CMU 15-445 -- Timestamp Ordering Concurrency Control - 15

news2025/1/14 20:38:39

CMU 15-445 -- Timestamp Ordering Concurrency Control - 15

  • 引言
  • Basic T/O
    • Basic T/O Reads
    • Basic T/O Writes
      • Basic T/O - Example #1
      • Basic T/O - Example #2
    • Basic T/O Summary
    • Recoverable Schedules
  • Optimistic Concurrency Control (OCC)
    • OCC - Example
      • SERIAL VALIDATION
      • OCC - Read Phase
      • OCC - Validation Phase
  • Partition-Based T/O
    • Partition-Based T/O - Reads
    • Partition-Based T/O - Writes
    • Partition-Based T/O - Example
  • Dynamic Databases
    • The Phantom Problem
      • Predicate Locking
      • Index Locking
      • Locking Without An Index
      • Repeating Scans
  • Isolation Level
    • SQL - 92 Isolation Levels
    • SQL-92 Access Mode
  • 小结


引言

本系列为 CMU 15-445 Fall 2022 Database Systems 数据库系统 [卡内基梅隆] 课程重点知识点摘录,附加个人拙见,同样借助CMU 15-445课程内容来完成MIT 6.830 lab内容。


上节课介绍的 2PL 是悲观的并发控制策略,本节课介绍的 Timestamp Ordering (时间戳排序并发控制 – T/O) 则是一个乐观的策略,其乐观表现在事务访问数据时无需显式加锁。T/O 的核心思想就是利用时间戳来决定事务之间的等价执行顺序:如果 TS(Ti) < TS(Tj) ,那么数据库必须保证实际的 schedule 与先执行 Ti,后执行 Tj 的结果等价。要实现 T/O,就需要一个单调递增的时钟,来决定任意事务 Ti 发生的时间。满足条件的时钟方案有很多,如:

  • 系统单调时钟 (System Clock)
  • 逻辑计数器 (Logical Counter)
  • 混合方案 (Hybrid)

Basic T/O

Basic T/O 是 T/O 方案的一种具体实现。在 Basic T/O 中,事务读写数据不需要加锁,每条数据 X 都会携带两个标记:

  • W-TS(X):最后一次写 X 发生的时间戳
  • R-TS(X):最后一次读 X 发生的时间戳

在这里插入图片描述

在每个事务结束时,Basic T/O 需要检查该事务中的每个操作,是否读取或写入了未来的数据,一旦发现则中止、重启事务。


Basic T/O Reads

读取数据时的逻辑如下所示:

func read(X) val {
    if TS(T_i) < W_TS(X) {
        abort_and_restart(T_i)
    } else {
        val := read_data(X)
        R_TS(X) = max(R_TS(X), TS(T_i))
        // make a local copy of X to ensure repeatable reads for T_i
        return val
    }
}
  • 如果事务 Ti 发生在 W-TS(X) 之前,即尝试读取未来写入的数据,则中止;
  • 如果事务 发生在 W-TS(X) 之后,意味着它正在读取过去写入的数据,符合规范。

在这里插入图片描述

读取数据后,如果有必要,则更新 R-TS(X),同时保留一份 X 的副本,用来保证 结束之前总是能读到相同的 X。


Basic T/O Writes

写入数据时的逻辑如下所示:

func write(X, val) {
    if TS(T_i) < R_TS(X) || TS(T_i) < W_TS(X) {
        abort_and_restart(T_i)        
    } else {
        X = val
        W_TS(X) = max(W_TS(X), TS(T_i))
        // make a local copy of X to ensure repeatable reads for T_i
    }
}

如果事务 Ti 发生在 W-TS(X) 或 R-TS(X) 之前,即尝试写入已经被未来的事务读取或写入的数据,则中止 ;反之,意味着它正尝试修改过去的数据,符合规范。 写入数据后,如果有必要,则更新 W-TS(X),同时保留一份 X 的副本,用来保证 结束之前总是能读到相同的 X。

在这里插入图片描述


Basic T/O - Example #1

如下图所示:有两个事务 T1 和 T2,它们的时间戳分别为 1,2,即 T1 发生在 T2 之前,它们要访问的数据为 A 和 B,假设它们是数据库预填充的数据,R-TS 和 W-TS 都为 0。

在这里插入图片描述

T1 先读取 B,将 R-TS(B) 更新为 1

在这里插入图片描述
T2 读取 B,将 R-TS(B) 更新为 2

在这里插入图片描述
T2 修改 B,将 W-TS(B) 更新为 2

在这里插入图片描述
T1 读取 A,将 W-TS(A) 更新为 1
在这里插入图片描述
T2 读取 A,将 R-TS(A) 更新为 2

在这里插入图片描述
由于整个过程,没有发生违背规范的操作,因此两个事务都能够成功提交。


Basic T/O - Example #2

类似地,我们可以看下面这个例子:

在这里插入图片描述
不难看出, T1 在 T2 修改 A 后又修改了 A,该操作肯定会违反规范:

在这里插入图片描述
因此 T1 将被数据库中止。但实际上,仔细分析上述例子,如果我们忽略掉 T1 的 W(A) 操作,即不更新 A 数据,也不修改 W-TS(A),那么 T1 和 T2 都可以正常提交,且结果和二者先后执行等价,这便是所谓的 Thomas Write Rule (TWR):

func write(X, val) {
    if TS(T_i) < R_TS(X) {
        abort_and_restart(T_i)
        return
    }
    
    if TS(T_i) < W_TS(X) {
        // ignore write
        return
    }
    
    X = val
    W_TS(X) = TS(T_i)
    // ...
}

example #2 符合 TWR,可以允许让两个事务顺利提交。TWR 优化了 Basic T/O 的写检查,使得一些本不必中止的事务顺利进行,提高了事务并发程度。

实际上,Thomas Write Rule (TWR) 忽略写操作是有一定风险的,并不是适用于所有场景。虽然TWR可以减少一些事务中止,但也可能引发数据一致性和正确性的问题。这主要取决于具体的应用场景和事务的业务逻辑。

如果一个事务(假设为Ti)在执行写操作时,忽略了数据项(假设为X)的写时间戳(W-TS(X)),可能会导致以下问题:

  1. 数据一致性问题:如果Ti忽略了数据项X的写时间戳,而实际上在Ti执行写操作之前,其他事务(假设为Tj)可能已经修改了X的值。这样,Ti的写操作可能会覆盖了Tj的写入,导致数据不一致。

  2. 丢失更新问题:忽略写操作可能导致一些数据更新被丢失。如果Tj先于Ti修改了X的值,而Ti忽略了这个写操作,Ti的写操作就会覆盖掉Tj的更新,导致Tj的修改丢失。

  3. 并发问题:在多个事务同时操作相同数据时,忽略写操作可能会引发并发问题,如更新丢失、数据不一致等,进而影响应用程序的正确性和可靠性。

因此,在实际应用中,数据库系统需要慎重处理TWR,并采取其他的并发控制技术来保证数据的一致性和正确性。常用的方法包括锁机制、时间戳、多版本并发控制等。

总之,TWR可以作为一种优化手段来减少事务中止,但必须在合适的场景下使用,并且需要综合考虑事务的隔离级别、应用逻辑、并发情况等因素来确保数据的完整性和正确性。


Basic T/O Summary

如果不使用 TWR 优化,Basic T/O 能够生成 conflict serializable 的 schedule,如果使用了 TWR,则 Basic T/O 生成的 schedule 虽然与顺序执行的效果相同,但不满足 conflict serializable。Basic T/O 的优势在于:

  • 不会造成死锁,因为没有事务需要等待
  • 如果单个事务涉及的数据不多、不同事务涉及的数据基本不相同 (OLTP),可以节省 2PL 中控制锁的额外成本,提高事务并发度

其缺点在于:

  • 长事务容易因为与短事务冲突而饿死 --> 长时间运行的事务可能会被其他事务不断地回滚和重新尝试,从而导致饥饿问题。这是因为其他事务在不断提交,可能导致长时间运行的事务无法获得所需的资源。
  • 复制数据,维护、更新时间戳存在额外成本
  • 可能产生不可恢复的 schedule (具体见下节)

Recoverable Schedules

如果一个 schedule 能够保证每个事务提交前,修改过其读取过数据的事务都已提交,那么这个 schedule 就是 recoverable。如果不能保证 recoverable,DBMS 就无法在发生崩溃之后恢复数据,举例如下:

在这里插入图片描述
T2 在 T1 修改 A 之后读取 A,符合规范。但是在 T2 提交之后, T1 中止,前者依赖的数据实际上并未真实写入,数据库发生故障以后将无法恢复。因此 Basic T/O 可能产生不可恢复的 schedules。


Optimistic Concurrency Control (OCC)

在冲突较少且大多数事务的生命周期较短的情况下,强制事务等待获取锁会增加很多开销。在这种情况下,更好的方法是优化无冲突的情况。

OCC 是 H.T. KUNG 在 CMU 任教时提出的并发控制算法。在 OCC 中,数据库为每个事务都创建一个私有空间:

  • 所有被读取的数据都复制到私有空间中
  • 所有修改都在私有空间中执行

在乐观并发控制中,当一个事务提交时,数据库管理系统(DBMS)会进行一系列检查,以确保提交的写集(write set)不会与其他事务产生冲突。如果没有冲突,那么这个写集会被应用到"全局"数据库。

OCC 分为 3 个阶段:

  1. Read Phase:追踪、记录每个事务的读、写集合,并存储到私有空间中
  2. Validation Phase:当事务提交时,检查冲突
  3. Write Phase:如果校验成功,则合并数据;否则中止并重启事务

DBMS 需要维持所有活跃事务的全局视角,并将 Validation Phase 和 Write Phase 的逻辑放入一个 critical section 中。

OCC - Example

事务 T1 读取 A 时,将 A 复制到自己的 workspace 中,可以看到,与 Basic T/O 相比,OCC 只需要记录一个时间戳,W-TS。

在这里插入图片描述
事务 T2 读取 A 时,同样将 A 复制到自己的 workspace 中:

在这里插入图片描述

事务 T2 完成数据操作,在 Validation Phase 中获得事务时间戳 1,由于没有数据写入,跳过 Write Phase:

读操作不会更新W-TS时间戳

在这里插入图片描述

事务 T1 修改 A 的值为 456,由于尚不知道自己的事务时间戳,将 W-TS(A) 设置为无穷大:

在这里插入图片描述
事务 T1 在 Validation Phase 获得事务时间戳 2,并通过校验,将 W-TS(A) 修改为 2,并合并到数据库中
在这里插入图片描述


SERIAL VALIDATION

乐观并发控制中的一个重要目标:保证只有可串行化的调度是允许的。为了实现这一目标,事务 Ti 在提交前会检查其他事务,以确保所有冲突都遵循从旧事务到新事务的方向。

具体实现中,事务 Ti 在提交前会进行以下步骤:

  1. 冲突检查:事务 Ti 会检查其他正在执行或已经提交的事务,查找是否有与自己的写集(修改的数据项及其时间戳或版本号)发生冲突的事务。冲突可能有两种类型:读写冲突(RW)和写写冲突(WW)。

  2. 冲突解决:如果发现与事务 Ti 写集冲突的事务,那么根据乐观并发控制的原则,冲突需要从旧的事务到新的事务发生,即从已提交的或正在执行的较早的事务到较晚的事务。事务 Ti 将等待这些冲突的较早事务完成并成功提交,然后再继续提交自己的写集。

这样的处理确保了可串行化的调度,因为对于任何两个事务 Ti 和 Tj,如果它们之间存在冲突,则 Ti 的提交一定在 Tj 的提交之后,遵循了串行执行的顺序。这样的调度保证了数据的一致性和正确性。

乐观并发控制中的这种冲突解决方法是为了防止数据的不一致性。虽然事务不会被阻塞,但当冲突发生时,较晚的事务需要等待较早的事务完成,以保持数据的顺序性。这也是乐观并发控制在冲突较少的情况下能够提供较好性能的原因。


在乐观并发控制中,需要维护全局视图来跟踪所有活动的事务,并在事务运行时记录读集和写集,并将其写入私有工作空间。执行验证(Validation)和写入(Write)阶段通常在受保护的临界区内进行,以确保数据的一致性。

以下是乐观并发控制的基本步骤:

  1. 维护全局视图:数据库管理系统(DBMS)需要维护一个全局视图来跟踪所有活动的事务。这个全局视图包含了每个事务的标识、时间戳或版本号等信息。
  2. 记录读集和写集:每个事务在执行过程中会记录它所读取的数据项(读集)和修改的数据项(写集),以及相应的时间戳或版本号。
  3. 写入私有工作空间:事务的读集和写集通常会被写入事务的私有工作空间,这是为了避免直接修改全局数据库,从而允许并发执行。
  4. 执行验证和写入:当事务准备提交时,在验证阶段,DBMS会检查事务的读集和写集是否与其他事务产生冲突。这是为了确保可串行化调度。如果没有冲突,事务会在保护的临界区内执行写入操作,将其写集应用到全局数据库中。

通过这些步骤,乐观并发控制可以在尽可能避免锁和阻塞的情况下实现数据的一致性和可串行化调度。虽然乐观并发控制允许事务并发执行,但在冲突发生时,事务仍然需要等待,直到冲突解决为止。这种方法适用于冲突较少的场景,可以提高并发性能。


OCC - Read Phase

追踪事务的读写集合 (read/write sets),将 read set 存放在 private workspace 中用来保证 repeatable read,将 write set 存放在 private workspace 中用来作冲突检测。


OCC - Validation Phase

在进入 Validation Phase 后,每个事务都会被赋予一个时间戳,然后与其它正在运行的事务执行 Timestamp Ordering 检查,检查的方式有两种:

  • Backward Validation
  • Forward Validation

如下图所示,在 Backward Validation 中,需要检查待提交的事务 (txn #2) 的读写集合是否与已经提交的事务的读写集合存在交集:
在这里插入图片描述
与此类似,在 Forward Validation 中,需要检查待提交的事务 (txn #2) 的读写集合是否与尚未提交的事务的读写集合存在交集:
在这里插入图片描述
如果 TS(Ti)<TS(Tj) ,那么以下 3 个条件之一必须成立:

Condition 1: Ti completes all three phases before Tj begins

如果事务 Ti 在事务 Tj 开始之前已经完成 OCC 的所有 3 个阶段,那么二者之间不存在任何冲突。

在这里插入图片描述

Condition 2: Ti completes before Tj starts its Write Phase, and Ti does not write to any object read by Tj

如果 Ti 在 Tj 的 Write Phase 开始前就已提交,同时 Ti 没有修改任意 Tj 读取的数据,即 WriteSet(Ti)∩ReadSet(Tj)=∅,则二者之间不存在冲突。

在这里插入图片描述

Condition 3: Ti completes its Read Phase before Tj completes its Read Phase, and Ti does not write to any object that is either read or written by Tj

如果 Ti在 Tj 结束自己的 Read Phase 前结束 Read Phase,同时 Ti 没有修改任何 Tj 读取或修改的数据,即满足:

在这里插入图片描述
时,二者之间不存在冲突。

在这里插入图片描述
在这里插入图片描述

OCC 与 Basic T/O 的思路类似,都是在检查事务之间的 WW、WR 冲突。当冲突发生的频率很低时,即:

  • 大部分事务都是读事务
  • 大部分事务之间访问的数据间没有交集

OCC 的表现很好,如在数据库体量较大,workload 比较均衡的场景下。2PC 的性能瓶颈在于锁管理,尽管 OCC 没有加锁的成本,但它也存在性能问题:

  • 在 private workspace 与 global database 之间移动、合并数据开销大
  • Validation/Write Phase 需要在一个全局的 critical section 中完成,可能造成瓶颈
  • 在 Validation Phase 中,待提交事务需要和其它事务做冲突检查,即便实际上并没有冲突,这里也有很多获取 latch 的成本 (锁住其它事务的 private workspace,对比是否有冲突,再释放锁)
  • 事务中止的成本比 2PL 高,因为 OCC 在事务执行快结束时才检查数据冲突

Partition-Based T/O

类似全局锁到分段锁的优化,我们也可以将数据库切分成不相交 (disjoint) 的子集,即 horizontal partitions 或 shards,然后在 partition 内部使用单调递增的时间戳确定各个事务的顺序,不同 partition 上的事务之间无需检测冲突。

假设数据库中存储着如下三张表:
在这里插入图片描述
我们可以按照 customer 的 c_id 对数据库分片:
在这里插入图片描述
每个 partition 使用一个锁保护:

  • 当事务需要访问多个 partitions 时,就在所需的多个 partitions 上排队
  • 如果事务的时间戳是整个 partition 中最小的,那么该事务就获得锁
  • 当事务获取其所需访问的所有 partitions 的全部锁,它就可以开始执行

Partition-Based T/O - Reads

如果事务已经获取分片上的锁,该事务就能够读取它想读取的任意数据。如果事务尝试访问一个未获取锁的分片,那么它将被中止后重启。

Partition-Based T/O - Writes

写事务直接在原地修改数据,并在内存中维护一个缓冲区,用来记录修改的数据以便事务中止后回滚。如果事务尝试修改一个未获取锁的分片,那么它将被中止后重启。

Partition-Based T/O - Example

假设有两个事务同时开启,并分别被分配了全局的时间戳 100 和 101,二者都需要获取 partition 1 上的锁,如下图所示:

在这里插入图片描述
由于事务 #100 的时间戳较小,它将获得 partition 1 的锁,从而执行事务:
在这里插入图片描述

在这里插入图片描述
随后事务 #101 才能够获得 partitio 1 的锁,执行事务内容
在这里插入图片描述
Partition-based T/O 的性能取决于以下两点:

  • DBMS 是否在事务开启前就能知道事务所需的所有 partitions
  • 是否大多数事务只需要访问单个 partition

multi-partition 的事务将使得更多其它事务陷入等待状态,取了锁而未使用的 partition 也可能陷入空转。


Dynamic Databases

到现在为止,我们都只考虑事务读取和更新数据,如果我们再考虑插入、删除操作,就会遇到新的问题。

The Phantom Problem

考虑插入操作,则可能出现 Phantom Read:
在这里插入图片描述
即在单个事务内部,同样的查询,读到不一样的数据。这种现象发生的原因在于,尽管 T1 锁住了已经存在的记录,但新生成的记录并不会被锁住,因此实际上 conflict serializability 能保证事务可序列化的前提是数据集合是固定的,出现记录新增和删除时,这个结论就不成立了。


Predicate Locking

predicate locking 指的是通过一个逻辑表达式来为潜在的记录加锁,如:status = 'lit' 。然而,predicate locking 的成本很高,对每条新插入的数据都需要做校验。基本没有 DBMS 用这种方式实现,一种更高效的做法是 index locking。


Index Locking

同样以上文中的例子为例,如果在 status 字段上有索引,那么我们可以锁住满足 status = 'lit' 的 index page,如果尚未存在这样的 index page,我们也需要能够找到可能对应的 index page,锁住它们。


Locking Without An Index

同样以上文中的例子为例,如果在 status 字段上没有索引,那么事务就需要执行以下操作:

  • 获取 table 的每个 page 上的锁,防止其它记录的 status 被修改成 lit
  • 获取 table 本身的锁,防止满足 status = 'lit' 的记录被插入或删除

Repeating Scans

另一种比较暴力的做法是在事务提交时,扫描 status = 'lit' 的所有数据,检查这些数据是否与事务操作之前的数据相同。目前没有任何商业数据库采用这种方案。


Isolation Level

以上讨论的都是可序列化的并发控制方案。可序列化固然是一种很实用的特性,它可以将程序员从并发问题中解脱,但可序列化的方案要求比较严格,会对系统的并发度和性能造成较大的限制,因此我们也许能够用更弱的数据一致性保证去改善系统的扩展性。这也是所谓的数据库隔离级别。

更弱的数据库隔离级别将事务修改的数据暴露给其它事务,以此提高整体并发度,但这种并发度可能造成一系列问题,如 Dirty Reads/Writes (脏读、脏写)、Unrepeatable Reads (不可重复读)、Phantom Reads (幻读) 等等。

常见的数据库隔离级别从弱到强依次包括:Read Uncommitted -> Read Committed -> Repeatable Reads -> Serializable,总结如下表:
在这里插入图片描述

SQL - 92 Isolation Levels

SQL-92 中定义了数据库设置隔离级别的命令:

SET TRANSACTION ISOLATION LEVEL <isolation-level>;   // 全局设定

BEGIN TRANSACTION ISOLATION LEVEL <isolation-level>; // 单事务设定

但并非所有数据库在所有运行环境中都能支持所有隔离级别,且数据库的默认隔离级别取决于它的实现。以下是 2013 年统计的一些数据库的默认隔离级别和最高隔离级别:
在这里插入图片描述

SQL-92 Access Mode

SQL-92 中也允许用户提示数据库自己的事务是否会修改数据:

SET TRANSACTION <access-mode>;   // 全局设置
BEGIN TRANSACTION <access-mode>; // 单个事务设置

其中 access-mode 有两种模式:READ WRITE 和 READ ONLY。当然,即便在 SQL 语句中添加了这种提示,也不是所有数据库都会利用它来优化 SQL 语句的执行。


小结

任意一种并发控制都可以被分解成前两节课中提到的基本概念。

本节对应教材PDF

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/794480.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux:ELK:日志分析系统(使用elasticsearch集群)

原理 1. 将日志进行集中化管理&#xff08;beats&#xff09; 2. 将日志格式化&#xff08;logstash&#xff09; 将其安装在那个上面就对那个进行监控 3. 对格式化后的数据进行索引和存储&#xff08;elasticsearch&#xff09; 4. 前端数据的展示&#xff08;kibana&…

【MySQL】基本查询(表的增删查改)

目录 一、插入操作 --- insert1.1 单行指定列插入&&单行全列插入1.2 多行指定列插入&&多行全列插入1.3 插入否则更新 duplicate key update1.4 删除并替换 replace 二、查询操作 --- select2.1 基本查询2.2 where条件2.3 案例演示2.4 排序&#xff08;order by…

HDFS异构存储详解

异构存储 HDFS异构存储类型什么是异构存储异构存储类型如何让HDFS知道集群中的数据存储目录是那种类型存储介质 块存储选择策略选择策略说明选择策略的命令 案例&#xff1a;冷热温数据异构存储对应步骤 HDFS内存存储策略支持-- LAZY PERSIST介绍执行使用 HDFS异构存储类型 冷…

【代码随想录day20】二叉搜索树的最小绝对差

题目 给你一个二叉搜索树的根节点 root &#xff0c;返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数&#xff0c;其数值等于两值之差的绝对值。 思路 最简单的一个思路是使用中序遍历&#xff0c;从二叉排序树中得到有序序列&#xff0c;存储到self.elem中&…

静态 链接

1、空间与地址的分配 现在的链接器空间分配的策略基本上都采用 “相似段合并” 的方式。通过将所有相同类型的 section 合并到一起&#xff0c;例如将所有输入目标文件的 .text 合并&#xff08;按顺序合并&#xff09;到输出文件的 .text 节中&#xff1b;然后&#xff0c;链接…

EasyExcel实现多sheet excel导出

EasyExcel简介 Java领域解析、生成Excel比较有名的框架有Apache poi、jxl等。但他们都存在一个严重的问题就是非常的耗内存。如果你的系统并发量不大的话可能还行&#xff0c;但是一旦并发上来后一定会OOM或 者JVM频繁的full gc。 EasyExcel是阿里巴巴开源的一个excel处理框架…

eNSP的安装【最全最详细教程】

目录 一、下载软件和插件二、VirtualBox安装步骤三、WinPcap安装步骤四、Wireshark安装步骤五、eNSP安装步骤六、eNSP测试安装eNSP可能失败的原因 一、下载软件和插件 在安装eNSP之前分别要下载三个插件&#xff1a;VirtualBox、WinPcap、Wireshark 下载软件链接&#xff1a;…

集成学习概述

集成学习 1. 集成学习概念 集成学习是解决有监督机器学习任务的一类方法,它的思路是基于多个学习算法的集成来提升预测结果,它通过多个模型的组合形成一个精度更高的模型,参与组合的模型成为弱学习器(基学习器)。训练时,使用训练集依次训练出这些弱学习器,对未知的样本…

PLC编程:关键在于模拟操作流程和实现控制

PLC编程的核心是通过程序描述流程&#xff0c;完成控制过程。因此&#xff0c;掌握PLC编程语言和基本功能实现是必要的。 PLC语言主要分为梯形图、语句和功能图。梯形图适合基本逻辑描述&#xff0c;语句表用于数据处理&#xff0c;相对较难理解。步进式功能图的状态函数描述很…

[NLP]LLaMA与LLamMA2解读

摘要 Meta最近提出了LLaMA(开放和高效的基础语言模型)模型参数包括从7B到65B等多个版本。最值得注意的是&#xff0c;LLaMA-13B的性能优于GPT-3&#xff0c;而体积却小了10倍以上&#xff0c;LLaMA-65B与Chinchilla-70B和PaLM-540B具有竞争性。 一、引言 一般而言&#xff0…

IT 资产管理功能

ServiceDesk Plus 支持ITIL流程&#xff0c;帮助管理员制定明智的业务决策&#xff0c;在整个生命周期中跟踪所有资产的硬件和软件。 ServiceDesk Plus 中的资产管理模块包含多种功能&#xff0c;例如&#xff1a;多种扫描资产的方法&#xff1b;基于代理和无代理的方法&#…

新老联手,火花四溅?大众汽车与小鹏汽车达成长期合作框架协议

7 月 26 日资讯&#xff0c;大众汽车宣布与小鹏汽车达成长期合作框架协议&#xff0c;并在官网中正式宣布&#xff0c;大众是老牌油车领军代表&#xff0c;小鹏则是新势力中的佼佼者&#xff0c;新老强强联手&#xff0c;又会碰撞出怎样的火花呢&#xff1f; 现阶段大众计划与…

凭借一份深入解析 Java 虚拟机 HotSpot 手册,让我卷成美团架构师

前言 Java 语言已经走过了 20 多个年头&#xff0c;在此期间虽然新语言层出不穷&#xff0c;但是都没有撼动 Java 的位置。可能是历史选择了 Java&#xff0c;也可能是 Java 改变了历史&#xff0c;总之&#xff0c;Java 无疑是一门成功的编程语言。这门语言之所以能如此成功&…

MODBUS RTU转 EtherNet/IP 网关连接森兰变频器与欧姆龙系统通讯配置案例

捷米特JM-EIP-RTU&#xff08;Modbus转Ethernet/Ip&#xff09;网关&#xff0c;用于将多个 MODBUS 从站设备接入 ETHERNET/IP 主站网络&#xff0c;实现 MODBUS 转 ETHERNET/IP 功能。配上 捷米特JM-EIP-RTU网关专用的 EDS 文件,实现 ETHERNET/IP 主 站对 MODBUS 从站设备的控…

Java多线程锁

多线程锁 本专栏学习内容又是来自尚硅谷周阳老师的视频 有兴趣的小伙伴可以点击视频地址观看 Synchronized Synchronized是Java中锁的一种实现方法&#xff0c;我们需要了解他锁在什么地方&#xff0c;锁的类型有哪些 阿里巴巴开发手册规定&#xff1a; 高并发时&#xff0c;同…

大语言模型LLM技术赋能软件项目管理和质量保障︱微软中国高级研发经理步绍鹏

微软中国高级研发经理步绍鹏先生受邀为由PMO评论主办的2023第十二届中国PMO大会演讲嘉宾&#xff0c;演讲议题&#xff1a;大语言模型LLM技术赋能软件项目管理和质量保障。大会将于8月12-13日在北京举办&#xff0c;敬请关注&#xff01; 议题内容简要&#xff1a; 本次分享将…

809 协议相关

809 协议 目录概述需求&#xff1a; 设计思路实现思路分析1.概念2.业务流程3.详细过程4.相关过程 参考资料 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0c;skip hardness,make a better result,wait for change,ch…

Windows上安装Docker Desktop

运行环境 Windows 10Docker Desktop 4.21.1 安装步骤 步骤1&#xff1a; 勾掉"Use WSL 2 instead of Hyper-V(recommended)"&#xff08;原因见小插曲2章节&#xff09; 步骤2&#xff1a; 安装完成 步骤3&#xff1a; 运行Docker Desktop 步骤4&#xff1a; …

面试了无数家公司整理的软件测试面试题【含答案】

1、自动化代码中,用到了哪些设计模式? 单例设计模式 工厂模式PO设计模式数据驱动模式面向接口编程设计模式 2、什么是断言( Assert) ? 断言Assert用于在代码中验证实际结果是不是符合预期结果&#xff0c;如果测试用例执行失败会抛出异常并提供断言日志 3、什么是web自动化测…

STM32 串口实验(学习一)

本章将实现如下功能&#xff1a;STM32通过串口和上位机对话&#xff0c;STM32在收到上位机发过来的字符串后&#xff0c;原原本本返回给上位机。 STM32 串口简介 串口作为MCU的重要外部接口&#xff0c;同时也是软件开发重要的调试手段&#xff0c;其重要性不言而喻。现在基本…