大模型的淘金时代,HPE给出了一份智能经济“奇点”攻略

news2024/11/19 19:36:20

进入2023年,ChatGPT引发了一个新的AI时代——大模型时代。陆奇说:“我已经跟不上大模型时代的狂飙速度了!”大模型引发了AI产业整体升级换代,各种大模型层出不穷,科技公司纷纷入局,AI创业公司再次雨后春笋般涌出。因为大模型,经济的下一个拐点也会加速出现——产业、科学、开发的发展速度同时加速进入拐点,引发了经济的结构化变革。

大模型的淘金时代已经来临

2022年,中国数字经济规模超过50万亿元,占GDP比重超过40%,而2032年这一数字将超过100万亿元!要知道,2022年的中国GDP也就121万亿元!大模型将不仅大力推动数字经济加速进入全面扩张期,高盛集团的经济学家们预测,ChatGPT等生成式AI可能在10年的时间里使得全球年GDP增长7%(近7万亿美元)、全球生产力提升1.5%。

今天,我们正处于智能经济的“奇点”时刻。从中小企业到大规模企业再到一个国家,都处于一个前所未有的机遇期。中国企业要如何快速构建新型基础设施,从而抓住经济的结构化变革机遇?HPE给出了一份智能经济“奇点”攻略——全生命周期的GPT解决方案,这能为中国企业腾飞GPT时代,铺就大模型“加速起飞跑道”。

AI产业升级换代

为什么说大模型引发了AI产业的升级换代呢?之前的AI产业,相当于PC的DOS时代,不仅要自行搭建计算机,还要自行开发各种软件,整个软件行业的生产力非常低;而大模型之后的AI产业,相当于PC的Windows时代,微软的操作系统和英特尔的硬件体系,极大推动了软件和硬件的工业化,出现Oracle、SAP、Adobe等大批应用软件公司。

那么,大模型就是AI的“Windows操作系统”。之前的AI开发,都是各企业自行组建AI和数据团队,自行开发AI模型。由于缺乏AI人才,特别是缺乏既懂行业又懂AI的技术人才,导致很多AI项目的失败。尽管各大科技厂商推出了自动化的机器学习开发平台,但却仍然需要企业自行搭建复杂的AI基础设施,这让AI的规模化发展成为挑战。

HPE与NVIDIA联合发布的《人工智能产业——从实验升级到大规模实施》白皮书指出:每个AI 项目都作为复杂的系统运行,因此很难对其进行预测或控制。任何希望将少数AI项目的经验进一步规模化扩展的尝试,只会进一步加剧这一困难局面。20世纪90年代的软件开发也处于类似的境况,当时的软件产品能否取得成功,在很大程度上取决于是否能够了解,并掌控复杂且通常不可预测的底层硬件和软件系统环境。

今天的大模型,将整个AI产业进行了工业化分工:上游的大模型提供通用能力,下游AI开发者基于大模型生成各种AI应用。这种分工非常类似于Windows操作系统和Windows应用软件体系,因此也将像软件工业化那样出现AI工业化,那么接下来就需要大模型时代的工业标准化硬件基础设施,从而夯实AI工业化,加速智能经济的奇点进化。

AI工业标准化基础设施

2023年4月,HPE推出GPT解决方案,为大模型时代的AI开发和部署提供全套的AI工业标准化基础设施。要让模型架构如GPT般智能适配不同算法和数据集,就需要底层硬件具备从由低配入门级配置,平滑过渡到顶配需求的整体解决方案,进而满足不同行业不同体量企业的需求,而方案的核心就是算力和数据读写能力。

基于大模型的AI工业主要分为四大群体:处于上游的大模型生产方、处于中游的大模型运营方、处于下游的基于大模型API开发GCI和AIGC应用的开发方,以及企业用户。HPE推出了一系列计算服务和存储解决方案,满足各方的需求。

针对上游的大模型生产方和中游的大模型运营方,HPE拥有行业领先的高性能计算和AI超算,HPE Apollo 6500系统,是人工智能领域最高端的引擎,能够满足各类深度学习应用场景需求,充分降低了构建高性能人工智能系统的门槛。HPE Apollo 6500具有最高8颗GPU的计算架构,支持NVLink2.0,单个NVIDIA Tesla V100 GPU 可支持多达六条NVLink链路,总带宽为300Gb/秒,是PCIe 3.0带宽的10倍。HPE Apollo 6500采用NVLink2.0的高效混合立方网格是目前最高性能的解决方案,用户也可以使用基于PCIe的4:1或8:1的GPU:CPU连接,获得高性能与易用性的均衡。

而针对下游的GCI和AIGC开发方、创业公司、企业用户以及非大模型AI应用的开发方和用户,HPE ProLiant Gen11 系列服务器能提供便捷、可靠和性能优化的计算资源,适用于一系列现代工作负载,包括AI、分析、云原生应用、图形密集型应用、机器学习、虚拟桌面基础设施(VDI)和虚拟化等。HPE ProLiant服务器为用户提供了一个基于云原生技术的管理中枢,带来了便捷、统一和自动化的运维体验,用户可轻松地搭载数千台分布式设备,满足AI、机器学习和渲染项目等工作负载的要求。

在数据存储方面,HPE Alletra是一款支持端到端NVMe的闪存系统,除了介质层NVMe SSD之外,还支持前端的NVMe-oF以及数据处理层NVMe SCM,从而在整个数据链路上摆脱了传统存储阵列的瓶颈。HPE Alletra独有的多活互联架构与NVMe+SCM的结合,配合软硬件上全面优化,可以跨越式地降低读写IO的时延。特别是针对实时交易类要求极致IOPS和时延的应用,提供了更加优异的性能表现。

整体来看,HPE GPT系列解决方案可动态调整、适配业务,即能满足高端百亿或千亿参数大模型训练的需求,支持上万颗CPU/GPU集群的构建,也可满足中端和边缘侧GCI、AIGC和其它AI应用的开发、运行和部署的需求,具有简单易用、部署方面的特点,同时满足企业级高达“6个9”的数据可用性和All-NVMe高性能低延迟AI计算以及数据安全的要求,而本地化的合作伙伴更可确保支持服务高效可靠。

AI工业化联盟

成功的AI/ML模型是行业最佳计算、存储、网络、软件工具以及交付模式的高效组合,为了向企业客户高效交付工业标准化AI解决方案,HPE与NVIDIA之间展开紧密合作,为企业提供高度集成且模块化的整体解决方案。

作为全球工业标准服务器的领军企业,最新的HPE ProLiant服务器重新设计了一个前端GPU安装框架,可以安装最多4块GPU,将传统2U服务器可安装的GPU数量翻倍,不仅可以满足快速增长的图形密集型工作负载处理需求,由于采用NVLink而带来的高效GPU到GPU通信还增加了吞吐能力和共享GPU缓存,可显著改善AI应用性能。

NVIDIA最新推出的下一代GPU也与HPE AI解决方案完美结合。NVIDIA L4 Tensor Core GPU采用NVIDIA Ada Lovelace架构,是一个通用的高效能加速器,满足游戏、仿真、数据科技等对于视频、视觉、图形、图像和虚拟化等工作负载的需求。NVIDIA L4 Tensor Core GPU确保每一台从边缘到数据中心的HPE服务器,都能为高吞吐、低延时的工作负载,提供高效和高性能的解决方案。

HPE充分理解AI工业化的要求,投资了AI/ML前沿的模型数据管理、训练和推理能力,同时确保AI/ML应用满足相应法规和道德要求。HPE机器学习开发环境是一个能够帮助开发者和企业快速开发、迭代和规模化扩展高质量AI模型的软件平台,从单台笔记本电脑到上千颗GPU集群系统,可跨多个系统无缝扩展AI模型而无需重写底层基础设施代码。

例如,HPE面向边缘和分布式计算环境推出的Swarm Learning解决方案,是一个满足区域数据隐私要求的分布式机器学习解决方案,用户数据无需离开所属地就能完成AI模型的训练。HPE Swarm Learning为AI模型提供了HPE swarm API,可用容器对外分享AI模型而无需共享实际的训练数据,这样就可以分享基于边缘端数据训练出来的AI模型而无需共享边缘端数据。科研、医院、银行、金融服务、制造工厂等,都可受益于Swarm Learning。

为了在HPE系统上更好地运行NVIDIA AI Enterprise Suite,面向GPU集群加速AI数据准备、规模化训练AI模型、优化推理性能和大规模部署AI应用。HPE还与NVIDIA的紧密合作,为HPE法国Grenoble最佳实践中心提供了一个包括20个HPE Apollo Gen10 Plus系统和160颗NVIDIA A100 Tensor Core GPU的超级计算机,为加速医疗健康、交通物流和环境保护等AI计算提供最佳实践。

在HPE和NVIDIA的身后是AI基础设施联盟(AIIA),该联盟的主要目的是建立AI/ML开发的工业标准和技术堆栈,超过4万名数据科学家、工程师和CXO们都加入到该联盟,为全球各类型企业提供AI基础设施工业标准。目前,AIIA联盟社区成员来自顶级咨询公司和风险投资,主要的互联网、科技、软件、硬件、金融服务、生物科技、医药、零售、汽车、娱乐公司、航空等公司。

总结而言:大模型为我们的时代创造了一个“奇点”,这就是AI全面升级所带来的全球生产力普遍提升和数字经济加速全面扩展,而AI自身也进入了工业标准化阶段——从Dos进入到Windows时代,已经能够形成一个经典的AI基础设施架构蓝图,HPE也相应推出了“奇点”攻略——全生命周期的解决方案。相信在AI工业标准基础设施的推动下,我们将加速进入大模型时代——中国也将成为大模型的大国,强国之一!(文/宁川)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/791001.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Redis深度专题】「核心技术提升」探究Redis服务启动的过程机制的技术原理和流程分析的指南(持久化功能分析)

探究Redis服务启动的过程机制的技术原理和流程分析的指南(持久化功能分析) Redis提供的持久化机制Redis持久化如何工作Redis持久化的故障分析持久化频率操作分析数据库多久调用一次write,将数据写入内核缓冲区?内核多久将系统缓冲…

算法空间复杂度详解

如果您觉得文章不错,期待你的一键三连哦,你的鼓励是我创作的动力之源,让我们一起加油,一起奔跑,让我们顶峰相见!!! 前言 避免在处理大规模问题时出现效率低下,耗费较多…

STM32 Flash学习(一)

STM32 FLASH简介 不同型号的STM32,其Flash容量也不同。 MiniSTM32开发板选择的STM32F103RCT6的FLASH容量为256K字节,属于大容量产品。 STM32的闪存模块由:主存储器、信息块和闪存存储器接口寄存器等3部分组成。 主存储器,该部分…

服务器被爬虫恶意攻击怎么办?

在有预算的情况可以采购第三方服务防火墙,没钱就使用开源的WAF进行防护。 # WAF防火墙的基本防护原理 WAF(Web 应用防火墙)可以使用多种技术来防止恶意爬虫攻击,例如: 1. 黑名单:WAF 可以使用黑名单技术来…

会点C++还需要再学Python吗?

提到的C、数据结构与算法、操作系统、计算机网络和数据库技术等确实是计算机科学中非常重要的基础知识领域,对于软件开发和计算机工程师来说,它们是必备的核心知识。掌握这些知识对于开发高性能、可靠和安全的应用程序非常重要。Python作为一种脚本语言&…

Spring Cloud+Spring Boot+Mybatis+uniapp+前后端分离实现知识付费平台免费搭建

Java版知识付费-轻松拥有知识付费平台 多种直播形式,全面满足直播场景需求 公开课、小班课、独立直播间等类型,满足讲师个性化直播场景需求;低延迟、双向视频,亲密互动,无论是互动、答疑,还是打赏、带货、…

【C++初阶】介绍stack_queue及OJ题

介绍stack_queue及OJ题 前言一、简单了解1、stack2、queue 二、OJ题(前三个栈,第四、五个队列)1、最小栈(1)题目描述(2)解题思路(3)解题代码 2、栈的压入、弹出序列&…

【C#】并行编程实战:异步流

本来这章该讲的是 ASP .NET Core 中的 IIS 和 Kestrel ,但是我看了下这个是给服务器用的。而我只是个 Unity 客户端程序,对于服务器的了解趋近于零。 鉴于我对服务器知识和需求的匮乏,这里就不讲原书(大部分)内容了。本…

基于RPA的自动化流程治理方案探索及应用实践

编者荐语: 随着企业数字化转型进程加快,信息系统大量上线,但流程运营管理问题逐渐显现出来。为提升企业流程运营能力,亚信科技联合某省运营商推出智能化流程治理运营模式,尝试基于RPA(机器人流程自动化&am…

IRIS搭建docker

之前把web实现了docker,开发或测试环境可能需要开发自己搭数据库,为了方便使用,把数据库也做一个docker。 由于原生的CentOS我还有改yum仓库,所以这次从之前lis搞的改好yum的镜像开始(从改好yum的lisnew的镜像创建lis…

SaaS到底是什么,如何做?这份笔记讲明白了

阅读本篇文章,您将可以了解:1、什么是SaaS;2、SaaS的商业模式;3、SaaS的技术架构;4、国内比较好的SaaS平台。 一、什么是SaaS SaaS即软件即服务(Software as a Service),是一种通过…

【数据结构】AVL树/红黑树

目录 1.AVL树(高度平衡二叉搜索树) 10.1.基本概念 10.2.实现 10.2.1.AVL树节点的定义 10.2.2.AVL树的插入 10.2.3.AVL树的旋转 1.新节点插入较高左子树的左侧---左左:右单旋 2.新节点插入较高右子树的右侧---右右:左单旋 3.新节点…

Python Flask构建微信小程序订餐系统 (十二)

🔥 创建切换商品分类状态的JS文件 🔥 ; var food_act_ops={init:function(){this.eventBind();},eventBind:function(){//表示作用域var that = this;$(".wrap_search select[name=status]").change(function(){$(".wrap_search").submit();});$(&qu…

对ai绘画二次元生成器你有多少了解?

在一个小镇上,有一位年轻的艺术家名叫艾米莉。她是个富有创意的女孩,总是追求着新奇和美妙的艺术体验。然而,她最近遇到了一些创作上的障碍,感觉自己的绘画已经陷入了瓶颈。在艾米莉寻找灵感的过程中,她听说了神秘的ai…

SQL语句(三十二)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 一、SQL语句类型 二、数据库操作 ​三、数据表操作 1. 数据类型 2. 查看 3. 创建 4. 删除 5. 更改 5.1 表 5.2 列 四、数据操作 4.1 增 4.2 删 4.3 改 4.4 查…

13.5.4 【Linux】常用模块简介

登陆所需要的PAM流程: 上面这个表格当中使用到非常多的 PAM 模块,每个模块的功能都不太相同,详细的模块情报可以在你的系统中找到: /etc/pam.d/*:每个程序个别的 PAM 配置文件; /lib64/security/*&#x…

网络:HCIA 1

1. 通信系统的组成: 终端设备:电脑 中间设备:交换机、路由器、防火墙。 传输介质:网线(双绞线)传输距离一般为100米,传输的是电信号。 光纤传输的是光信号。 光纤接口类型,方形接口…

前端(九)——探索微信小程序、Vue、React和Uniapp生命周期

🙂博主:小猫娃来啦 🙂文章核心:探索微信小程序、Vue、React和Uniapp生命周期 文章目录 微信小程序、Vue、React和Uniapp的基本定义和应用领域微信小程序生命周期生命周期概述页面生命周期应用生命周期组件和API的生命周期钩子 Vu…

看完这篇,别再说不会Spring 分库分表了

多数据源,读写分离,分库分表,基本上已经是现在任何一个项目的基本配置了,在之前的文章Spring多数据源实现https://blog.csdn.net/wangerrong/article/details/131910740 里讲了多数据源的实现,其实已经包含了读写分离…

广东省《5A物理抗菌纺织品》团体标准颁布

近日,经广东省标准化协会批准发布由广东人仁康科技有限公司主导制定的《5A物理抗菌纺织品》(T/GDBX 073—2023)团体标准,于2023年7月21日发布并实施。 根据标准制修订工作流程,该项标准2022年由人仁康和广检集团组织起…