合的特点3.2.1 相关面…

使用 ChatGPT 进行研究的先进技术

在这篇文章中&#xff0c;您将探索改进您研究的先进技术。尤其&#xff0c; 分析和解释研究数据进行文献综述并找出研究差距废话不多说直接开始吧&#xff01;&#xff01;&#xff01; 分析和解释研究数据 一家小企业主希望分析客户满意度数据以改善客户服务。他们使用包含 10…

【vue】Vue中解读关于this.$emit()的用法:

文章目录 一、Vue.sync修饰符与this.$emit(‘update:xxx‘, newXXX)二、this.$emit()传多个参数 一、Vue.sync修饰符与this.$emit(‘update:xxx‘, newXXX) 二、this.$emit()传多个参数

python与深度学习(八):CNN和fashion_mnist二

目录 1. 说明2. fashion_mnist的CNN模型测试2.1 导入相关库2.2 加载数据和模型2.3 设置保存图片的路径2.4 加载图片2.5 图片预处理2.6 对图片进行预测2.7 显示图片 3. 完整代码和显示结果4. 多张图片进行测试的完整代码以及结果 1. 说明 本篇文章是对上篇文章训练的模型进行测…

基于新浪微博海量用户行为数据、博文数据数据分析:包括综合指数、移动指数、PC指数三个指数

基于新浪微博海量用户行为数据、博文数据数据分析&#xff1a;包括综合指数、移动指数、PC指数三个指数 项目介绍 微指数是基于海量用户行为数据、博文数据&#xff0c;采用科学计算方法统计得出的反映不同事件领域发展状况的指数产品。微指数对于收录的关键词&#xff0c;在指…

javaweb如何格式化日期时间

解决方式&#xff1a; 方式一&#xff1a;在属性上加入注解&#xff0c;对日期进行格式化 方式二&#xff1a;在 WebMvcConfiguration 中扩展Spring MVC的消息转换器&#xff0c;统一对日期类型进行格式化处理 package com.sky.json;import com.fasterxml.jackson.databind.Des…

[OnWork.Tools]系列 01-简介

说明 OnWork.Tools 是基于 Net6 的桌面程序。支持Windows7SP1及以上系统&#xff0c;主要是日常办公或者是开发工作过程中常用的工具集合。界面使用WPF Mvvm模式开发&#xff0c;目的是将开源项目中&#xff0c;好用的项目集成到一起&#xff0c;方便大家使用和学习。 功能 …

牛客周赛 Round 4

A 游游的字符串构造 思路分析 构造字符串&#xff0c;注意k>1 时间复杂度 O(n) AC代码 #include<bits/stdc.h> using namespace std; int main() {int n,k;cin>>n>>k;if(n>3*k){for(int i0;i<k;i)cout<<"you";for(int i0;i<…

工作纪实34-emoji表情包存储异常,修改db的字段类型

线上问题&#xff0c;发现emojo表情写入数据库出现异常 修改mysql字段的字符集 ALTER TABLE customer_cycle_info MODIFY COLUMN customer_sales_remark varchar(500) CHARACTER SET

已实现商业化却仍陷亏损泥潭,瑕瑜错陈的觅瑞集团求上市

撰稿|行星 来源|贝多财经 7月25日&#xff0c;Mirxes Holding Company Limited-B&#xff08;以下简称“觅瑞集团”&#xff09;向港交所递交上市申请材料&#xff0c;计划在港交所主板上市&#xff0c;中金公司和建银国际为其联席保荐人。 据招股书介绍&#xff0c;成立于2…

0基础系列C++教程 从0开始 第二课

0基础系列C教程 从0开始 第二课来了&#xff01; 复习第一课内容 1 怎么输出数字“1919810”&#xff1f; 答案&#xff08;关键语句&#xff09;: cout<<"1919810"; 2 怎么输出字符串“Hello World”&#xff1f; 答案&#xff08;关键语句&#xff09;&a…

MySQL案例——多表查询以及嵌套查询

系列文章目录 MySQL笔记——表的修改查询相关的命令操作 MySQL笔记——MySQL数据库介绍以及在Linux里面安装MySQL数据库&#xff0c;对MySQL数据库的简单操作&#xff0c;MySQL的外接应用程序使用说明 文章目录 系列文章目录 前言 一 创建数据库 1.1 创建一个部门表 1.…

7.24 C++

封装Vector #include <iostream> #include <cstring> using namespace std;template <typename T> class Vector { private:T *start; //指向容器的起始地址T *last; //指向容器存放数据的下一个位置T *end; //指向容器的最后的下一个位置 public:Vec…

MyBatis-入门-快速入门程序

本次使用MyBatis框架是基于SpringBoot框架进行的&#xff0c;在IDEA中创建一个SpringBBot工程&#xff0c;根据自己的需求选择对应的依赖即可 快速入门 需求&#xff1a;使用MyBatis查询所有用户数据步骤&#xff1a; 准备工作&#xff08;创建Spring Boot工程、数据库user表…

【MATLAB】ILOSpsi制导率的代码解析

ILOSpsi制导率的代码解析 这里记录一下关于fossen的MMS工具箱中&#xff0c;关于ILOSpsi制导率的代码解析内容&#xff0c;结合fossen的marine carft hydrodynamics and motion control这本书来参考看 文章目录 ILOSpsi制导率的代码解析前言一、代码全文二、内容解析1.persist…

静态代理、jdk、cglib动态代理 搞不清? 看这个文章就懂了

一、代理模式 代理模式是一种比较好的理解的设计模式。简单来说就是 &#xff1a; 我们使用代理对象来增强目标对象(target obiect)&#xff0c;这样就可以在不修改原目标对象的前提下&#xff0c;提供额外的功能操作&#xff0c;扩展目标对象的功能。将核心业务代码和非核心…

linux下i2c调试神器i2c-tools安装及使用

i2c-tools介绍 在嵌入式linux开发中&#xff0c;有时候需要确认i2c硬件是否正常连接&#xff0c;设备是否正常工作&#xff0c;设备的地址是多少等等&#xff0c;这里我们就需要使用一个用于测试I2C总线的工具——i2c-tools。 i2c-tools是一个专门调试i2c的开源工具&#xff…