数据库索引优化与查询优化——醍醐灌顶

news2024/11/17 1:33:27

索引优化与查询优化

哪些维度可以进行数据库调优

  • 索引失效、没有充分利用到索引-一索引建立
  • 关联查询太多JOIN (设计缺陷或不得已的需求) --SQL优化
  • 服务器调优及各个参数设置 (缓冲、线程数等)–调整my.cnf
  • 数据过多–分库分表

关于数据库调优的知识点非常分散。不同的 DBMS,不同的公司,不同的职位,不同的项目遇到的问题都不尽相
同。这里我们分为三个章节进行细致讲解。

虽然 SQL 查询优化的技术有很多,但是大方向上完全可以分成 物理查询优化逻辑查询优化 两大块。

  • 物理查询优化是通过 索引表连接方式 等技术来进行优化,这里重点需要掌握索引的使用。
  • 逻辑查询优化就是通过 SOL 等价变换 提升查询效率,直白一点就是说,换一种查询写法执行效率可能更高

1. 索引失效案例

MySQL中提高性能的一个最有效的方式是对数据表设计合理的索引。索引提供了高效访问数据的方法,并且加快查询的速度,因此索引对查询的速度有着至关重要的影响

  • 使用索引可以快速地定位表中的某条记录,从而提高数据库查询的速度,提高数据库的性能
  • 如果查询时没有使用索引,查询语句就会扫描表中的所有记录。在数据量大的情况下,这样查询的速度会很慢

大多数情况下都(默认)采用B+树来构建索引。只是空间列类型的索引使用R-树,并且MEMORY表还支持hash索引

其实,用不用索引,最终都是优化器说了算。优化器是基于什么的优化器?基于cost开销(CostBaseOptimizer),它不是基于规则(Rule-BasedOptimizer),也不是基于语义。怎么样开销小就怎么来。另外,SQL语句是否使用索引,跟数据库版本、数据量、数据选择度都有关系。


说明:SQL_NO_CACHE 是MySQL中的一个查询提示(Query Hint),用于在查询时告诉MySQL不要缓存该查询的结果。通常,MySQL会在查询结果中使用查询缓存来提高性能,如果查询缓存中已经存在相同的查询结果,MySQL将直接返回缓存中的结果,而不需要再执行实际的查询操作。

1.0 数据准备

#1. 数据准备CREATE DATABASE atguigudb2;USE atguigudb2;#建表
CREATE TABLE `class`
(
    `id`        INT(11) NOT NULL AUTO_INCREMENT,
    `className` VARCHAR(30) DEFAULT NULL,
    `address`   VARCHAR(40) DEFAULT NULL,
    `monitor`   INT     NULL,
    PRIMARY KEY (`id`)
) ENGINE = INNODB
  AUTO_INCREMENT = 1
  DEFAULT CHARSET = utf8;

CREATE TABLE `student`
(
    `id`      INT(11) NOT NULL AUTO_INCREMENT,
    `stuno`   INT     NOT NULL,
    `name`    VARCHAR(20) DEFAULT NULL,
    `age`     INT(3)      DEFAULT NULL,
    `classId` INT(11)     DEFAULT NULL,
    PRIMARY KEY (`id`)
    # CONSTRAINT `fk_class_id` FOREIGN KEY (`classId`) REFERENCES `t_class` (`id`)
) ENGINE = INNODB
  AUTO_INCREMENT = 1
  DEFAULT CHARSET = utf8;

SET GLOBAL log_bin_trust_function_creators = 1;

#随机产生字符串
DELIMITER //
CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255)
BEGIN
    DECLARE chars_str VARCHAR(100) DEFAULT 'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
    DECLARE return_str VARCHAR(255) DEFAULT '';
    DECLARE i INT DEFAULT 0;
    WHILE i < n
        DO
            SET return_str = CONCAT(return_str, SUBSTRING(chars_str, FLOOR(1 + RAND() * 52), 1));
            SET i = i + 1;
        END WHILE;
    RETURN return_str;
END //
DELIMITER ;

# 用于随机产生多少到多少的编号
DELIMITER //
CREATE FUNCTION rand_num(from_num INT, to_num INT) RETURNS INT(11)
BEGIN
    DECLARE i INT DEFAULT 0;
    SET i = FLOOR(from_num + RAND() * (to_num - from_num + 1));
    RETURN i;
END //
DELIMITER ;

# 创建往stu表中插入数据的存储过程
DELIMITER //
CREATE PROCEDURE insert_stu(START INT, max_num INT)
BEGIN
    DECLARE i INT DEFAULT 0;
    SET autocommit = 0; #设置手动提交事务REPEAT
    REPEAT
        #循环
        SET i = i + 1; #赋值
        INSERT INTO student (stuno, NAME, age, classId) VALUES ((START + i), rand_string(6), rand_num(1, 50), rand_num(1, 1000));
    UNTIL i = max_num END REPEAT;
    COMMIT; #提交事务
END //
DELIMITER ;

# 执行存储过程,往class表添加随机数据
DELIMITER //
CREATE PROCEDURE `insert_class`(max_num INT)
BEGIN
    DECLARE i INT DEFAULT 0; SET autocommit = 0;
    REPEAT
        SET i = i + 1; INSERT INTO class (classname, address, monitor) VALUES (rand_string(8), rand_string(10), rand_num(1, 100000));
    UNTIL i = max_num END REPEAT;
    COMMIT;
END //
DELIMITER ;

# 执行存储过程,往class表添加1万条数据
CALL insert_class(10000);

# 执行存储过程,往stu表添加50万条数据
CALL insert_stu(100000, 500000);

SELECT COUNT(*)
FROM class;

SELECT COUNT(*)
FROM student;

# 删除某表上的索引 存储过程
DELIMITER //
CREATE PROCEDURE `proc_drop_index`(dbname VARCHAR(200), tablename VARCHAR(200))
BEGIN
    DECLARE done INT DEFAULT 0;DECLARE ct INT DEFAULT 0;DECLARE _index VARCHAR(200) DEFAULT '';
    DECLARE _cur CURSOR FOR SELECT index_name
                            FROM information_schema.STATISTICS
                            WHERE table_schema = dbname AND table_name = tablename AND seq_in_index = 1 AND index_name <> 'PRIMARY';
    #每个游标必须使用不同的declare continue handler for not found set done=1来控制游标的结束DECLARE  CONTINUE HANDLER FOR NOT FOUND SET done=2 ;
#若没有数据返回,程序继续,并将变量done设为2OPEN _cur;FETCH _cur INTO _index;WHILE  _index<>'' DO SET @str = CONCAT("drop index " , _index , " on " , tablename ); PREPARE sql_str FROM @str ;EXECUTE  sql_str;DEALLOCATE PREPARE sql_str;SET _index=''; FETCH _cur INTO _index; END WHILE;CLOSE _cur;
END //
DELIMITER ;

# 执行存储过程
CALL proc_drop_index("atguigu2", "student");

2.1 全值匹配

# 创建索引前后
# 145 ms (execution: 126 ms, fetching: 19 ms)
# 76 ms (execution: 34 ms, fetching: 42 ms)
SELECT SQL_NO_CACHE *
FROM student
WHERE age = 30
  AND classId = 4 
  AND name = 'abcd';

CREATE INDEX idx_age ON student (age);

再创建一个索引,发现使用的联合索引

CREATE INDEX idx_age_classId ON student(age, classId);
EXPLAIN SELECT SQL_NO_CACHE *
FROM student
WHERE age = 30
  AND classId = 4
  AND name = 'abcd';
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEstudentnullrefidx_age_classIdidx_age_classId10const,const1210Using where

继续创建这三个字段的联合索引,发现使用的3个的联合索引

CREATE INDEX idx_age_classId_name ON student(age, classId, name);

2.2 最佳左前缀法则(联合索引)

MySQL建立联合索引时会遵守最佳左前缀匹配原则,即最左优先,在检索数据时从联合索引的最左边开始匹配;

# 使用idx_age_classId索引 顺序一致
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name='abcd';
# 没用上索引 因为没有classid开头顺序的索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classid=1 AND student.name='abcd';

删掉前两个索引,保留student(age, classId, name);

发现虽然用上了索引,但是key_len=5,说明只用上了联合索引的一部分age这个字段(int4字节+1null)

先取查询条件的classid到索引第一个列匹配无结果,再取age匹配找到可用索引

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classid=1 AND age=30 AND student.name='abcd';
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEstudentnullrefidx_age_classId,idx_age_classId_nameidx_age_classId_name73const,const,const1100null

这样则完全没有使用上索引:

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classid=1 AND student.name='abcd';

先取查询条件的classid到索引第一个列匹配无结果,再取name匹配仍然无结果,因为索引只存在age开头的这个。

结论:MySQL可以为多个字段创建索引,一个索引可以包括16个字段。对于多列索引,过滤条件要使用索引必须按照索引建立时的顺序,依次满足,一旦跳过某个字段,索引后面的字段都无法被使用。如果查询条件中没有使用这些字段中第1个字段时,多列(或联合)索引不会被使用

Alibaba《Java开发手册》:索引文件具有B-Tree的最左前缀匹配特性,如果左边的值未确定,那么无法使用此索引

2.3 主键插入顺序

对于一个使用InnoDB存储引擎的表来说,在我们没有显式的创建索引时,表中的数据实际上都是存储在聚簇索引的叶子节点的。而记录又是存储在数据页中的,数据页和记录又是按照记录主键值从小到大的顺序进行排序,所以如果我们插入的记录的主键值是依次增大的话,那我们每插满一个数据页就换到下一个数据页继续插,而如果我们插入的主键信息忽大忽小的话,就比较麻烦,假设某个数据页存储的记录已经满了,它存储的主键值在1~100之间

c095bab845e7571c721abba0ba8120b8

如果此时再插入一条主键值为 9 的记录,那它插入的位置就如下图:

3c7700f3a5e2f48f70bf88acf4f487b4

可这个数据页已经满了,再插进来咋办呢?我们需要把当前页面分裂成两个页面,把本页中的一些记录移动到新创建的这个页中。页面分裂和记录移位意味着什么?意味着:性能损耗!所以如果我们想尽量避免这样无谓的性能损耗,最好让插入的记录的主键值依次递增,这样就不会发生这样的性能损耗了。所以我们建议:让主键具有AUTO_INCREMENT,让存储引擎自己为表生成主键,而不是我们手动插入 ,比如: person_info 表:

CREATE TABLE person_info
(
    id           INT UNSIGNED NOT NULL AUTO_INCREMENT,
    name         VARCHAR(100) NOT NULL,
    birthday     DATE         NOT NULL,
    phone_number CHAR(11)     NOT NULL,
    country      varchar(100) NOT NULL,
    PRIMARY KEY (id),
    KEY idx_name_birthday_phone_number (name(10), birthday, phone_number)
);

自定义的主键列id拥有AUTO_INCREMENT属性,在插入记录时存储引擎会自动为我们填入自增的主键值。这样的主键占用空间小,顺序写入,减少页分裂。

2.4 计算、函数导致索引失效

CREATE INDEX idx_name ON student(NAME);
# 可以使用上索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
# 无法使用索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';

第一种:索引优化生效,因为可以使用二级索引进行匹配,第二种:索引优化失效,因为使用到了函数,但是对于mysql来说,函数作用的是什么并不知道,所以不能使用索引。


CREATE INDEX idx_sno ON student(stuno);
# 无法使用索引
EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno+1 = 900001;
# 可以使用索引
EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno = 900000;

2.5 类型转换(自动或手动)导致索引失效

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name=123;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name='123';

name=123发生类型转化,索引失效

结论:设计实体类属性时,一定要与数据库字段类型相对应。否则,就会出现类型转换的情况

1.6 范围条件右边的列索引失效

CREATE INDEX idx_age_cid_name ON student(age, classId, name);

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.classId>20 AND student.name = 'abc';

key_len=10,age和classid加起来,没有name

idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEstudentnullrangeidx_age_cid_nameidx_age_cid_name10null1872810Using index condition

范围右边的列不能使用。比如:(<) (<=) (>) (>=) 和 between等

如果这种sql出现较多,应该注意联合索引建立顺序,将范围查询条件放置语句最后:

CREATE INDEX idx_age_name_classid ON student(age, name, classid);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abc' AND student.classId>20;

应用开发中范围查询,例如:金额查询,日期查询往往都是范围查询。应将查询条件放置where语句最后。

1.7 不等于(!=或者<>)索引失效

CREATE INDEX idx_name ON student(NAME);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name <> 'abc';
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name != 'abc';

1.8 is null可以使用索引, is not null无法使用索引

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age IS NULL;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age IS NOT NULL;

最好在设计数据表的时候就将字段设置为NOT NULL约束,比如你可以将INT类型的字段,默认值为0,将字符类型的默认值设置为空字符串(‘’)

同理,在查询中使用NOT LIKE也无法使用索引,导致全表扫描

1.9 like以通配符%开头索引失效

在使用LIKE关键字进行查询的查询语句中,如果匹配字符串的第一个字符为”%“,索引就不会起作用。只有”%“不在第一个位置,索引才会起作用

# 使用索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name LIKE 'ab%';
# 未使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name LIKE '%ab%';

Alibaba《Java开发手册》:【强制】页面搜索严禁左模糊或者全模糊,如果需要请走搜索引擎来解决

1.10 OR前后存在非索引的列,索引失效

在WHERE子句中,如果在OR前的条件列进行了索引,而OR后的条件列没有进行索引,那么索引会失效。也就是说,OR前后的两个条件中的列都是索引时,查询中才使用索引

因为OR的含义就是两个只要满足一个即可,因此只有一个条件列进行了索引是没有意义的,只要有条件列没有进行索引,就会进行全表扫描,因此索引的条件列也会失效

CREATE INDEX idx_age ON student(age);
# 因为classid字段没有索引,所以没有使用索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=10 OR classid=100;

# 因为age字段和name字段上都有索引,所以查询中使用了索引。
# 这里使用到了index_merge,简单说index_merge就是对age和name分别进行了扫描,然后将这两个结果集进行了合并。这样的好处就是避免了全表扫描
CREATE INDEX idx_name ON student(name);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=10 OR name= 'able';

1.11 数据库和表的字符集统一使用utf8mb4

统一使用utf8mb4(5.5.3版本以上支持)兼容性更好,统一字符集可以避免由于字符集转换产生的乱码。不同的字符集进行比较前需要进行转换会造成索引失效

1.12 一般性建议

对于单列索引,尽量选择针对当前query过滤性更好的索引

在选择组合索引的时候,当前query中过滤性最好的字段在索引字段顺序中,位置越靠前越好

在选择组合索引的时候,尽量选择能够包含当前query中的where子句中更多字段的索引

在选择组合索引的时候,如果某个字段可能出现范围查询时,尽量把这个字段放在索引次序的最后面

总之,书写SQL语句时,尽量避免造成索引失效的情况

2. 关联查询优化

2.0 数据准备

CREATE TABLE IF NOT EXISTS type
(
    id   INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
    card INT(10) UNSIGNED NOT NULL,
    PRIMARY KEY (id)
);
CREATE TABLE IF NOT EXISTS book
(
    bookid INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
    card   INT(10) UNSIGNED NOT NULL,
    PRIMARY KEY (bookid)
);

# 20条
INSERT INTO type(card)
VALUES (FLOOR(1 + (RAND() * 20)));
# 20条
INSERT INTO book(card)
VALUES (FLOOR(1 + (RAND() * 20)));

2.1 左外连接

没有索引type全是all:

EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEtypenullALLnullnullnullnull20100null
1SIMPLEbooknullALLnullnullnullnull20100Using where; Using join buffer (hash join)
CREATE INDEX Y ON book (card);
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEtypenullALLnullnullnullnull20100null
1SIMPLEbooknullrefYY4atguigu2.type.card1100Using index

可以看到第二行的 type 变为了 ref,rows 也变成了优化比较明显。这是由左连接特性决定的。LEFT JOIN条件用于确定如何从右表搜索行,左边一定都有,所以右边是我们的关键点,一定需要建立索引;

2.2 内连接

对于内连接来讲,如果表的连接条件中只能有一个字段有索引,则有索引的字段会被作为被驱动表

对于内连接来说,在两个表的连接条件都存在索引的情况下,会选择小表作为驱动表——小表驱动大表

CREATE INDEX Y ON book (card);
DROP INDEX Y ON book;

EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card = book.card;

CREATE INDEX X ON type (card);
DROP INDEX X ON type;

2.3 JOIN语句原理

JOIN方式连接多个表,本质就是各个表之间数据的循环匹配。MySQL5.5版本之前,MySQL只支持一种表间关联方式,就是嵌套循环(Nested Loop Join)。如果关联表的数据量很大,则join关联的执行时间会非常长。MySQL5.5以后的版本中,MySQL通过引入BNLJ算法来优化嵌套执行

(1) 驱动表和被驱动表

  • 驱动表就是主表,被驱动表就是从表、非驱动表
  • 对于内连接来说
  • SELECT * FROM A JOIN B ON …
  • A一定是驱动表吗?不一定,优化器会根据你查询语句做优化,决定先查哪张表。先查询的那张表就是驱动表,反之就是被驱动表。通过EXPLAIN关键字可以查看
  • 对于外连接来说
  • SELECT FROM A LEFT JOIN B ON …
    #或
    SELECT
    FROM B RIGHT JOIN A ON …
  • 通常认为A就是驱动表,B就是被驱动表。但也未必。测试如下:
CREATE TABLE a(f1 INT, f2 INT, INDEX(f1))ENGINE=INNODB;
CREATE TABLE b(f1 INT, f2 INT)ENGINE=INNODB;

INSERT INTO a VALUES(1,1),(2,2),(3,3),(4,4),(5,5),(6,6);

INSERT INTO b VALUES(3,3),(4,4),(5,5),(6,6),(7,7),(8,8);

# 测试1 使用了索引f1
EXPLAIN SELECT * FROM a LEFT JOIN b ON(a.f1=b.f1) WHERE (a.f2=b.f2);
# 测试2 没有使用索引
EXPLAIN SELECT * FROM a LEFT JOIN b ON(a.f1=b.f1) AND (a.f2=b.f2);

(2) Simple Nested-Loop Join(简单嵌套循环连接)

算法相当简单,从表A中取出一条数据1,遍历表B,将匹配到的数据放到result…以此类推,驱动表A中的每一条记录与被驱动表B的记录进行判断

d90c5fae255ae5bb4c07d5271de14d74

可以看到这种方式效率是非常低的,以上述表A数据100条,表B数据1000条计算,则A*B=10万次。开销统计如下:

MySQL-第10章-索引优化和查询优化 - 图24

当然mysql肯定不会这么粗暴的去进行表的连接,所以就出现了后面的两种对Nested-Look Join优化算法

(3) Index Nested-Loop Join(索引嵌套循环连接)

Index Nested-Loop Join其优化的思路主要是为了减少内层表数据的匹配次数,所以要求被驱动表上必须有索引才行。通过外层表匹配条件直接与内层表索引进行匹配,避免和内层表的每条记录去进行比较,这样极大的减少了对内层表的匹配次数

9f9a582f70a5354a14ac7fff0b3eb489

驱动表中的每条记录通过被驱动表的索引进行访问,因为索引查询的成本是比较固定的,故mysql优化器都倾向于使用记录数少的表作为驱动表(外表)

84855c0392f298f7947444cfcb0bb71b

如果被驱动表加索引,效率是非常高的,但如果索引不是主键索引,所以还得进行一次回表查询。相比,被驱动表的索引是主键索引,效率会更高

(4) Block Nested-Loop Join(块嵌套循环连接)

如果存在索引,那么会使用index的方式进行join,如果join的列没有索引,被驱动表要扫描的次数太多了。每次访问被驱动表,其表中的记录都会被加载到内存中,然后再从驱动表中取一条与其匹配,匹配结束后清除内存,然后再从驱动表中加载一条记录,然后把被驱动表的记录再加载到内存匹配,这样周而复始,大大增加了IO的次数。为了减少被驱动表的IO次数,就出现了Block Nested-Loop Join的方式

不再是逐条获取驱动表的数据,而是一块一块的获取,引入了join buffer缓冲区,将驱动表join相关的部分数据列(大小受join buffer的限制)缓存到join buffer中,然后全表扫描被驱动表,被驱动表的每一条记录一次性和join buffer中所有驱动表记录进行匹配(内存中操作),将简单嵌套循环中的多次比较合并成一次,降低了被驱动表的访问频率

注意:这里缓存的不只是关联表的列,SELECT后面的列也会缓存起来

在一个有N个join关联的sql中会分配N-1个join buffer。所以查询的时候尽量减少不必要的字段,可以让join buffer中可以存放更多的列

MySQL-第10章-索引优化和查询优化 - 图27

MySQL-第10章-索引优化和查询优化 - 图28

参数设置:

block_nested_loop:通过show variables like ‘%optimizer_switch%’查看block_nested_loop状态。默认是开启的

join_buffer_size:驱动表能不能一次加载完,要看join buffer能不能存储所有数据,默认情况下join_buffer_size=256k

join_buffer_size的最大值在32位系统可以申请4G,而在64位操作系统下可以申请大于4G的Join Buffer空间(64位Windows除外,其大值会被截断为4G并发出警告)

(5) Join小结

整体效率比较:INLJ>BNLJ>SNLJ

永远用小结果集驱动大结果集(其本质就是减少外层循环的数据数量)(小的度量单位指的是 表行数*每行大小)

SELECT t1.b, t2.* FROM t1 straight_join t2 ON (t1.b=t2.b) WHERE t2.id<=100; #推荐

SELECT t1.b, t2.* FROM t2 straight_join t1 ON (t1.b=t2.b) WHERE t2.id<=100; #不推荐

为被驱动表匹配的条件增加索引(减少内存表的循环匹配次数)

增大join buffer size的大小(一次缓存的数据越多,那么内层包的扫表次数就越少)

减少驱动表不必要的字段查询(字段越少,join buffer所缓存的数据就越多)

(6) Hash Join

从MySQL的8.0.20版本开始将废弃BNLJ,因为从MySQL8.0.18版本开始就加入了hash join默认都会使用hash join

Nested Loop:对于被连接的数据子集较小的情况,Nested Loop是个较好的选择

Hash Join是做大数据集连接时的常用方式,优化器使用两个表中较小(相对较小)的表利用Join Key在内存中建立散列表,然后扫描较大的表并探测散列表,找出与Hash表匹配的行

这种方式适用于较小的表完全可以放于内存中的情况,这样总成本就是访问两个表的成本之和

在表很大的情况下并不能完全放入内存,这时优化器会将它分割成若干不同的分区,不能放入内存的部分就把该分区写入磁盘的临时段,此时要求有较大的临时段从而尽量提高I/O的性能

它能够很好的工作于没有索引的大表和并行查询的环境中,并提供最好的性能。大多数人都说它是Join的重型升降机。Hash Join只能应用于等值连接(如WHERE A.COL1=B.COL2),这是由Hash的特点决定的

MySQL-第10章-索引优化和查询优化 - 图29

3. 子查询优化

MySQL从4.1版本开始支持子查询,使用子查询可以进行SELECT语句的嵌套查询,即一个SELECT查询的结果作为另一个SELECT语句的条件。子查询可以一次性完成很多逻辑上需要多个步骤才能完成的SQL操作。

子查询是 MySQL 的一项重要的功能,可以帮助我们通过一个 SQL 语句实现比较复杂的查询。但是,子查询的执行效率不高。原因:

执行子查询时,MySQL需要为内层查询语句的查询结果建立一个临时表,然后外层查询语句从临时表中查询记录。查询完毕后,再撤销这些临时表。这样会消耗过多的CPU和IO资源,产生大量的慢查询。

子查询的结果集存储的临时表,不论是内存临时表还是磁盘临时表都不会存在索引,所以查询性能会受到一定的影响。

对于返回结果集比较大的子查询,其对查询性能的影响也就越大。在MySQL中,可以使用连接(JOIN)查询来替代子查询。连接查询 不需要建立临时表 ,其速度比子查询要快 ,如果查询中使用索引的话,性能就会更好。

在MySQL中,可以使用连接(JOIN)查询来替代子查询。连接查询不需要建立临时表,其速度比子查询要快,如果查询中使用索引的话,性能就会更好。


举例:查询学生表中是班长的学生信息

使用子查询创建班级表中班长的索引

CREATE INDEX idx_moniitor ON class (monitor);

EXPLAIN
SELECT *
FROM student stu1
WHERE stu1.`stuno` IN (SELECT monitor FROM class c WHERE monitor IS NOT NULL);

推荐:使用多表查询

EXPLAIN SELECT stu1.* FROM student stu1 JOIN class c ON stu1.stuno = c.monitor WHERE c.monitor IS NOT NULL;

举例:取所有不为班长的同学

# 不推荐
EXPLAIN
SELECT SQL_NO_CACHE a.*
FROM student a
WHERE a.stuno NOT IN (SELECT monitor FROM class b WHERE monitor IS NOT NULL);
# 推荐
EXPLAIN
SELECT SQL_NO_CACHE a.*
FROM student a
         LEFT OUTER JOIN class b ON a.stuno = b.monitor
WHERE b.monitor IS NULL;

结论:尽量不要使用NOT IN 或者 NOT EXISTS,用LEFT JOIN xxx ON xx WHERE xx IS NULL替代

4. 排序优化

4.1 排序优化

问题:在 WHERE 条件字段上加索引,但是为什么在 ORDER BY 字段上还要加索引呢?

回答:在MySQL中,支持两种排序方式,分别是FileSort和Index排序

  • Index排序中,索引可以保证数据的有序性,不需要再进行排序,效率更高
  • FileSort排序则一般再内存中进行排序,占用CPU较多。如果待排结果较大,会产生临时文件I/O到磁盘进行排序的情况,效率较低

优化建议

  • SQL 中,可以在 WHERE 子句和 ORDER BY 子句中使用索引,目的是在 WHERE 子句中 避免全表扫描 ,在 ORDER BY 子句 避免使用 FileSort 排序 。当然,某些情况下全表扫描,或者 FileSort 排序不一定比索引慢。但总的来说,我们还是要避免,以提高查询效率
  • 尽量使用 Index 完成 ORDER BY 排序。如果 WHERE 和 ORDER BY 后面是相同的列就使用单索引列;如果不同就使用联合索引。
  • 无法使用 Index 时,需要对 FileSort 方式进行调优

4.2 测试

删除student、class索引

以下是否能使用到索引,能否去掉using filesort

过程一:没有使用索引

EXPLAIN SELECT SQL_NO_CACHE * FROM student ORDER BY age, classid;

EXPLAIN SELECT SQL_NO_CACHE * FROM student ORDER BY age, classid LIMIT 10;

过程二:创建索引,但order by时不limit,索引失效

CREATE INDEX idx_age_classid_name ON student(age,classid,NAME);

SELECT SQL_NO_CACHE * FROM student ORDER BY age, classid;为何没有使用索引?实际上SQL在执行时,优化器会考虑成本问题,虽然有索引,但是此索引是一个二级索引,那么如果通过索引排完序后需要回表查询其他的所有列信息。干脆直接在内存中做排序发现花费的时间还要少,所以就没有使用索引。(注意:并不是任何情况下有索引就一定会使用,优化器是考虑时间成本进行选择最优的执行计划)。如果sql换成SELECT SQL_NO_CACHE age, classid FROM student ORDER BY age, classid;就会使用上索引。这里不需要回表(覆盖索引)


过程三:order by时顺序错误,索引失效

创建索引age,classid,stuno 以下哪些索引失效

CREATE INDEX idx_age_classid_stuno ON student(age,classid,stuno);
# 失效
EXPLAIN SELECT * FROM student ORDER BY classid LIMIT 10;
# 失效
EXPLAIN SELECT * FROM student ORDER BY classid,NAME LIMIT 10;
# 有效
EXPLAIN SELECT * FROM student ORDER BY age,classid,stuno LIMIT 10;
# 有效
EXPLAIN SELECT * FROM student ORDER BY age,classid LIMIT 10;
# 有效
EXPLAIN SELECT * FROM student ORDER BY age LIMIT 10;

过程四:order by时规则不一致,索引失效

顺序错,不索引;方向反,不索引

CREATE INDEX idx_age_classid_stuno ON student(age,classid,stuno);
# 失效 方向反
EXPLAIN SELECT * FROM student ORDER BY age DESC, classid ASC LIMIT 10;
# 失效 最左前缀法则
EXPLAIN SELECT * FROM student ORDER BY classid DESC, NAME DESC LIMIT 10;
# 失效 方向反
# 没有使用索引是因为,最后还要按照classid逆序,所以不如直接文件排序。
EXPLAIN SELECT * FROM student ORDER BY age ASC, classid DESC LIMIT 10;
# 有效
EXPLAIN SELECT * FROM student ORDER BY age DESC, classid DESC LIMIT 10;

结论:ORDER BY子句,尽量使用index方式排序,避免使用FileSort方式排序


过程五:无过滤,不索引

# 虽然使用了索引,但是key_len都是5,并没有使用到ORDER BY后面的,是因为经过WHERE的筛选剩下的数据不是太多,所以就没有使用
EXPLAIN SELECT * FROM student WHERE age=45 ORDER BY classid;
EXPLAIN SELECT * FROM student WHERE age=45 ORDER BY classid,name;
# 前者没有使用索引,后者使用了索引,前者是因为先进行排序的,再去过滤后,最后回表查询出所有的字段信息,花费的时间会更多。
# 后者因为只取前十条,其中索引排完序再筛选完后取前十条会更快一些
EXPLAIN SELECT * FROM student WHERE classid=45 ORDER BY age;
EXPLAIN SELECT * FROM student WHERE classid=45 ORDER BY age limit 10;

4.3 小结

INDEX a_b_c(a,b,c)

order by 能使用索引最左前缀
- ORDER BY a
- ORDER BY a,b
- ORDER BY a,b,c
- ORDER BY a DESC, b DESC, c DESC

如果WHERE使用索引的最左前缀定义为常量,则order by能使用索引
- WHERE a=const ORDER BY b,c
- WHERE a=const AND b=const ORDER BY c
- WHERE a=const ORDER BY b,c
- WHERE a=const AND b>const ORDER BY b,c

不能使用索引进行排序
- ORDER BY a ASC, b DESC, c DESC /排序不一致/
- WHERE g=const ORDER BY b,c /丢失a索引/
- WHERE a=const ORDER BY c /丢失b索引/
- WHERE a=const ORDER BY a,d /d不是索引的一部分/
- WHERE a in (…) ORDER BY b,c /对于排序来说,多个相等条件也是范围查询/

4.4 filesort算法:双路排序和单路排序

在MySQL中,当需要进行ORDER BY或GROUP BY操作时,可能会使用到filesort算法。filesort算法用于对查询结果集进行排序,以满足ORDER BY或GROUP BY子句的要求。根据不同的场景和配置,MySQL中的filesort算法分为双路排序(Two-Phase Sort)和单路排序(One-Phase Sort)两种。

双路排序(Two-Phase Sort):

双路排序是默认情况下的排序算法,它执行两个排序阶段。首先,MySQL会尝试使用索引完成排序,如果存在适合的索引来满足ORDER BY或GROUP BY条件,那么排序就是在索引的帮助下完成的。如果索引无法满足排序需求,MySQL会使用双路排序。

在双路排序中,MySQL首先尝试使用内存(sort_buffer)进行排序。如果排序所需的内存超出了sort_buffer的设置,MySQL将使用磁盘临时文件进行排序。这样,双路排序使用了两种资源:内存和磁盘。通常情况下,双路排序是比较高效的排序算法,因为它充分利用了内存和磁盘的优势。

单路排序(One-Phase Sort):

单路排序是一种特殊的排序算法,它只使用内存来完成排序,而不涉及磁盘临时文件。单路排序通常在查询需要排序的数据较小时,MySQL可以保证所有排序数据都在sort_buffer内存中进行排序,从而避免了使用磁盘临时文件。

当查询需要排序的数据量较小时,MySQL会优先选择单路排序,因为单路排序避免了磁盘I/O,相对较快。但是,如果排序数据量较大,超出了sort_buffer的设置,MySQL会回退到双路排序。

在实际使用中,可以通过调整sort_buffer的大小来影响MySQL在排序时选择单路排序还是双路排序。如果想强制使用单路排序,可以将sort_buffer设置为一个较大的值,但这也会增加内存的消耗。综合考虑查询的性能需求和系统的资源情况,选择合适的排序算法和合理设置sort_buffer是优化查询性能的重要一环。

5. GROUP BY优化

  • group by 使用索引的原则几乎跟order by一致 ,group by 即使没有过滤条件用到索引,也可以直接使用索引。
  • group by 先排序再分组,遵照索引建的最佳左前缀法则
  • 当无法使用索引列,增大max_length_for_sort_data和sort_buffer_size参数的设置
  • where效率高于having,能写在where限定的条件就不要写在having中了
  • 减少使用order by,和业务沟通能不排序就不排序,或将排序放到程序端去做。Order by、groupby、distinct这些语句较为耗费CPU,数据库的CPU资源是极其宝贵的。
  • 包含了order by、group by、distinct这些查询的语句,where条件过滤出来的结果集请保持在1000行以内,否则SQL会很慢

6. 优化分页查询

一般分页查询时,通过创建覆盖索引能够比较好地提高性能。一个常见由非常头疼地问题就是limit 2000000,10,此时需要MySQL排序前2000010记录,仅仅返回2000000-2000010的记录,其他记录丢弃,查询排序的代价非常大

EXPLAIN SELECT * FROM student LIMIT 2000000,10

优化思路一:在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容

EXPLAIN SELECT * FROM student t,(SELECT id FROM student ORDER BY id LIMIT 2000000,10) a WHERE t.id=a.id;

优化思路二:该方案适用于主键自增的表,可以把limit查询转换成某个位置的查询

EXPLAIN SELECT * FROM student WHERE id>2000000 LIMIT 10;

7. 优先考虑覆盖索引

7.1 什么时覆盖索引

理解方式一:索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。一个索引包含了满足查询结果的数据就叫做覆盖索引

理解方式二:非聚簇复合索引的一种形式,它包括在查询里的SELECT、JOIN和WHERE子句用到的所有列(即建索引的字段正好是覆盖查询条件中所涉及的字段)。

简单说就是,索引列+主键包含SELECT 到 FROM之间查询的列。

7.2 覆盖索引的利弊

好处:

避免Innodb表进行索引的二次查询(回表):

Innodb是以聚集索引的顺序来存储的,对于innodb来说,二级索引在叶子节点中所保存的是行的主键信息,如果是用二级索引查询数据,在查找到相应的键值后,还需要通过主键进行二次查询才能获取我们真实所需要的数据

在覆盖索引中,二级索引的键值中可以获取所要的数据,避免了对主键的二次查询,减少了IO操作,提升了查询效率

可以把随机IO变成顺序IO加快查询效率(实际就是砍掉了回表时的随机IO,只留下了二级索引查询的顺序IO)

由于覆盖索引是按键值的顺序存储的,对于IO密集型的范围查找来说,对比随机从磁盘读取每一行的数据IO要少的多,因此利用覆盖索引在访问时也可以把磁盘的随机读取的IO转变成索引查找的顺序IO

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段

弊端:索引字段的维护总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。(DBA或数据架构师考虑的)

8. 给字符串添加索引

# 教师表
create table teacher
(
    ID    bigint unsigned primary key,
    email varchar(64),) engine = innodb;

讲师要使用邮箱登录,所以业务代码中一定会出现类似于这样的语句:
select col1, col2 from teacher where email=’xxx’;

如果email这个字段上没有索引,那么这个语句就只能做全表扫描

可以使用字符串前缀创建索引,详见3.2.8:

https://blog.csdn.net/a2272062968/article/details/131917628

9. 索引下推ICP

索引下推(Index Condition Pushdown,ICP)是MySQL 5.6版本中引入的一项优化技术,它在某些情况下可以提高查询性能。ICP的主要目标是减少MySQL在执行查询时需要访问表的行数,从而减少IO操作和提高查询效率。

在传统的查询执行中,MySQL首先使用索引进行条件过滤,然后再到表中检索相应的行数据。ICP通过在索引上应用查询的其他条件,来减少对表的实际访问。当MySQL发现可以通过索引直接满足查询的所有条件时,ICP将会停止对表的行数据访问,从而避免了额外的IO操作。

ICP主要适用于复合索引,即包含多个列的索引。当查询中涉及到索引的所有列,并且查询的条件都可以在索引上进行计算时,ICP就会发挥作用。

以下是ICP的一些优点和适用条件:

优点:

  • 减少了对表的实际访问,从而减少了IO操作,提高了查询性能。
  • 在某些情况下,可以避免对表的临时文件和临时表的创建和使用。

适用条件:

  • 查询涉及的索引是复合索引,包含多个列。
  • 查询涉及的索引的所有列都要在查询中使用,并且查询条件可以在索引上进行计算。
  • 表的存储引擎支持ICP,目前InnoDB和MyISAM存储引擎支持ICP。

ICP是MySQL中的一个自动优化特性,不需要显式地启用。在执行查询时,MySQL的优化器会自动判断是否可以使用ICP来优化查询计划。对于适合使用复合索引和满足ICP条件的查询,ICP会帮助提高查询性能,减少不必要的IO操作,从而加快查询的执行速度。

10. 普通索引vs唯一索引

普通索引和唯一索引应该怎么选择?其实,这两类索引在查询能力上是没差别的,主要考虑的是对更新性能的影响。所以,建议你尽量选择普通索引

在实际使用中会发现,普通索引和change buffer的配合使用,对于 数据量大 的表的更新优化还是很明显的

如果所有的更新后面,都马上伴随着对这个记录的查询,那么你应该关闭change buffer。而在其他情况下,change buffer都能提升更新性能

由于唯一索引用不上change buffer的优化机制,因此如果业务可以接受,从性能角度出发建议优先考虑非唯一索引。但是如果”业务可能无法确保”的情况下,怎么处理呢

  • 首先,业务正确性优先。我们的前提是“业务代码已经保证不会写入重复数据”的情况下,讨论性能问题。如果业务不能保证,或者业务就是要求数据库来做约束,那么没得选,必须创建唯一索引。这种情况下,本节的意义在于,如果碰上了大量插入数据慢、内存命中率低的时候,给你多提供一个排查思路。
  • 然后,在一些“归档库”的场景,你是可以考虑使用唯一索引的。比如,线上数据只需要保留半年,然后历史数据保存在归档库。这时候,归档数据已经是确保没有唯一键冲突了。要提高归档效率,可以考虑把表里面的唯一索引改成普通索引

11. 其他查询优化策略

11.1 EXISTS和IN的区分

问题:不太理解那种情况下使用EXISTS,那种情况用IN。选择的标准是能否使用表的索引吗?

回答:索引是个前提,其实选择与否还是要看表的大小。可以将选择的标准理解为小表驱动大表。在这种方式下效率是最高的

例如:

SELECT * FROM A WHERE cc IN (SELECT cc FROM B)
SELECT * FROM A WHERE EXISTS (SELECT cc FROM B WHERE B.cc=A.cc)

当A小于B时,用EXISTS。因为EXISTS的实现,相当于外表循环,实现的逻辑类似于:

for i in A
for j in B
if j.cc == i.cc then …

当B小于A时用IN,因为实现的逻辑类似于:

for i in B
for j in A
if j.cc == i.cc then …

哪个表小就用哪个表来驱动,A表小就用EXISTS,B表小就用IN

11.2 COUNT(*)与COUNT(具体字段)效率

问:在MYSQL中统计数据表的行数,可以使用三种方式:SELECT COUNT(*)、SELECT COUNT(1)、SELECT COUNT(具体字段),使用这三者之间的查询效率是怎样的?

答:

前提:如果要统计的是某个字段的非空数据行数,则另当别论,毕竟比较执行效率的前提是结果一样才可以

环节1:COUNT(*)和COUNT(1)都是对所有结果进行COUNT,COUNT(*)和COUNT(1)本质上并没有区别(二者执行时间可能略有差别,不过还是可以把它俩的执行效率看成是相等的)。如果有WHERE子句,则是对所有符合筛选条件的数据进行统计;如果没有WHERE子句,则是对数据表的数据行数进行统计

环节2:如果是MyISAM存储引擎,统计数据表的行数只需要O(1)的复杂度,这是因为每张MyISAM的数据表都有一个meta信息存储了row_count值,而一致性则由表级锁来保证。如果是InnoDB存储引擎,因为InnoDB支持事务,采用行级锁和MVCC机制,所以无法像MyISAM一样,维护一个row_count变量,因此需要采用扫描全表,进行循环+计数的方式来完成统计

环节3:在InnoDB引擎中,如果采用COUNT(具体字段)来统计数据行数,要尽量采用二级索引。因为主键采用的索引是聚簇索引,聚簇索引包含的信息多,明显会大于二级索引(非聚簇索引)。对于COUNT(*)和COUNT(1)来说,它们不需要查找具体的行,只是统计行数,系统会自动采用占用空间更小的二级索引来进行统计。如果有多个二级索引,会使用key_len小的二级索引进行扫描。当没有二级索引的时候,才会采用主键索引进行统计

11.3 关于SELECT(*)

在表查询中,建议明确字段,不要使用*作为查询的字段列表,推荐使用SELECT<字段列表>查询。

  • MySQL在解析的过程中,会通过查询数据字典将*按序转换成所有列名,这会大大的消耗资源和时间
  • 无法使用覆盖索引

11.4 LIMIT 1对优化的影响

针对的是会扫描全表的SQL语句,如果你可以确定结果集只有一条,那么加上LIMIT 1的时候,当找到一条结果的时候就不会继续扫描了,这样会加快查询速度

如果数据表已经对字段建立了唯一索引,那么可以通过索引进行查询,不会全表扫描的话,就不需要加上LIMIT 1了

11.5 多使用COMMIT

只要有可能,在程序中尽量多使用 COMMIT,这样程序的性能得到提高,需求也会因为 COMMIT 所释放的资源而减少。

COMMIT 所释放的资源:

  • 回滚段上用于恢复数据的信息
  • 被程序语句获得的锁
  • redo / undo log buffer 中的空间
  • 管理上述 3 种资源中的内部花费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/797897.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

TypeError: run() got an unexpected keyword argument ‘hide_label‘ yolov5最新版本报错

报错展示 解决方法 把detect.py中的如上部分的 --hide-label改为 --hide-labels&#xff0c;成功解决.

EtherNet IP转PROFINET网关连接西门子与欧姆龙方法

本文主要介绍了捷米特JM-PN-EIP&#xff08;EtherNet/IP转PROFINET&#xff09;网关西门子200智能PLC&#xff08;PROFINET&#xff09;和欧姆龙系统EtherNet/IP通信的配置过程。 1, 将 EDS 文件复制到欧姆龙软件的对应文件夹下 2, 首先添加捷米特JM-PN-EIP网关的全局变量&…

Matlab出现load(‘data/2Dletters/C.mat‘)错误,即加载数据错误

在运行matlab程序时&#xff0c;如果出现加载数据错误&#xff0c;则是因为没有定位到相应文件夹。 解决办法如下&#xff1a; 通过红色框左边的选项&#xff08;浏览文件夹&#xff09;定位到我们所运行.m程序所在的文件夹即可

数据库监控工具-PIGOSS BSM

PIGOSS BSM 运维监控系统的重要功能之一是数据库监控&#xff0c;它能够帮助数据库管理员(DBA)和系统管理员监控包含Oracle、SQL Server、MySQL、DB2、PostgreSql、MongoDB、达梦、南大通用、人大金仓、神州通用等多种类异构型的数据库环境。PIGOSS BSM通过执行数据库查询来采集…

C#如何使用SQLite数据库?

文章目录 0.引言1.SQLite工具准备2.创建窗体项目并添加SQLite的命名空间3.编写使用SQLite代码4.结果展示 0.引言 SQLite是一个轻量级的嵌入式数据库&#xff0c;它的库文件非常小巧&#xff0c;不需要独立的服务器进程或配置。这使得它非常适合在资源受限的环境中使用&#xff…

飞凌嵌入式荣获「河北省企业技术中心」认定

近期&#xff0c;河北省发展和改革委员会发布了2023年河北省企业技术中心认定公示&#xff0c; 保定飞凌嵌入式技术有限公司成功通过省级企业技术中心认定。 省级企业技术中心在企业创新体系和创新能力的建设中发挥引导与示范作用&#xff0c;此次荣誉的获得是对飞凌嵌入式推进…

理解跨平台技术

1、为什么需要跨平台技术 write once&#xff0c;run everywhere 开发一个APP运行在Android手机需要一套代码&#xff0c;运行在ios操作系统的手机又需要一套代码&#xff0c;为了使同一套代码能运行在不同的操作系统上&#xff0c;解决多端独立开发的问题&#xff0c;跨平台…

接口测试之requests中的会话

requests中的会话 之前的例子中&#xff0c;我们都是单独调用接口或解析响应&#xff0c; 但在实际应用场景中&#xff0c;我们往往会需要连续调用一些接口。 比如&#xff1a; 1.先登录 2.再做一些操作 3.最后登出 就像我们在浏览器中对网页做操作一样&#xff0c;reques…

Spark编程-SparkSQL

SparkSql能做些啥 Spark SQL的核心概念是DataFrame&#xff0c;它是一个分布式的数据集合&#xff0c;类似于关系数据库中的表。支持使用SQL语言直接对DataFrame进行查询,提供了丰富的内置函数和表达式&#xff0c;可以用于数据的转换、过滤和聚合等操作,支持多种数据源&#…

【SpringCloud Alibaba】(四)使用 Feign 实现服务调用的负载均衡

在上一文中&#xff0c;我们实现了服务的自动注册与发现功能。但是还存在一个很明显的问题&#xff1a;如果用户微服务和商品微服务在服务器上部署多份的话&#xff0c;之前的程序无法实现服务调用的负载均衡功能。 本文就带着大家一起实现服务调用的负载均衡功能 1. 负载均衡…

Vue2基础五、工程化开发

零、文章目录 Vue2基础五、工程化开发 1、工程化开发和脚手架 &#xff08;1&#xff09;开发 Vue 的两种方式 核心包传统开发模式&#xff1a;基于 html / css / js 文件&#xff0c;直接引入核心包&#xff0c;开发 Vue。工程化开发模式&#xff1a;基于构建工具&#xf…

让你 React 组件水平暴增的 5 个技巧

目录 透传 className、style 通过 forwardRef 暴露一些方法 useCallback、useMemo 用 Context 来跨组件传递值 React.Children、React.cloneElement 总结 最近看了一些 Ant Design 的组件源码&#xff0c;学到一些很实用的技巧&#xff0c;这篇文章来分享一下。 首先&am…

LeetCode111. 二叉树的最小深度

111. 二叉树的最小深度 文章目录 [111. 二叉树的最小深度](https://leetcode.cn/problems/minimum-depth-of-binary-tree/)一、题目二、题解方法一&#xff1a;迭代方法二&#xff1a;递归 一、题目 给定一个二叉树&#xff0c;找出其最小深度。 最小深度是从根节点到最近叶子…

理光310/320/325系列激光打印机加粉后不换芯片清零方法

设置步骤&#xff1a; 依次按停止107开始键进入维修模式&#xff0c; 按下键两次选择Engine Maintenance,点OK键进入&#xff0c; 按上键选择Refill mode项后点OK键&#xff0c; 按下键选择到Pure refill mode后点Ok键(默认是Auto refill mode)&#xff0c; 然后按两次后退…

GB/T 25000.51解读——软件产品的功能性怎么测?

前面的文章中&#xff0c;我们为大家整体介绍了GB/T 25000.51-2016《软件产品质量要求和测试细则》国家标准的结构和所涵盖的内容&#xff0c;从本文开始&#xff0c;我们将针对标准中规定的软件产品的八大质量特性进行详细解读。本文为大家解读软件产品的功能性测试。 软件产…

微服务契约测试框架-Pact

契约测试 契约测试的思想就是将原本的 Consumer 与 Provider 间同步的集成测试&#xff0c;通过契约进行解耦&#xff0c;变成 Consumer 与 Provider 端两个各自独立的、异步的单元测试。 契约测试的优点&#xff1a; 契约测试与单元测试以及其它测试之间没有重复&#xff0c…

java商城系统和php商城系统有什么差异?如何选择?

java商城系统和php商城系统是两种常见的电子商务平台&#xff0c;它们都具有一定的优势和劣势。那么&#xff0c;java商城系统和php商城系统又有哪些差异呢&#xff1f; 一、开发难度 Java商城系统和PHP商城系统在开发难度方面存在一定的差异。Java商城系统需要使用Java语言进…

小红书课程发光社群知识库,点亮哥专为超级个体设计解决方案

小红书课程点亮哥知识库 开创了学习小红书教育培训先河 针对超级个体轻创业的学习需求场景 创新推出了“知识库全新学习方式”。 一个人如何做好小红书? 超级个体轻创业,如何做好小红书? 通过打造个人IP、或者塑造老板个人品牌,来实现互联网变现,如何做好小红书? 就像挑…

系统架构设计师-软件架构设计(5)

目录 一、构件与中间件技术 1、软件复用 2、构件与中间件技术的概念 3、构件的复用 3.1 检索与提取构件 3.2 理解与评价构件 3.3 修改构件 3.4 组装构件 4、中间件 4.1 采用中间件技术的优点&#xff1a; 4.2 中间件的分类&#xff1a; 5、构件标准 5.1 CORBA&#xff08;公共…

Android 电子称定标流程

1、首先确保电子称正确安装&#xff0c;底部悬空&#xff0c;托盘悬空。 2、去皮&#xff0c;把去皮数据保存到本地 3、定标、例如拿100克的砝码放入托盘&#xff0c; 获取值-去皮值及得到定标值 4、通过定标值计算出需要设置的满量程&#xff0c;或者计算对应的重量&#x…