fsQCA+NCA方法的软件操作及注意事项、论文实证分析部分的写作范式

news2025/1/12 20:38:51

目录

  • 前言
  • 1 软件操作步骤
  • 2 fsQCA方法的详细操作步骤
    • 2.1 软件下载
    • 2.2 数据的准备
    • 2.3 校准点的确定
    • 2.4 变量的校准步骤及闪退问题
    • 2.5 fsQCA的数据必要性检验(开始一次+最后一次)
    • 2.6 频数、一致性水平、PRI一致性水平的确定
      • 2.6.1 频数的确定
      • 2.6.2 一致性水平、PRI一致性水平的确定
    • 2.7 真值表操作步骤
    • 2.8 反事实分析
    • 2.9 组态结果的评价与选择
  • 3 NCA方法的详细操作步骤
    • 3.1 R软件下载与NCA包的激活
    • 3.2 数据准备
    • 3.3 必要性水平检验
      • 3.3.1 方法选择
      • 3.3.2 非必要条件的认定
      • 3.3.3 具体操作步骤
    • 3.4 瓶颈水平分析
  • 4 论文写作范式
  • 4.1 校准点的选择与描述(研究设计章节末)
  • 4.2 必要性分析
    • 4.2.1 基于NCA的必要性分析
    • 4.2.2 瓶颈水平分析
    • 4.2.3 基于QCA的必要性分析
  • 4.3 充分性分析(即组态分析)
    • 4.3.1 绘制表格
    • 4.3.2 高组态的命名、介绍、举例及定性论证
    • 4.3.3 非高组态的简单介绍
  • 4.4 稳健性分析

前言

研一写的第一篇是fsQCA+NCA的组态分析实证论文,在此篇对软件操作及注意事项、论文实证分析部分的写作范式进行一个总结。

fsQCA方法主要参考张放fun的B站视频教程。
NCA方法主要参考南博吉吉的知乎文章。
论文实证分析部分的写作范式为杜运周老师的两篇《管理世界》论文,知网下载即可。

[1]杜运周、刘秋辰、程建青:《什么样的营商环境生态产生城市高创业活跃度?——基于制度组态的分析》,《管理世界》,2020年第9期。
[2]杜运周、刘秋辰、陈凯薇、肖仁桥、李姗姗:《营商环境生态、全要素生产率与城市高质量发展的多元模式——基于复杂系统观的组态分析》,《管理世界》,2022年第9期。

1 软件操作步骤

规范的操作步骤应当是按照论文实证分析部分写作的标准顺序来,如下:

  1. 使用fsQCA软件,对处理好的数据进行校准,并另存为csv,手动将0.5改为0.499或0.501,再次导入软件,作为初始数据;
  2. 对初始数据进行NCA的必要性水平检验;
  3. 进行NCA的瓶颈水平分析;
  4. 进行fsQCA的必要性检验;
  5. 进行真值表操作,设置频数、一致性水平和PRI一致性水平,进行反事实分析,得出高和非高组态结果;
  6. 稳健性检验。

但实际操作过程中,可能会因为结果不太理想,需要对数据进行多次的再处理,必要性检验的结果每次都会变但不会有太大变化。所以为图简便,推荐的操作步骤顺序如下:

  1. 使用fsQCA软件,对处理好的数据进行校准,并另存为csv,手动将0.5改为0.499或0.501,再次导入软件,作为初始数据;
  2. 对初始数据用fsQCA软件进行一次必要性检验,防止数据一开始的必要性就太强,随后的数据操作不会产生太大影响,因此不必每次换数据就重新做一遍;
  3. 进行真值表操作,设置频数、一致性水平和PRI一致性水平,进行反事实分析,得出高和非高的组态结果;
  4. 稳健性检验;
  5. 进行fsQCA的必要性检验;
  6. 进行NCA的必要性水平检验;
  7. 进行NCA的瓶颈水平分析。

本文第2节第3节按推荐顺序安排,第4节按标准顺序安排。

2 fsQCA方法的详细操作步骤

2.1 软件下载

软件在张放fun的B站视频教程里有,可以在里面下载。

fsQCA的软件没有安装包,将压缩包解压后,点击fsqca.exe即可直接进入软件开始使用。

如果软件下载不到,也可以评论邮箱,我看到就把软件打包发过去,只有40M左右。

2.2 数据的准备

  • 第一行的标题名需要用英文命名。
  • 数据必须是纯数字,里不能有空格。
  • 前因变量如果量纲不同,需要进行事先的max-min标准化,一般选择[0,100]区间。
  • 需要将若干个前因变量和一个结果变量放在同一个表格中。
  • 搜集数据时使用excel,全部搜集完毕后另存为csv格式。
  • fsQCA软件点击File–>Open,选择csv文件即可打开数据。

2.3 校准点的确定

校准点的选择主要是根据出来的组态结果进行灵活调整,最常用的是90-50-10和75-50-25,对应称之为完全隶属-交叉点-完全不隶属,中间还会有85-50-15和80-50-20,一般是从90开始校准,结果满意直接一步到位,不满意依次向下用85、80、75,一般不能取到75以下。越往下,校准时出现的1和0就越多。

完全隶属和完全不隶属一般要关于交叉点对称,可能某些论文交叉点选择的不是50分位数,大多是较早的文章,但目前QCA逐渐成为范式,还是要选用50的。

2.4 变量的校准步骤及闪退问题

  1. 使用excel的percentile()函数计算每个变量各个校准点的分位数,最后一个变量输入0.9表示90分位数,其他同理,示例如下。
    在这里插入图片描述

  2. fsQCA软件点击Variables–>Compute–>右侧找到并点击calibrate(图中①)–>x处选择变量,n1、n2、n3输入为完全隶属、交叉点、完全不隶属的分位数值,上面的框(图中②)填入校准后的变量名(如x1、x2…y)–>点击OK。
    在这里插入图片描述

  3. 重复操作2,直至完成对每个变量的校准。

  4. File–>Save as–>自定义个文件名,我一般定为“calibrated_905010.csv”–>打开另存为的csv文件,对x1、x2…y每个变量进行排序操作,将0.5改为0.499或0.501(QCA会将0.5的数据抛弃,这样改是为了不损失辛辛苦苦找来的数据)。

  5. 将改好后的csv再次导入fsQCA软件,完成校准。

在这一步,很容易出现软件闪退的情况,基本上都是数据或操作上的问题,目前我碰到的和了解到的可能存在的问题有:

  • 如果是第一次就闪退,检查整个数据文件的标题是否为非英文、是否有没标题的列,是否在没标题的列有数据;当然也可能就是第一列有问题,参照下一种。
  • 如果是某一列数据闪退,可以将问题定位在该列数据,检查该列数据是否有空格,是否有文本格式,或是出现数字100或0的极端情况,也有可能是间隔过大(如最大的数是99,第二大的蹦到了60)。
  • 还有一种可能,分位数输入错误,典型的就是把小数点点错位置。

2.5 fsQCA的数据必要性检验(开始一次+最后一次)

使用2.4中已经校准好的数据,点击Analyze–>Necessary Conditions–>①处outcome处选择y的高,②处Add Condition选择x,点击③处箭头添加–>重复上述步骤,将全部x的高和非高依次添加进去–>点击OK。
在这里插入图片描述
结果如下图所示,左边表示必要性一致性水平,右边表示覆盖度,前者均小于0.9且没有负值就表示非必要条件,结果通过。
在这里插入图片描述

2.6 频数、一致性水平、PRI一致性水平的确定

该步骤为2.7做准备。在做高和非高时,三者的取值尽量保持一样,但如果实在组态结果不好,应该是可以做点改变的。

2.6.1 频数的确定

频数是指每种组态的个数,在真值表中number列的数字可以看到,小于设定的频数的组态将被忽略。

频数也需要根据出来的组态结果进行灵活调整,一般来说数据量上百了,频数要设定为2,如果出来的组态太多了,可以继续往上,不需要额外解释;如果组态太少,可以往下取1,可以做出适当解释,下图为杜运周等(2022)中关于频数选择为1的解释。
在这里插入图片描述

2.6.2 一致性水平、PRI一致性水平的确定

一致性水平具体表达的含义不是很清楚,在真值表中raw consist表示一致性水平,PRI consist表示PRI一致性水平。

有个不成文的规定,前者需要定在0.8以上,后者需要在0.7以上,如果不行可能就要面临重做。具体的选择也需要根据出来的组态结果进行灵活调整。

2.7 真值表操作步骤

Analyze–>Truth Table Algorithm(或直接使用快捷键Ctrl+T)–>选择y,点击①为高,②为非高,高和非高要分开做–>将x全部用③Add进去–>勾选④的作用是在输出组态的同时输出对应的典型案例,平时可以不用勾选,确定一切都成功后最后一次勾上即可–>OK。

在这里插入图片描述
Edit–>Delete and Code(或直接使用快捷键Ctrl+D)–>①处输入频数,默认为1;②处输入一致性水平,默认0.8,点击OK后会发现,真值表按照一致性水平进行了降序排序,并且将所有大于设定值且频数大于等于设定值的组态的y列设置为1–>点击PRI consist 使其降序排序,将所有低于设定值的组态的y列手动修改为0。

在这里插入图片描述

2.8 反事实分析

反事实分析一般来说可以和杜运周老师那两篇一样不去管,除非是能够确定单个变量一定可以影响结果变量的时候才做出选择。
在这里插入图片描述
点击真值表最右下方的Standard Analyse–>点击Select All–>默认为存在或确实,可以有根据得进行选择后,点击OK。
在这里插入图片描述

2.9 组态结果的评价与选择

以上步骤完成后,fsQCA软件的初始页面右侧输出框就会出现COMPLEX SOLUTION(复杂解)、PARSIMONIOUS SOLUTION(简单解)和INTERMEDIATE SOLUTION(中间解)。

一般不会去管复杂解,中间解处所展示的即为组态分析的最终结果,对照简单解结果,确定中间解的每条组态都能在其中找到对应,出现在简单解中的变量即为核心条件,没有则为边缘条件。

可能会出现多个组态对应一个简单解,在杜运周等(2020)中就有这样的情况(详见其论文里的S1a、S1b),说明核心条件相同,结果可以通过。

一般来说高的组态至少要有3个,不然组态结果太单薄;非高的组态不要多于高的组态,否则在组态评价时不好阐述。

另外还需要关注中间解的那些数据。raw coverage为原始覆盖度,unique coverage为唯一覆盖度,consistency为一致性水平,solution coverage为总体覆盖度,solution consistency为总体一致性水平。

一般来说总体一致性水平最好不要太低,最好要有个0.8往上。

3 NCA方法的详细操作步骤

3.1 R软件下载与NCA包的激活

详见南博吉吉的知乎文章(一)、(二)部分,此篇不过多介绍。

3.2 数据准备

NCA使用的数据目前没有明确的标准,杜运周老师的两篇论文也没有明确是用的哪种数据,因此可以用校准前的数据,也可以用校准后的数据(推荐,因为上文2.5里的QCA必要性检验用的是校准后的),对于某一种数据过不去的时候可以考虑。

另外,数据最好去掉最左侧的列名,方便操作,只保留若干个前因变量和一个结果变量数据,并另存为csv格式。如果去掉了第一列变量名,下方读取数据时需要设置header=False。

3.3 必要性水平检验

3.3.1 方法选择

必要性分析有两种,分别是上限回归(CR)和上限包络(CE),一般需要同时进行两种计算结果,杜运周老师的论文也是同时列出两种。如果适合自己数据的方法成功,另一个不成功也说的过去,用相关文献做支撑即可。

CR用于分析连续变量和超过5个的离散变量,CE分析二分变量和不到5个的离散变量。

3.3.2 非必要条件的认定

NCA检验的是必要条件,但是组态分析的论文进行NCA的目的是要验证每个变量都不是导致结果变量的必要条件,因此,所有变量均为非必要条件即可视为NCA通过。

非必要条件的认定条件为:效应量(d)<0.1或 显著性水平(P)>0.01 或前二者均满足。

3.3.3 具体操作步骤

假设数据第1列为结果变量,第2-8列为前因变量。

  1. library(NCA)
    导入NCA包。
  2. data<-read.csv(filepath,header=FALSE)
    filepath为文件所在路径的字符串,例如“C:\\Users\AUSU\\Desktop\\finalNCA.csv”,注意需要有两个\,因为程序语言里\一般为转义字符,多加一个\是使其保留\的属性。
    如果保留了第一列变量名,则不需要加header,否则需要加header=False。
  3. model<-nca_analysis(data,X,Y,ceilings=“cr_fdh”, test.rep=10000)
    此处X处依次填入前因变量所在列的序号,Y处填入结果变量所在列的序号,如下图计算的是处在第1列的结果变量和处在第3列的前因变量的结果。将“cr_fdh”替换为“ce_fdh”,即可改为ce方法。
  4. nca_output(model, test=TRUE)

在这里插入图片描述

  1. 重复4,直至将全部的前因变量都进行必要性分析。
  2. 指标记录后汇总后制表。
    Effect size 为d值,p-value为P值,此二者为判定非必要条件认定的关键。celling为上限区域,scope为范围,c-acctury为精确度。

3.4 瓶颈水平分析

假设数据第1列为结果变量,第2-8列为前因变量。

  1. model <- nca_analysis (data,c(X1:X7),Y)
    根据假设,X1为2,X7为8,Y为1。
  2. nca_output(model, summaries=FALSE, bottlenecks=TRUE)
    即可输出使用CR和CE两种方法进行分析的瓶颈水平结果。

4 论文写作范式

QCA中文论文的写作范式是杜老师的两篇《管理世界》的论文,在此简单总结。

4.1 校准点的选择与描述(研究设计章节末)

参考两篇论文的研究设计的章节末,写明实际使用的完全隶属、交叉点、完全不隶属选择的分位数点,并写明0.500的样本归属问题,通常改为0.501或0.499,并绘制一张表格将每个变量各个分位点的实际数据和描述性统计进行汇报。

在这里插入图片描述

4.2 必要性分析

4.2.1 基于NCA的必要性分析

说明使用的方法、得到的变量和非必要条件的判定情况,并绘制表格汇报以上结果。

在这里插入图片描述

4.2.2 瓶颈水平分析

选择一个层级的结果变量水平,举例说一下达到该层级的高需要百分之多少的每个前因变量的程度即可。将NCA输出的结果绘制表格即可。

在这里插入图片描述

4.2.3 基于QCA的必要性分析

绘制QCA必要性分析的结果表格,并说明一下非必要条件的判定条件。

在这里插入图片描述

4.3 充分性分析(即组态分析)

4.3.1 绘制表格

模仿杜老师的表格绘制方法绘制,大实心圆表示核心条件存在,小实心圆表示边缘条件存在,大圈差表示核心条件确实,小圈差表示边缘条件缺失。下方的数据也会在fsQCA软件中输出,具体的判定方法见本文2.9部分。

在这里插入图片描述

4.3.2 高组态的命名、介绍、举例及定性论证

一般来说论文都是分析产生高组态的原因,对组态进行命名并对命名原则进行陈述,举个典型例子对该组态的驱动机制进行定性的分析,映证机制分析部分对组态驱动机制的描述。

4.3.3 非高组态的简单介绍

非高组态一般不是分析的重点,但需要有,简单介绍一下即可。

4.4 稳健性分析

小幅改变频数、一致性水平、PRI一致性水平、校准点,只要不变化或者变化得不是太大都视为结果稳健。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/79501.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【中级ECharts技术】前端框架ECharts的dataset 管理数据对数据可视化的高级dataset 管理

dataset 管理数据 提供一份数据。 声明一个 X 轴,类目轴(category)。默认情况下,类目轴对应到声明多个 bar 系列,默认情况下,每个系列会自动对应到 dataset 的每一列。 option = {legend: {},tooltip: {},dataset:

Mac 中 MongoDB 使用

根据 homebrew-brew 官方的解释得知&#xff0c;MongoDB 不再是开源的了&#xff0c;并且已经从 Homebrew中移除 #43770 正是由于 MongoDB 的商业化不太理想&#xff0c;所以它选择了闭源。所以&#xff0c;在它闭源之前的那些 brew 安装方法都会报错了。网上很多的文章都是基…

[附源码]JAVA毕业设计雅博书城在线系统(系统+LW)

[附源码]JAVA毕业设计雅博书城在线系统&#xff08;系统LW&#xff09; 项目运行 环境项配置&#xff1a; Jdk1.8 Tomcat8.5 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术…

你想要的图片效果(动态实现)

一、前言 没有使用任何框架API&#xff0c;代码或逻辑在html或小程序都适用。主要实现图片随机位置、随机大小、不重叠&#xff0c;在页面上排布&#xff1b;还有扩展功能选定固定图片位置槽数、固定大小、不重叠&#xff0c;在页面上通过添加&#xff0c;图片随机排布。 二、…

我的创作纪念日(4周年)

机缘 回想当初&#xff0c;博主2017年底从北京中石油&#xff08;沙河总部&#xff09;辞职&#xff0c;一心想回到自己的家乡成都工作、不想在北京待了&#xff0c;在总部赵总的推荐下来到四川中石油工作&#xff08;刚好这边有人离职&#xff0c;所谓一个萝卜一个坑&#xf…

C语言入门(二)——常量,变量和表达式

继续Hello World 常量 变量 赋值 表达式 字符类型与字符编码 继续Hello World 前一个章节已经对Hello World程序做各种改动程序做各种改动看编译运行结果&#xff0c;其中有些改动会导致编译出错&#xff0c;有些改动会影响程序的输出&#xff0c;有些改动则没有任何影响…

C++:类的内存布局

文章目录1、虚的含义2、单基继承2.1、单继承2.2、单虚继承2.3、单虚继承 虚函数2.4、测试代码3、多基继承3.1、多继承 虚函数3.2、虚拟多继承 虚函数3.3、测试代码4、菱形继承4.1、菱形继承4.2、菱形虚拟继承4.3、测试代码5、效率分析建议先了解 C 继承与多态的相关知识&…

12.10 二叉搜索树与内部类

目录 一.二叉搜索树 1 概念 2 操作-查找 3.插入 4.删除(难点) 1.cur.leftnull 2.cue.rightnull 3.最复杂的情况 cur.left!null&&cur.right!null 6 性能分析 7 和 java 类集的关系 二.内部类 1.本地内部类 2.实例内部类 1.不可以定义静态 因为静态表示属于…

踩坑记录1——RK3588编译OpenCV

这两天有在板卡上跑代码的需求&#xff0c;拿到了一块RK3588CPU的板子&#xff0c;型号是HINLINK的HK88. 以后记录一下调试这个板子的问题&#xff0c;便于以后查看 0. 基本信息 板卡系统&#xff1a;ArmBian&#xff0c;基于Ubuntu20.04 OpenCV版本&#xff1a;3.4.5 采用方法…

Java项目:SSM公司人力资源管理系统

作者主页&#xff1a;源码空间站2022 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文末获取源码 项目介绍 本项目为后台管理系统,分为管理员与普通员工两种角色&#xff1b; 管理员角色包含以下功能&#xff1a; 管理员登录,员工账号管理,部门管理,员工…

陆拾肆- 时序数据的特征化

一、前期大数据状况 进行客户域大数据运营时&#xff0c;一般是在当前状态计算客户的行为特征。 如会建立特征为 近7天是否有登录昨天是否有登录近7天销售情况点击主页后是否有点击下层页面哪个页面点击购买总浏览电子产品的次数占访问次数占比不进行商品浏览&#xff0c;只进…

Codeforces Round #772 (Div. 2) D. Infinite Set

翻译&#xff1a; 给定一个数组&#x1d44e;&#xff0c;该数组由&#x1d45b;个不同的正整数组成。 让我们考虑一个无限整数集&#x1d446;&#xff0c;它包含至少满足以下条件之一的所有整数&#x1d465;: 对于某些1≤&#x1d456;≤&#x1d45b;&#xff0c;&#…

微服务框架 SpringCloud微服务架构 微服务保护 33 授权规则 33.2 自定义异常结果

微服务框架 【SpringCloudRabbitMQDockerRedis搜索分布式&#xff0c;系统详解springcloud微服务技术栈课程|黑马程序员Java微服务】 微服务保护 文章目录微服务框架微服务保护33 授权规则33.2 自定义异常结果33.2.1 自定义异常结果33.2.2 总结33 授权规则 33.2 自定义异常结…

十种类型电感概述

1、工字型电感 它的前身是挠线式贴片电感,工字型电感是它们的改良, 挡板有效加强储能能力,改变EMI方向和大小,亦可降低RDC。它亦可说是讯号通讯电感跟POWER电感的一种妥协。 工字型电感的缺点,仍是开磁路,有EMI的问题, 另外,噪音的问题比挠线式贴片电感大。 2、色环电感 色环电…

java计算机毕业设计ssm学生学习评价与分析系统8ql42(附源码、数据库)

java计算机毕业设计ssm学生学习评价与分析系统8ql42&#xff08;附源码、数据库&#xff09; 项目运行 环境配置&#xff1a; Jdk1.8 Tomcat8.5 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&…

C++11标准模板(STL)- 算法(std::set_union)

定义于头文件 <algorithm> 算法库提供大量用途的函数&#xff08;例如查找、排序、计数、操作&#xff09;&#xff0c;它们在元素范围上操作。注意范围定义为 [first, last) &#xff0c;其中 last 指代要查询或修改的最后元素的后一个元素。 数据结构的堆物理结构是数…

IOC 操作 Bean 管理( Bean 的生命周期)

生命周期 从对象创建到对象销毁的过程 Bean 的生命周期 通过构造器创建 Bean 实例&#xff08;无参构造&#xff09;为 Bean 的属性设置值和对其他 Bean 引用&#xff08;调用 set 方法&#xff09;调用 Bean 的初始化的方法&#xff08;需要进行配置&#xff09;Bean 可以使…

Java项目:SSM校园班级同学通讯录管理系统

作者主页&#xff1a;源码空间站2022 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文末获取源码 项目介绍 管理员角色包含以下功能&#xff1a; 管理员登录,修改管理员资料,用户管理,公告管理,系别信息管理,班级管理,学生通讯录管理等功能。 用户角色包…

微信小程序框架(一)-全面详解(学习总结---从入门到深化)

目录 小程序与普通网页开发的区别 体验小程序 微信小程序账号申请 微信小程序开发者工具 下载安装 创建项目 开发者工具说明 小程序目录结构 描述整体的 app 描述各自页面的 page 全局配置_Pages Pages配置 entryPagePath 快捷生成页面方案 全局配置_window 常用属性…

太卷了,5年Java程序员竟答不出应届生字节二面?

11.22一面过 11.23二面挂 上一个部门寄了&#xff0c;给我换了个流程唉 一面 面试官问我&#xff0c;三面面评这么好为啥不继续了&#xff0c;我纳闷了&#xff0c;不是你们挂的我吗 介绍项目&#xff0c;点赞是怎么考量的&#xff0c;热度点赞问题怎么解决&#xff0c;具体…