【mmdetection系列】mmdetection之head讲解

news2024/9/22 13:44:47

目录

1.configs

2.具体实现

3.调用

3.1 注册

3.2 调用


配置部分在configs/_base_/models目录下,具体实现在mmdet/models/*_heads目录下。

这个heads可以是很多个目录下的。

1.configs

 我们看下yolox的head吧。

https://github.com/open-mmlab/mmdetection/blob/master/configs/yolox/yolox_s_8x8_300e_coco.py#L17

bbox_head=dict(
        type='YOLOXHead', num_classes=80, in_channels=128, feat_channels=128)

2.具体实现

dense_heads中的yolox_head.py:

https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/yolox_head.py#L22

@HEADS.register_module()
class YOLOXHead(BaseDenseHead, BBoxTestMixin):
    """YOLOXHead head used in `YOLOX <https://arxiv.org/abs/2107.08430>`_.
    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        feat_channels (int): Number of hidden channels in stacking convs.
            Default: 256
        stacked_convs (int): Number of stacking convs of the head.
            Default: 2.
        strides (tuple): Downsample factor of each feature map.
        use_depthwise (bool): Whether to depthwise separable convolution in
            blocks. Default: False
        dcn_on_last_conv (bool): If true, use dcn in the last layer of
            towers. Default: False.
        conv_bias (bool | str): If specified as `auto`, it will be decided by
            the norm_cfg. Bias of conv will be set as True if `norm_cfg` is
            None, otherwise False. Default: "auto".
        conv_cfg (dict): Config dict for convolution layer. Default: None.
        norm_cfg (dict): Config dict for normalization layer. Default: None.
        act_cfg (dict): Config dict for activation layer. Default: None.
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
        loss_obj (dict): Config of objectness loss.
        loss_l1 (dict): Config of L1 loss.
        train_cfg (dict): Training config of anchor head.
        test_cfg (dict): Testing config of anchor head.
        init_cfg (dict or list[dict], optional): Initialization config dict.
    """

    def __init__(self,
                 num_classes,
                 in_channels,
                 feat_channels=256,
                 stacked_convs=2,
                 strides=[8, 16, 32],
                 use_depthwise=False,
                 dcn_on_last_conv=False,
                 conv_bias='auto',
                 conv_cfg=None,
                 norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
                 act_cfg=dict(type='Swish'),
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     reduction='sum',
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='IoULoss',
                     mode='square',
                     eps=1e-16,
                     reduction='sum',
                     loss_weight=5.0),
                 loss_obj=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     reduction='sum',
                     loss_weight=1.0),
                 loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0),
                 train_cfg=None,
                 test_cfg=None,
                 init_cfg=dict(
                     type='Kaiming',
                     layer='Conv2d',
                     a=math.sqrt(5),
                     distribution='uniform',
                     mode='fan_in',
                     nonlinearity='leaky_relu')):

        super().__init__(init_cfg=init_cfg)
        self.num_classes = num_classes
        self.cls_out_channels = num_classes
        self.in_channels = in_channels
        self.feat_channels = feat_channels
        self.stacked_convs = stacked_convs
        self.strides = strides
        self.use_depthwise = use_depthwise
        self.dcn_on_last_conv = dcn_on_last_conv
        assert conv_bias == 'auto' or isinstance(conv_bias, bool)
        self.conv_bias = conv_bias
        self.use_sigmoid_cls = True

        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg

        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)
        self.loss_obj = build_loss(loss_obj)

        self.use_l1 = False  # This flag will be modified by hooks.
        self.loss_l1 = build_loss(loss_l1)

        self.prior_generator = MlvlPointGenerator(strides, offset=0)

        self.test_cfg = test_cfg
        self.train_cfg = train_cfg

        self.sampling = False
        if self.train_cfg:
            self.assigner = build_assigner(self.train_cfg.assigner)
            # sampling=False so use PseudoSampler
            sampler_cfg = dict(type='PseudoSampler')
            self.sampler = build_sampler(sampler_cfg, context=self)

        self.fp16_enabled = False
        self._init_layers()

    def _init_layers(self):
        self.multi_level_cls_convs = nn.ModuleList()
        self.multi_level_reg_convs = nn.ModuleList()
        self.multi_level_conv_cls = nn.ModuleList()
        self.multi_level_conv_reg = nn.ModuleList()
        self.multi_level_conv_obj = nn.ModuleList()
        for _ in self.strides:
            self.multi_level_cls_convs.append(self._build_stacked_convs())
            self.multi_level_reg_convs.append(self._build_stacked_convs())
            conv_cls, conv_reg, conv_obj = self._build_predictor()
            self.multi_level_conv_cls.append(conv_cls)
            self.multi_level_conv_reg.append(conv_reg)
            self.multi_level_conv_obj.append(conv_obj)

    def _build_stacked_convs(self):
        """Initialize conv layers of a single level head."""
        conv = DepthwiseSeparableConvModule \
            if self.use_depthwise else ConvModule
        stacked_convs = []
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            if self.dcn_on_last_conv and i == self.stacked_convs - 1:
                conv_cfg = dict(type='DCNv2')
            else:
                conv_cfg = self.conv_cfg
            stacked_convs.append(
                conv(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=conv_cfg,
                    norm_cfg=self.norm_cfg,
                    act_cfg=self.act_cfg,
                    bias=self.conv_bias))
        return nn.Sequential(*stacked_convs)

    def _build_predictor(self):
        """Initialize predictor layers of a single level head."""
        conv_cls = nn.Conv2d(self.feat_channels, self.cls_out_channels, 1)
        conv_reg = nn.Conv2d(self.feat_channels, 4, 1)
        conv_obj = nn.Conv2d(self.feat_channels, 1, 1)
        return conv_cls, conv_reg, conv_obj

    def init_weights(self):
        super(YOLOXHead, self).init_weights()
        # Use prior in model initialization to improve stability
        bias_init = bias_init_with_prob(0.01)
        for conv_cls, conv_obj in zip(self.multi_level_conv_cls,
                                      self.multi_level_conv_obj):
            conv_cls.bias.data.fill_(bias_init)
            conv_obj.bias.data.fill_(bias_init)

    def forward_single(self, x, cls_convs, reg_convs, conv_cls, conv_reg,
                       conv_obj):
        """Forward feature of a single scale level."""

        cls_feat = cls_convs(x)
        reg_feat = reg_convs(x)

        cls_score = conv_cls(cls_feat)
        bbox_pred = conv_reg(reg_feat)
        objectness = conv_obj(reg_feat)

        return cls_score, bbox_pred, objectness

    def forward(self, feats):
        """Forward features from the upstream network.
        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
        Returns:
            tuple[Tensor]: A tuple of multi-level predication map, each is a
                4D-tensor of shape (batch_size, 5+num_classes, height, width).
        """

        return multi_apply(self.forward_single, feats,
                           self.multi_level_cls_convs,
                           self.multi_level_reg_convs,
                           self.multi_level_conv_cls,
                           self.multi_level_conv_reg,
                           self.multi_level_conv_obj)

    @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'objectnesses'))
    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   objectnesses,
                   img_metas=None,
                   cfg=None,
                   rescale=False,
                   with_nms=True):
        """Transform network outputs of a batch into bbox results.
        Args:
            cls_scores (list[Tensor]): Classification scores for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * 4, H, W).
            objectnesses (list[Tensor], Optional): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, 1, H, W).
            img_metas (list[dict], Optional): Image meta info. Default None.
            cfg (mmcv.Config, Optional): Test / postprocessing configuration,
                if None, test_cfg would be used.  Default None.
            rescale (bool): If True, return boxes in original image space.
                Default False.
            with_nms (bool): If True, do nms before return boxes.
                Default True.
        Returns:
            list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is an (n, 5) tensor, where the first 4 columns
                are bounding box positions (tl_x, tl_y, br_x, br_y) and the
                5-th column is a score between 0 and 1. The second item is a
                (n,) tensor where each item is the predicted class label of
                the corresponding box.
        """
        assert len(cls_scores) == len(bbox_preds) == len(objectnesses)
        cfg = self.test_cfg if cfg is None else cfg
        scale_factors = np.array(
            [img_meta['scale_factor'] for img_meta in img_metas])

        num_imgs = len(img_metas)
        featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
        mlvl_priors = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=cls_scores[0].dtype,
            device=cls_scores[0].device,
            with_stride=True)

        # flatten cls_scores, bbox_preds and objectness
        flatten_cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1,
                                                  self.cls_out_channels)
            for cls_score in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
            for bbox_pred in bbox_preds
        ]
        flatten_objectness = [
            objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1)
            for objectness in objectnesses
        ]

        flatten_cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid()
        flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1)
        flatten_objectness = torch.cat(flatten_objectness, dim=1).sigmoid()
        flatten_priors = torch.cat(mlvl_priors)

        flatten_bboxes = self._bbox_decode(flatten_priors, flatten_bbox_preds)

        if rescale:
            flatten_bboxes[..., :4] /= flatten_bboxes.new_tensor(
                scale_factors).unsqueeze(1)

        result_list = []
        for img_id in range(len(img_metas)):
            cls_scores = flatten_cls_scores[img_id]
            score_factor = flatten_objectness[img_id]
            bboxes = flatten_bboxes[img_id]

            result_list.append(
                self._bboxes_nms(cls_scores, bboxes, score_factor, cfg))

        return result_list

    def _bbox_decode(self, priors, bbox_preds):
        xys = (bbox_preds[..., :2] * priors[:, 2:]) + priors[:, :2]
        whs = bbox_preds[..., 2:].exp() * priors[:, 2:]

        tl_x = (xys[..., 0] - whs[..., 0] / 2)
        tl_y = (xys[..., 1] - whs[..., 1] / 2)
        br_x = (xys[..., 0] + whs[..., 0] / 2)
        br_y = (xys[..., 1] + whs[..., 1] / 2)

        decoded_bboxes = torch.stack([tl_x, tl_y, br_x, br_y], -1)
        return decoded_bboxes

    def _bboxes_nms(self, cls_scores, bboxes, score_factor, cfg):
        max_scores, labels = torch.max(cls_scores, 1)
        valid_mask = score_factor * max_scores >= cfg.score_thr

        bboxes = bboxes[valid_mask]
        scores = max_scores[valid_mask] * score_factor[valid_mask]
        labels = labels[valid_mask]

        if labels.numel() == 0:
            return bboxes, labels
        else:
            dets, keep = batched_nms(bboxes, scores, labels, cfg.nms)
            return dets, labels[keep]

    @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'objectnesses'))
    def loss(self,
             cls_scores,
             bbox_preds,
             objectnesses,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute loss of the head.
        Args:
            cls_scores (list[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_priors * num_classes.
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_priors * 4.
            objectnesses (list[Tensor], Optional): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, 1, H, W).
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.
        """
        num_imgs = len(img_metas)
        featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
        mlvl_priors = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=cls_scores[0].dtype,
            device=cls_scores[0].device,
            with_stride=True)

        flatten_cls_preds = [
            cls_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1,
                                                 self.cls_out_channels)
            for cls_pred in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
            for bbox_pred in bbox_preds
        ]
        flatten_objectness = [
            objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1)
            for objectness in objectnesses
        ]

        flatten_cls_preds = torch.cat(flatten_cls_preds, dim=1)
        flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1)
        flatten_objectness = torch.cat(flatten_objectness, dim=1)
        flatten_priors = torch.cat(mlvl_priors)
        flatten_bboxes = self._bbox_decode(flatten_priors, flatten_bbox_preds)

        (pos_masks, cls_targets, obj_targets, bbox_targets, l1_targets,
         num_fg_imgs) = multi_apply(
             self._get_target_single, flatten_cls_preds.detach(),
             flatten_objectness.detach(),
             flatten_priors.unsqueeze(0).repeat(num_imgs, 1, 1),
             flatten_bboxes.detach(), gt_bboxes, gt_labels)

        # The experimental results show that ‘reduce_mean’ can improve
        # performance on the COCO dataset.
        num_pos = torch.tensor(
            sum(num_fg_imgs),
            dtype=torch.float,
            device=flatten_cls_preds.device)
        num_total_samples = max(reduce_mean(num_pos), 1.0)

        pos_masks = torch.cat(pos_masks, 0)
        cls_targets = torch.cat(cls_targets, 0)
        obj_targets = torch.cat(obj_targets, 0)
        bbox_targets = torch.cat(bbox_targets, 0)
        if self.use_l1:
            l1_targets = torch.cat(l1_targets, 0)

        loss_bbox = self.loss_bbox(
            flatten_bboxes.view(-1, 4)[pos_masks],
            bbox_targets) / num_total_samples
        loss_obj = self.loss_obj(flatten_objectness.view(-1, 1),
                                 obj_targets) / num_total_samples
        loss_cls = self.loss_cls(
            flatten_cls_preds.view(-1, self.num_classes)[pos_masks],
            cls_targets) / num_total_samples

        loss_dict = dict(
            loss_cls=loss_cls, loss_bbox=loss_bbox, loss_obj=loss_obj)

        if self.use_l1:
            loss_l1 = self.loss_l1(
                flatten_bbox_preds.view(-1, 4)[pos_masks],
                l1_targets) / num_total_samples
            loss_dict.update(loss_l1=loss_l1)

        return loss_dict

    @torch.no_grad()
    def _get_target_single(self, cls_preds, objectness, priors, decoded_bboxes,
                           gt_bboxes, gt_labels):
        """Compute classification, regression, and objectness targets for
        priors in a single image.
        Args:
            cls_preds (Tensor): Classification predictions of one image,
                a 2D-Tensor with shape [num_priors, num_classes]
            objectness (Tensor): Objectness predictions of one image,
                a 1D-Tensor with shape [num_priors]
            priors (Tensor): All priors of one image, a 2D-Tensor with shape
                [num_priors, 4] in [cx, xy, stride_w, stride_y] format.
            decoded_bboxes (Tensor): Decoded bboxes predictions of one image,
                a 2D-Tensor with shape [num_priors, 4] in [tl_x, tl_y,
                br_x, br_y] format.
            gt_bboxes (Tensor): Ground truth bboxes of one image, a 2D-Tensor
                with shape [num_gts, 4] in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (Tensor): Ground truth labels of one image, a Tensor
                with shape [num_gts].
        """

        num_priors = priors.size(0)
        num_gts = gt_labels.size(0)
        gt_bboxes = gt_bboxes.to(decoded_bboxes.dtype)
        # No target
        if num_gts == 0:
            cls_target = cls_preds.new_zeros((0, self.num_classes))
            bbox_target = cls_preds.new_zeros((0, 4))
            l1_target = cls_preds.new_zeros((0, 4))
            obj_target = cls_preds.new_zeros((num_priors, 1))
            foreground_mask = cls_preds.new_zeros(num_priors).bool()
            return (foreground_mask, cls_target, obj_target, bbox_target,
                    l1_target, 0)

        # YOLOX uses center priors with 0.5 offset to assign targets,
        # but use center priors without offset to regress bboxes.
        offset_priors = torch.cat(
            [priors[:, :2] + priors[:, 2:] * 0.5, priors[:, 2:]], dim=-1)

        assign_result = self.assigner.assign(
            cls_preds.sigmoid() * objectness.unsqueeze(1).sigmoid(),
            offset_priors, decoded_bboxes, gt_bboxes, gt_labels)

        sampling_result = self.sampler.sample(assign_result, priors, gt_bboxes)
        pos_inds = sampling_result.pos_inds
        num_pos_per_img = pos_inds.size(0)

        pos_ious = assign_result.max_overlaps[pos_inds]
        # IOU aware classification score
        cls_target = F.one_hot(sampling_result.pos_gt_labels,
                               self.num_classes) * pos_ious.unsqueeze(-1)
        obj_target = torch.zeros_like(objectness).unsqueeze(-1)
        obj_target[pos_inds] = 1
        bbox_target = sampling_result.pos_gt_bboxes
        l1_target = cls_preds.new_zeros((num_pos_per_img, 4))
        if self.use_l1:
            l1_target = self._get_l1_target(l1_target, bbox_target,
                                            priors[pos_inds])
        foreground_mask = torch.zeros_like(objectness).to(torch.bool)
        foreground_mask[pos_inds] = 1
        return (foreground_mask, cls_target, obj_target, bbox_target,
                l1_target, num_pos_per_img)

    def _get_l1_target(self, l1_target, gt_bboxes, priors, eps=1e-8):
        """Convert gt bboxes to center offset and log width height."""
        gt_cxcywh = bbox_xyxy_to_cxcywh(gt_bboxes)
        l1_target[:, :2] = (gt_cxcywh[:, :2] - priors[:, :2]) / priors[:, 2:]
        l1_target[:, 2:] = torch.log(gt_cxcywh[:, 2:] / priors[:, 2:] + eps)
        return l1_target

3.调用

3.1 注册

注册创建类名字典。

@HEADS.register_module()

3.2 调用

YOLOX的基类中调用了这个head:

mmdetection/single_stage.py at 31c84958f54287a8be2b99cbf87a6dcf12e57753 · open-mmlab/mmdetection · GitHub

self.bbox_head = build_head(bbox_head)

YOLOXHead其中还继承了这个类BaseDenseHead,运行时调用这个函数:

https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/base_dense_head.py

def forward_train(self,
                      x,
                      img_metas,
                      gt_bboxes,
                      gt_labels=None,
                      gt_bboxes_ignore=None,
                      proposal_cfg=None,
                      **kwargs):
        """
        Args:
            x (list[Tensor]): Features from FPN.
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes (Tensor): Ground truth bboxes of the image,
                shape (num_gts, 4).
            gt_labels (Tensor): Ground truth labels of each box,
                shape (num_gts,).
            gt_bboxes_ignore (Tensor): Ground truth bboxes to be
                ignored, shape (num_ignored_gts, 4).
            proposal_cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used
        Returns:
            tuple:
                losses: (dict[str, Tensor]): A dictionary of loss components.
                proposal_list (list[Tensor]): Proposals of each image.
        """
        outs = self(x)
        if gt_labels is None:
            loss_inputs = outs + (gt_bboxes, img_metas)
        else:
            loss_inputs = outs + (gt_bboxes, gt_labels, img_metas)
        losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
        if proposal_cfg is None:
            return losses
        else:
            proposal_list = self.get_bboxes(
                *outs, img_metas=img_metas, cfg=proposal_cfg)
            return losses, proposal_list

运行是在这里:

https://github.com/open-mmlab/mmdetection/blob/31c84958f54287a8be2b99cbf87a6dcf12e57753/mmdet/models/detectors/single_stage.py#L83

losses = self.bbox_head.forward_train(x, img_metas, gt_bboxes,
                                              gt_labels, gt_bboxes_ignore)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/79710.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Web前端开发技术课程大作业:基于HTML+CSS+JavaScript实现校园主题-萍乡田家炳中学校网站(1页)

&#x1f389;精彩专栏推荐 &#x1f4ad;文末获取联系 ✍️ 作者简介: 一个热爱把逻辑思维转变为代码的技术博主 &#x1f482; 作者主页: 【主页——&#x1f680;获取更多优质源码】 &#x1f393; web前端期末大作业&#xff1a; 【&#x1f4da;毕设项目精品实战案例 (10…

详细讲解Linux物理内存初始化

说明&#xff1a; Kernel版本&#xff1a;4.14ARM64处理器&#xff0c;Contex-A53&#xff0c;双核使用工具&#xff1a;Source Insight 3.5&#xff0c; Visio 1. 介绍 让我们思考几个朴素的问题&#xff1f; 系统是怎么知道物理内存的&#xff1f;在内存管理真正初始化之前…

Java项目:SSM实现的校园门户平台网站系统含开题报告与需求分析

作者主页&#xff1a;源码空间站2022 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文末获取源码 项目介绍 本系统为前后台项目&#xff0c;后台为管理员登录&#xff0c;前台为社团、学生、教师角色登录&#xff1b; 管理员角色包含以下功能&#xff…

对称加密算法(二)(分组密码,Feistel Cipher)

文章目录Traditional Block Cipher StructureStream Ciphers and Block CiphersFeistel CipherReferencesTraditional Block Cipher Structure Stream Ciphers and Block Ciphers 序列密码也称为流密码 (Stream Ciphers)&#xff0c; 它是指每次对数字数据流的一个比特或一个…

CSS -- CSS复合选择器总结

文章目录CSS的复合选择器1 什么是复合选择器2 后代选择器3 子选择器4 并集选择器5 伪类选择器6 链接伪类选择器7 :focus 伪类选择器8 复合选择器总结CSS的复合选择器 1 什么是复合选择器 在 CSS 中&#xff0c;可以根据选择器的类型把选择器分为基础选择器和复合选择器&#…

【博客554】k8s 中的 Client-Side Apply 和 Server-Side Apply

k8s 中的 Client-Side Apply 和 Server-Side Apply 背景 如果你经常与 kubectl 打交道&#xff0c;那相信你一定见过 kubectl.kubernetes.io/last-applied-configuration annotation&#xff0c;以及那神烦的 managedFields&#xff0c;像这样&#xff1a; kubectl get pods…

单元测试理论储备及JUnit5实战

概述 测试驱动开发&#xff0c;TDD&#xff0c;Test Driven Development&#xff0c;优点&#xff1a; 使得开发人员对即将编写的软件任务具有更清晰的认识&#xff0c;使得他们在思考如何编写代码之前先仔细思考如何设计软件对测试开发人员所实现的代码提供快速和自动化的支…

银保监机构保险许可证数据(2007-2022年)

保险是金融系统的重要组成部分,保险的经济补偿和资金融通功能对维持金融系统的稳定,维护整个社会的安定起着不可或缺的作用,因此,从现实意义上来讲,对于我国保险业系统性风险的研究是很有必要性的。 通过对保险业系统性风险的类型、传播机制的研究,可以有效防范并降低我国保险…

MATLB|基于粒子群优化算法的智能微电网调度(含风、光、微型燃气轮机、电网输入微网、储能)

&#x1f4a5;&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️❤️&#x1f4a5;&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑…

linux基本使用及服务器环境搭建

文章目录0.linux基本命令1.配置jdk环境变量2.安装tomcat3. mysql安装4.部署jar项目基本命令5. 前端项目继承到后端项目中0.linux基本命令 1.pwd 我在那里 2.who am i 我是谁 3.clear 清屏 4.ctrlc 强制停止 5.ip addr 查看地址 6.ping 是否联通网站 7.systemctl start|s…

分布式系统的解决方案,学好这个就够了

分布式、负载、消息队列等一些解决方案&#xff0c;在互联网公司应用已经非常普遍了&#xff0c;也是每一个程序员要成为技术专家、架构师必学的知识。 所以&#xff0c;今天给大家推荐一个开源项目&#xff0c;有关互联网项目常见的解决方案&#xff0c;通通都打包一起了。 …

10个 解放双手的 IDEA 插件,少些冤枉代码

正经干活用的 分享一点自己工作中得心应手的IDEA插件&#xff0c;可不是在插件商店随随便便搜的&#xff0c;都经过实战检验&#xff0c;用过的都说好。可能有一些大家用过的就快速划过就行了。 1、GenerateAllSetter 实际的开发中&#xff0c;可能会经常为某个对象中多个属性…

半监督下的点云

搬了这么个东东来~~ 不过他的名字有点容易叫大家混淆,所以没写标题上... 在训练阶段&#xff0c;只需少量的二维方框标注作为指导&#xff0c;本文的网络就可以从激光雷达方框中产生精确的具有三维属性的图像级长方体标注。 论文&#xff1a;https://arxiv.org/pdf/2211.0930…

【Dubbo3高级特性】「实战开发」自定义扩展实现Dubbo服务对外暴露的主机地址实战开发指南

内容主旨 本篇文章主要介绍了如何进行自定义Dubbo服务对外暴露的主机地址的实战技术方案&#xff0c;其中我们需要针对于服务提供者侧的host主机暴漏的目的以及如何进行定制化处理 特性说明 在Dubbo中&#xff0c;Provider启动时主要做两个事情 启动服务提供者的server端实…

基于C++实现(控制台+界面)通讯录管理系统【100010012】

个人通讯录管理系统 问题描述&#xff1a; 主要内容&#xff1a; 个人通讯录是记录了同学&#xff08;包含一起上学的学校名称&#xff09;、同事&#xff08;包含共事的单位名称&#xff09;、朋友&#xff08;包含认识的地点&#xff09;、亲戚&#xff08;包含称呼&#…

Python小炼(2):文件操作

"一封信&#xff0c;写下太多如果" 如果有一定语言基础的&#xff0c;一定对文件操作十分得"熟悉"!当然&#xff0c;这种熟悉是 引起人恼怒的 也不为过。 python 也有自己的文件操作&#xff0c;那它跟C\C又有何不同呢&#xff1f; 一、文件的基本操作 (…

中国宗教活动场所数据库(数据+python代码)

通常研究&#xff0c;宗教活动场所与公司避税行为&#xff0c;社会整体信任水平以及民营企业创始资金来源等元素相关联。例如&#xff0c;企业注册地的宗教传统负向影响公司避税&#xff0c;企业注册地的宗教传统通过提高管理者的道德意识和强化管理者的风险规避倾向两条机制抑…

Swagger总结

目录 简介&#xff1a; openAPI Springfox&#xff1a; 简介 Springfox的使用 SwaggerUI的使用 Swagger配置 设置扫描的包 设置范围 Swagger常用注解&#xff1a; 控制类、方法生成接口信息 ApiParam ApiModel ApiModelProperty ApiIgnore ApiImplicitParam 部分图片来自百…

SpringBoot日志详解

⭐️前言⭐️ &#x1f349;博客主页&#xff1a; &#x1f341;【如风暖阳】&#x1f341; &#x1f349;精品Java专栏【JavaEE进阶】、【JavaEE初阶】、【MySQL】、【数据结构】 &#x1f349;欢迎点赞 &#x1f44d; 收藏 ⭐留言评论 &#x1f4dd;私信必回哟&#x1f601; …

rocketMq相关机制

rocketMq相关机制 topic读写队列 perm字段表示Topic的权限。有三个可选项。 2&#xff1a;禁写禁订阅&#xff0c;4&#xff1a;可订 阅&#xff0c;不能写&#xff0c;6&#xff1a;可写可订阅 这其中&#xff0c;写队列会真实的创建对应的存储文件&#xff0c;负责消息写入。…