C++无锁编程——无锁队列(queue)

news2025/1/11 2:39:49

C++无锁编程——无锁队列(queue)

贺志国
2023.7.11

上一篇博客给出了最简单的C++数据结构——栈的几种无锁实现方法。队列的挑战与栈的有些不同,因为Push()Pop()函数在队列中操作的不是同一个地方。因此同步的需求就不一样。需要保证对一端的修改是正确的,且对另一端是可见的。因此队列需要两个Node指针:head_tail_。这两个指针都是原子变量,从而可在加锁的情形下,可给多个线程同时访问。首先来分析单生产者/单消费者的情形。

一、单生产者-单消费者模型下的无锁队列

单生产者/单消费者模型就是指,在某一时刻,最多只存在一个线程调用Push()函数,最多只存在一个线程调用Pop()函数。该情形下的代码(文件命名为 lock_free_queue.h)如下:

#pragma once

#include <atomic>
#include <memory>

template <typename T>
class LockFreeQueue {
 public:
  LockFreeQueue() : head_(new Node), tail_(head_.load()) {}
  ~LockFreeQueue() {
    while (Node* old_head = head_.load()) {
      head_.store(old_head->next);
      delete old_head;
    }
  }

  LockFreeQueue(const LockFreeQueue& other) = delete;
  LockFreeQueue& operator=(const LockFreeQueue& other) = delete;

  bool IsEmpty() const { return head_.load() == tail_.load(); }

  void Push(const T& data) {
    auto new_data = std::make_shared<T>(data);
    Node* p = new Node;             // 3
    Node* old_tail = tail_.load();  // 4
    old_tail->data.swap(new_data);  // 5
    old_tail->next = p;             // 6
    tail_.store(p);                 // 7
  }

  std::shared_ptr<T> Pop() {
    Node* old_head = PopHead();
    if (old_head == nullptr) {
      return std::shared_ptr<T>();
    }

    const std::shared_ptr<T> res(old_head->data);  // 2
    delete old_head;
    return res;
  }

 private:
  // If the struct definition of Node is placed in the private data member
  // field where 'head_' is defined, the following compilation error will occur:
  //
  // error: 'Node' has not been declared ...
  //
  // It should be a bug of the compiler. The struct definition of Node is put in
  // front of the private member function `DeleteNodes` to eliminate this error.
  struct Node {
    // std::make_shared does not throw an exception.
    Node() : data(nullptr), next(nullptr) {}

    std::shared_ptr<T> data;
    Node* next;
  };

 private:
  Node* PopHead() {
    Node* old_head = head_.load();
    if (old_head == tail_.load()) {  // 1
      return nullptr;
    }
    head_.store(old_head->next);
    return old_head;
  }

 private:
  std::atomic<Node*> head_;
  std::atomic<Node*> tail_;
};

一眼望去,这个实现没什么毛病,当只有一个线程调用Push()Pop()时,这种情况下队列一点毛病没有。Push()Pop()之间的先行(happens-before )关系非常重要,直接关系到能否安全地获取到队列中的数据。对尾部节点tail_的存储⑦(对应于上述代码片段中的注释// 7,下同)同步(synchronizes with)于对tail_的加载①,存储之前节点的data指针⑤先行(happens-before )于存储tail_。并且,加载tail_先行于加载data指针②,所以对data的存储要先行于加载,一切都没问题。因此,这是一个完美的单生产者/单消费者(SPSC, single-producer, single-consume)队列。
问题在于当多线程对Push()Pop()并发调用。先看一下Push():如果有两个线程并发调用Push(),会新分配两个节点作为虚拟节点③,也会读取到相同的tail_值④,因此也会同时修改同一个节点,同时设置datanext指针⑤⑥,存在明显的数据竞争!
PopHead()函数也有类似的问题。当有两个线程并发的调用这个函数时,这两个线程就会读取到同一个head_,并且会通过next指针去修改旧值。两个线程都能索引到同一个节点——真是一场灾难!不仅要保证只有一个Pop()线程可以访问给定项,还要保证其他线程在读取head_时,可以安全的访问节点中的next,这就是和无锁栈中Pop()一样的问题了。
Pop()的问题假设已解决,那么Push()呢?问题在于为了获取Push()Pop()间的先行关系,就需要在为虚拟节点设置数据项前,更新tail_指针。并发访问Push()时,因为每个线程所读取到的是同一个tail_,所以线程会进行竞争。

说明
先行(happens-before )与同步(synchronizes with)是原子变量在线程间同步的两个重要关系。
Happens-before(先行)
Regardless of threads, evaluation A happens-before evaluation B if any of the following is true: 1) A is sequenced-before B; 2) A inter-thread happens before B. The implementation is required to ensure that the happens-before relation is acyclic, by introducing additional synchronization if necessary (it can only be necessary if a consume operation is involved). If one evaluation modifies a memory location, and the other reads or modifies the same memory location, and if at least one of the evaluations is not an atomic operation, the behavior of the program is undefined (the program has a data race) unless there exists a happens-before relationship between these two evaluations.
(无关乎线程,若下列任一为真,则求值 A 先行于求值 B :1) A 先序于 B;2) A 线程间先发生于 B。要求实现确保先发生于关系是非循环的,若有必要则引入额外的同步(若引入消费操作,它才可能为必要)。若一次求值修改一个内存位置,而其他求值读或修改同一内存位置,且至少一个求值不是原子操作,则程序的行为未定义(程序有数据竞争),除非这两个求值之间存在先行关系。)
Synchronizes with(同步)
If an atomic store in thread A is a release operation, an atomic load in thread B from the same variable is an acquire operation, and the load in thread B reads a value written by the store in thread A, then the store in thread A synchronizes-with the load in thread B. Also, some library calls may be defined to synchronize-with other library calls on other threads.
(如果在线程A上的一个原子存储是释放操作,在线程B上的对相同变量的一个原子加载是获得操作,且线程B上的加载读取由线程A上的存储写入的值,则线程A上的存储同步于线程B上的加载。此外,某些库调用也可能定义为同步于其它线程上的其它库调用。)

二、多生产者-多消费者模型下的无锁队列

为了解决多个线程同时访问产生的数据竞争问题,可以让Node节点中的data指针原子化,通过“比较/交换”操作对其进行设置。如果“比较/交换”成功,就说明能获取tail_,并能够安全的对其next指针进行设置,也就是更新tail_。因为有其他线程对数据进行了存储,所以会导致“比较/交换”操作的失败,这时就要重新读取tail_,重新循环。如果原子操作对于std::shared_ptr<>是无锁的,那么就基本结束了。然而,目前在多数平台中std::shared_ptr<>不是无锁的,这就需要一个替代方案:让Pop()函数返回std::unique_ptr<>,并且将数据作为普通指针存储在队列中。这就需要队列支持存储std::atomic<T*>类型,对于compare_exchange_strong()的调用就很有必要了。使用类似于无锁栈中的引用计数模式,来解决多线程对Pop()Push()的访问。不过,队列中包含head_tail_两个节点,因此需要两个引用计数器来维护节点的访问计数。下面是示例代码(文件命名为 lock_free_queue.h,示例来源于C++ Concurrency In Action, 2ed 2019,修复了其中的bug):

#pragma once

#include <atomic>
#include <memory>

template <typename T>
class LockFreeQueue {
 public:
  LockFreeQueue() : head_(CountedNodePtr(new Node)), tail_(head_.load()) {}

  ~LockFreeQueue() {
    while (Pop()) {
      // Do nothing
    }
  }

  LockFreeQueue(const LockFreeQueue& other) = delete;
  LockFreeQueue& operator=(const LockFreeQueue& other) = delete;

  bool IsEmpty() const { return head_.load().ptr == tail_.load().ptr; }
  bool IsLockFree() const { return head_.is_lock_free(); }

  void Push(const T& data) {
    auto new_data = std::make_unique<T>(data);
    CountedNodePtr new_next(new Node);
    new_next.external_count = 1;
    CountedNodePtr old_tail = tail_.load();

    while (true) {
      IncreaseExternalCount(&tail_, &old_tail);

      T* old_data = nullptr;
      // We use compare_exchange_strong() to avoid looping. If the exchange
      // fails, we know that another thread has already set the next pointer, so
      // we don’t need the new node we allocated at the beginning, and we can
      // delete it. We also want to use the next value that the other thread set
      // for updating tail.
      if (reinterpret_cast<Node*>(old_tail.ptr)
              ->data.compare_exchange_strong(old_data, new_data.get())) {
        CountedNodePtr old_next =
            reinterpret_cast<Node*>(old_tail.ptr)->next.load();
        if (!reinterpret_cast<Node*>(old_tail.ptr)
                 ->next.compare_exchange_strong(old_next, new_next)) {
          delete reinterpret_cast<Node*>(new_next.ptr);
          new_next = old_next;
        }
        SetNewTail(new_next, &old_tail);

        // Release the ownership of the managed object so that the data will not
        // be deleted beyond the scope the unique_ptr<T>.
        new_data.release();
        break;
      } else {
        // If the thread calling Push() failed to set the data pointer this time
        // through the loop, it can help the successful thread to complete the
        // update. First off, we try to update the next pointer to the new node
        // allocated on this thread. If this succeeds, we want to use the node
        // we allocated as the new tail node, and we need to allocate another
        // new node in anticipation of managing to push an item on the queue. We
        // can then try to set the tail node by calling set_new_tail before
        // looping around again.
        CountedNodePtr old_next =
            reinterpret_cast<Node*>(old_tail.ptr)->next.load();
        if (reinterpret_cast<Node*>(old_tail.ptr)
                ->next.compare_exchange_strong(old_next, new_next)) {
          old_next = new_next;
          new_next.ptr = reinterpret_cast<uint64_t>(new Node);
        }
        SetNewTail(old_next, &old_tail);
      }
    }
  }

  std::unique_ptr<T> Pop() {
    // We prime the pump by loading the old_head value before we enter the loop,
    // and before we increase the external count on the loaded value.
    CountedNodePtr old_head = head_.load();
    while (true) {
      IncreaseExternalCount(&head_, &old_head);

      // If the head node is the same as the tail node, we can release the
      // reference and return a null pointer because there’s no data in the
      // queue.
      Node* ptr = reinterpret_cast<Node*>(old_head.ptr);
      if (ptr == nullptr) {
        return std::unique_ptr<T>();
      }
      if (ptr == reinterpret_cast<Node*>(tail_.load().ptr)) {
        ptr->ReleaseRef();
        return std::unique_ptr<T>();
      }

      // If there is data, we want to try to claim it and we do this with the
      // call to compare_exchange_strong(). It compares the external count and
      // pointer as a single entity; if either changes, we need to loop again,
      // after releasing the reference.
      CountedNodePtr next = ptr->next.load();
      if (head_.compare_exchange_strong(old_head, next)) {
        // If the exchange succeeded, we’ve claimed the data in the node as
        // ours, so we can return that to the caller after we’ve released the
        // external counter to the popped node.
        T* res = ptr->data.exchange(nullptr);
        FreeExternalCounter(&old_head);
        return std::unique_ptr<T>(res);
      }

      // Once both the external reference counts have been freed and the
      // internal count has dropped to zero, the node itself can be deleted.
      ptr->ReleaseRef();
    }
  }

 private:
  // Forward class declaration
  struct Node;
  struct CountedNodePtr {
    explicit CountedNodePtr(Node* input_ptr = nullptr)
        : ptr(reinterpret_cast<uint64_t>(input_ptr)), external_count(0) {}

    // We know that the platform has spare bits in a pointer (for example,
    // because the address space is only 48 bits but a pointer is 64 bits), we
    // can store the count inside the spare bits of the pointer to fit it all
    // back in a single machine word. Keeping the structure within a machine
    // word makes it more likely that the atomic operations can be lock-free on
    // many platforms.
    uint64_t ptr : 48;
    uint16_t external_count : 16;
  };

  struct NodeCounter {
    NodeCounter() : internal_count(0), external_counters(0) {}
    NodeCounter(const uint32_t input_internal_count,
                const uint8_t input_external_counters)
        : internal_count(input_internal_count),
          external_counters(input_external_counters) {}

    // external_counters occupies only 2 bits, where the maximum value stored
    // is 3. Note that we need only 2 bits for the external_counters because
    // there are at most two such counters. By using a bit field for this and
    // specifying internal_count as a 30-bit value, we keep the total counter
    // size to 32 bits. This gives us plenty of scope for large internal count
    // values while ensuring that the whole structure fits inside a machine word
    // on 32-bit and 64-bit machines. It’s important to update these counts
    // together as a single entity in order to avoid race conditions. Keeping
    // the structure within a machine word makes it more likely that the atomic
    // operations can be lock-free on many platforms.
    uint32_t internal_count : 30;
    uint8_t external_counters : 2;
  };

  struct Node {
    // There are only two counters in Node (counter and next), so the initial
    // value of external_counters is 2.
    Node()
        : data(nullptr), counter(NodeCounter(0, 2)), next(CountedNodePtr()) {}

    void ReleaseRef() {
      NodeCounter old_node = counter.load();
      NodeCounter new_counter;

      // the whole count structure has to be updated atomically, even though we
      // only want to modify the internal_count field. This therefore requires a
      // compare/exchange loop.
      do {
        new_counter = old_node;
        --new_counter.internal_count;
      } while (!counter.compare_exchange_strong(old_node, new_counter));

      // Once we’ve decremented internal_count, if both the internal and
      // external counts are now zero, this is the last reference, so we can
      // delete the node safely.
      if (!new_counter.internal_count && !new_counter.external_counters) {
        delete this;
      }
    }

    std::atomic<T*> data;
    std::atomic<NodeCounter> counter;
    std::atomic<CountedNodePtr> next;
  };

 private:
  static void IncreaseExternalCount(std::atomic<CountedNodePtr>* atomic_node,
                                    CountedNodePtr* old_node) {
    CountedNodePtr new_node;

    // If `*old_node` is equal to `*atomic_node`, it means that no other thread
    // changes the `*atomic_node`, update `*atomic_node` to `new_node`. In fact
    // the `*atomic_node` is still the original node, only the `external_count`
    // of it is increased by 1. If `*old_node` is not equal to `*atomic_node`,
    // it means that another thread has changed `*atomic_node`, update
    // `*old_node` to `*atomic_node`, and keep looping until there are no
    // threads changing `*atomic_node`.
    do {
      new_node = *old_node;
      ++new_node.external_count;
    } while (!atomic_node->compare_exchange_strong(*old_node, new_node));

    old_node->external_count = new_node.external_count;
  }

  static void FreeExternalCounter(CountedNodePtr* old_node) {
    Node* ptr = reinterpret_cast<Node*>(old_node->ptr);
    const int increased_count = old_node->external_count - 2;
    NodeCounter old_counter = ptr->counter.load();
    NodeCounter new_counter;

    // Update two counters using a single compare_exchange_strong() on the
    // whole count structure, as we did when decreasing the internal_count
    // in ReleaseRef().
    // This has to be done as a single action (which therefore requires the
    // compare/exchange loop) to avoid a race condition. If they’re updated
    // separately, two threads may both think they are the last one and both
    // delete the node, resulting in undefined behavior.
    do {
      new_counter = old_counter;
      --new_counter.external_counters;
      new_counter.internal_count += increased_count;
    } while (!ptr->counter.compare_exchange_strong(old_counter, new_counter));

    // If both the values are now zero, there are no more references to the
    // node, so it can be safely deleted.
    if (!new_counter.internal_count && !new_counter.external_counters) {
      delete ptr;
    }
  }

  void SetNewTail(const CountedNodePtr& new_tail, CountedNodePtr* old_tail) {
    // Use a compare_exchange_weak() loop to update the tail , because if other
    // threads are trying to push() a new node, the external_count part may have
    // changed, and we don’t want to lose it.
    Node* current_tail_ptr = reinterpret_cast<Node*>(old_tail->ptr);
    while (!tail_.compare_exchange_weak(*old_tail, new_tail) &&
           reinterpret_cast<Node*>(old_tail->ptr) == current_tail_ptr) {
      // Do nothing
    }

    // We also need to take care that we don’t replace the value if another
    // thread has successfully changed it already; otherwise, we may end up with
    // loops in the queue, which would be a rather bad idea. Consequently, we
    // need to ensure that the ptr part of the loaded value is the same if the
    // compare/exchange fails. If the ptr is the same once the loop has exited,
    // then we must have successfully set the tail , so we need to free the old
    // external counter. If the ptr value is different, then another thread will
    // have freed the counter, so we need to release the single reference held
    // by this thread.
    if (reinterpret_cast<Node*>(old_tail->ptr) == current_tail_ptr) {
      FreeExternalCounter(old_tail);
    } else {
      current_tail_ptr->ReleaseRef();
    }
  }

 private:
  std::atomic<CountedNodePtr> head_;
  std::atomic<CountedNodePtr> tail_;
};

上述代码中,值得特别指出的是,带引用计数的节点指针结构体CountedNodePtr使用了位域的概念:

  struct CountedNodePtr {
    explicit CountedNodePtr(Node* input_ptr = nullptr)
        : ptr(reinterpret_cast<uint64_t>(input_ptr)), external_count(0) {}
        
    uint64_t ptr : 48;
    uint16_t external_count : 16;
  };
  };

为什么要这么做?现在主流的操作系统和编译器只支持最多8字节数据类型的无锁操作,即std::atomic<CountedNodePtr>的成员函数is_lock_free只有在sizeof(CountedNodePtr) <= 8时才会返回true。因此,必须将CountedNodePtr的字节数控制8以内,于是我们想到了位域。在主流的操作系统中,指针占用的空间不会超过48位(如果超过该尺寸则必须重新设计位域大小,请查阅操作系统使用手册确认),为此将external_count分配16位(最大支持65535),ptr分配48位,合计64位(8字节)。此时,std::atomic<CountedNodePtr>的成员函数is_lock_free在主流操作系统中都会返回true,是真正的无锁原子变量。为了适应上述更改,必须使用reinterpret_cast<Node*>(new_node.ptr)完成ptruint64_tNode*类型的转换,使用reinterpret_cast<uint64_t>(new Node(data)完成指针变量从ptrNode*uint64_t类型的转换,从而正常地存储于ptr中。

同样地,另一个节点计数器结构体NodeCounter也使用了位域的概念:

  struct NodeCounter {
    NodeCounter() : internal_count(0), external_counters(0) {}
    NodeCounter(const uint32_t input_internal_count,
                const uint8_t input_external_counters)
        : internal_count(input_internal_count),
          external_counters(input_external_counters) {}
    
    uint32_t internal_count : 30;
    uint8_t external_counters : 2;
  };

理由也是让std::atomic<NodeCounter>成为真正的无锁原子变量。该结构体中,external_counters只占2位,最大支持的数值为3,因为队列中有head_tail_两个节点,只需要两个引用计数器分别对其的引用计数,因此external_counters的最大值只需为2,占两位足够。internal_count分配30位(最大支持1073741823)。两个元素合计32位(4字节)。此时,std::atomic<NodeCounter>的成员函数is_lock_free在主流操作系统中都会返回true,是真正的无锁原子变量。

三、测试代码

下面给出测试无锁栈工作是否正常的简单测试代码(文件命名为:lock_free_queue.cpp):

#include "lock_free_queue.h"

#include <algorithm>
#include <iostream>
#include <random>
#include <thread>
#include <vector>

namespace {
constexpr size_t kElementNum = 10;
constexpr size_t kThreadNum = 200;
constexpr size_t kLargeThreadNum = 2000;
}  // namespace

int main() {
  LockFreeQueue<int> queue;

  // Case 1: Single thread test
  for (size_t i = 0; i < kElementNum; ++i) {
    std::cout << "The data " << i << " is pushed in the queue.\n";
    queue.Push(i);
  }
  std::cout << "queue.IsEmpty() == " << std::boolalpha << queue.IsEmpty()
            << std::endl;
  while (auto data = queue.Pop()) {
    std::cout << "Current data is : " << *data << '\n';
  }

  // Case 2: multi-thread test. Producers and consumers are evenly distributed
  std::vector<std::thread> producers1;
  std::vector<std::thread> producers2;
  std::vector<std::thread> consumers1;
  std::vector<std::thread> consumers2;
  for (size_t i = 0; i < kThreadNum; ++i) {
    producers1.emplace_back(&LockFreeQueue<int>::Push, &queue, i * 10);
    producers2.emplace_back(&LockFreeQueue<int>::Push, &queue, i * 20);
    consumers1.emplace_back(&LockFreeQueue<int>::Pop, &queue);
    consumers2.emplace_back(&LockFreeQueue<int>::Pop, &queue);
  }
  for (size_t i = 0; i < kThreadNum; ++i) {
    producers1[i].join();
    consumers1[i].join();
    producers2[i].join();
    consumers2[i].join();
  }
  producers1.clear();
  producers1.shrink_to_fit();
  producers2.clear();
  producers2.shrink_to_fit();
  consumers1.clear();
  consumers1.shrink_to_fit();
  consumers2.clear();
  consumers2.shrink_to_fit();

  // Case 3: multi-thread test. Producers and consumers are randomly distributed
  std::vector<std::thread> producers3;
  std::vector<std::thread> consumers3;
  for (size_t i = 0; i < kLargeThreadNum; ++i) {
    producers3.emplace_back(&LockFreeQueue<int>::Push, &queue, i * 30);
    consumers3.emplace_back(&LockFreeQueue<int>::Pop, &queue);
  }
  std::vector<int> random_numbers(kLargeThreadNum);
  std::mt19937 gen(std::random_device{}());
  std::uniform_int_distribution<int> dis(0, 100000);
  auto rand_num_generator = [&gen, &dis]() mutable { return dis(gen); };
  std::generate(random_numbers.begin(), random_numbers.end(),
                rand_num_generator);
  for (size_t i = 0; i < kLargeThreadNum; ++i) {
    if (random_numbers[i] % 2) {
      producers3[i].join();
      consumers3[i].join();
    } else {
      consumers3[i].join();
      producers3[i].join();
    }
  }
  consumers3.clear();
  consumers3.shrink_to_fit();
  consumers3.clear();
  consumers3.shrink_to_fit();

  return 0;
}

CMake的编译配置文件CMakeLists.txt

cmake_minimum_required(VERSION 3.0.0)
project(lock_free_queue VERSION 0.1.0)
set(CMAKE_CXX_STANDARD 17)

# If the debug option is not given, the program will not have debugging information.
SET(CMAKE_BUILD_TYPE "Debug")

add_executable(${PROJECT_NAME} ${PROJECT_NAME}.cpp)

find_package(Threads REQUIRED)
# libatomic should be linked to the program.
# Otherwise, the following link errors occured:
# /usr/include/c++/9/atomic:254: undefined reference to `__atomic_load_16'
# /usr/include/c++/9/atomic:292: undefined reference to `__atomic_compare_exchange_16'
# target_link_libraries(${PROJECT_NAME} ${CMAKE_THREAD_LIBS_INIT} atomic)
target_link_libraries(${PROJECT_NAME} ${CMAKE_THREAD_LIBS_INIT})

include(CTest)
enable_testing()
set(CPACK_PROJECT_NAME ${PROJECT_NAME})
set(CPACK_PROJECT_VERSION ${PROJECT_VERSION})
include(CPack)

上述配置中添加了对原子库atomic的链接。因为引用计数的结构体CountedNodePtr包含两个数据成员(注:最初实现的版本未使用位域,需要添加对原子库atomic的链接。新版本使用位域,不再需要添加):int external_count; Node* ptr;,这两个变量占用16字节,而16字节的数据结构需要额外链接原子库atomic,否则会出现链接错误:

/usr/include/c++/9/atomic:254: undefined reference to `__atomic_load_16'
/usr/include/c++/9/atomic:292: undefined reference to `__atomic_compare_exchange_16'

VSCode调试启动配置文件.vscode/launch.json

{
    "version": "0.2.0",
    "configurations": [
        {
            "name": "cpp_gdb_launch",
            "type": "cppdbg",
            "request": "launch",
            "program": "${workspaceFolder}/build/${workspaceFolderBasename}",
            "args": [],
            "stopAtEntry": false,
            "cwd": "${fileDirname}",
            "environment": [],
            "externalConsole": false,
            "MIMode": "gdb",
            "setupCommands": [
                {
                    "description": "Enable neat printing for gdb",
                    "text": "-enable-pretty-printing",
                    "ignoreFailures": true
                }
            ],
            // "preLaunchTask": "cpp_build_task",
            "miDebuggerPath": "/usr/bin/gdb"
        }
    ]
}

使用CMake的编译命令:

cd lock_free_queue
# 只执行一次
mkdir build
cd build
cmake .. && make

运行结果如下:

./lock_free_queue 
The data 0 is pushed in the queue.
The data 1 is pushed in the queue.
The data 2 is pushed in the queue.
The data 3 is pushed in the queue.
The data 4 is pushed in the queue.
The data 5 is pushed in the queue.
The data 6 is pushed in the queue.
The data 7 is pushed in the queue.
The data 8 is pushed in the queue.
The data 9 is pushed in the queue.
queue.IsEmpty() == false
Current data is : 0
Current data is : 1
Current data is : 2
Current data is : 3
Current data is : 4
Current data is : 5
Current data is : 6
Current data is : 7
Current data is : 8
Current data is : 9

VSCode调试界面如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/771602.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CRC校验原理全面解读

目录 1. 简介2. 原理2.1 CRC的发送与接收2.2 CRC校验码的生成2.3 CRC校验码的校验 3. 拓展问题3.1 模2除法为什么等同于异或运算&#xff1f;3.2 为什么除数的位数和被除数补充的位数相差为1&#xff1f;3.3 为什么CRC校验码不能纠正错误&#xff0c;只能检测错误&#xff1f; …

【数据结构】二叉树详解(2)

⭐️ 前言 ✨ 往期文章链接&#xff1a;二叉树的概念性质 上一篇我们讲了二叉树的结构定义&#xff0c;以及前序/中序/后序的递归遍历&#xff0c;还有一些二叉树的接口实现&#xff0c;本篇我们补充一个二叉树的接口 BinaryTreeDepth。✨上一篇文章链接&#xff1a;二叉树详…

第108天:免杀对抗-Python混淆算法反序列化打包生成器Py2exeNuitka

知识点 #知识点&#xff1a; 1、Python-对执行代码做文章 2、Python-对shellcode做文章 3、Python-对代码打包器做文章#章节点&#xff1a; 编译代码面-ShellCode-混淆 编译代码面-编辑执行器-编写 编译代码面-分离加载器-编写 程序文件面-特征码定位-修改 程序文件面-加壳花指…

SpringCloud学习路线(7)—— 统一网关Gateway

一、引言 &#xff08;一&#xff09;需求&#xff1a; 服务器中的微服务只允许内部人员调用或是内网人员进行调用&#xff0c;拒绝外网人员访问。 &#xff08;二&#xff09;如何实现需求&#xff1f; 网关 &#xff08;三&#xff09;网关的功能 身份认证和权限校验服务…

十八、Unity游戏引擎入门

1、下载 首先需要下载Unity Hub,下载网址:https://unity.com/cn。 然后在其中下载Unity编辑器并安装,可选择最新版本。 接着需要选择适合的开发环境,例如Android Studio或Xcode,以便进行手机游戏开发。在安装完Unity后,需要根据项目需求下载对应的模块和插件…

实训笔记7.19

实训笔记7.19 7.19一、座右铭二、Hadoop的HDFS分布式文件存储系统的相关原理性内容2.1 HDFS上传数据的流程2.2 HDFS下载数据的流程2.3 HDFS中NameNode和SecondaryNameNode工作机制&#xff08;涉及到HDFS的元数据管理操作&#xff09;2.4 HDFS中NameNode和DataNode的工作机制&a…

【C++】仿函数(less)

C中的仿函数 class Solution { public:struct cmp{bool operator()(const pair<string,int>&kv1,const pair<string,int>&kv2){if(kv1.second<kv2.second) return true;if(kv1.secondkv2.second&&kv1.first>kv2.first) return true;return …

JavaWeb01-Servlet-thymeleaf-mvd-dispatcher-controller

Servlet: servlet的基本作用 第一个servlet程序&#xff1a; //演示servlet的生命周期 public class Demo02Servlet extends HttpServlet {Overridepublic void init() throws ServletException {System.out.println("正在初始化。。。");}Overrideprotected void …

实例019 以图形按钮显示的界面

实例说明 菜单和工具栏虽然能方便用户操作程序的相应功能&#xff0c;但各有缺点。如果采用按钮式功能菜单&#xff0c;不但美观大方&#xff0c;而且操作灵活。当单击按钮时&#xff0c;用户区将显示相应的操作按钮组。下面介绍图形界面式菜单的设计方法。运行本例&#xff0…

【个人笔记】linux命令之cd

cd命令 cd&#xff08;英文全拼&#xff1a;change directory&#xff09;命令用于改变当前工作目录的命令&#xff0c;切换到指定的路径。 若目录名称省略&#xff0c;则变换至使用者的 home 目录 (也就是刚 login 时所在的目录)。 另外&#xff0c;~ 也表示为 home 目录 的…

恢复配置并减少网络停机时间

随着众多公司努力在商业世界中崭露头角&#xff0c;拥有可靠的 IT 基础架构比以往任何时候都更加重要。组织需要维护一个稳定的网络环境&#xff0c;避免不合时宜的网络中断以及网络连接中断、声誉受损、应用程序不可用和数据丢失。 Network Configuration Manager 提供了一种…

Debian 12上如何关闭nobody共享文件夹,一个能让INSCODE AI 创作助手不知所措的小问题

这个问题之前在Debian 10和11上都没有遇到过&#xff0c;换上Debian 12后Samba的设置就出现了状况&#xff0c;装上Samba后什么都没有设置就在局域网可以看到&#xff1a; 根据之前的经验在/etc/samba/smb.conf里查了很久也没有看出所以然来&#xff0c;后来又问了INSCODE AI…

ubuntu打开usb摄像头

文章目录 前言一、识别 usb 摄像头二、安装应用程序显示摄像头捕捉到的视频1、使用应用程序茄子&#xff08;cheese&#xff09;2、运行 cheese 捕捉视频 总结 前言 记录一下解决在 Linux 下打开 usb 摄像头界面黑屏的问题。 一、识别 usb 摄像头 1、保持在 ubuntu 界面&…

软件测试用例的八大步骤你都知道吗?

目录 第一步、UI体验测试 第二步、功能完整性测试 第三步、业务流程测试 第四步、容错机制测试 第五步、常规性测试 第六步、性能测试 第七步、交互体验测试 第八步、兼容性测试 总结&#xff1a; 第一步、UI体验测试 1.风格、样式、颜色是否协调 2. 界面布局是否整齐、…

【网站搭建】3 更换博客主题—butterfly

可以到官网选择想要更换的主题Themes | Hexo 我选用的是butterflyzhangzeli/hexo-theme-butterfly: A Hexo Theme: Butterfly (github.com) 在Hexo根目录打开终端执行拉去操作 下载配套文件 npm install hexo-renderer-pug hexo-renderer-stylus 打开_config.yml文件&#xf…

二维费用背包(既有最大体积限制,又多加了一个最大重量限制)

1:分析状态转移方程式 2:ACcode: #include<bits/stdc.h> using namespace std; const int N1e310; int f[N][N],v[N],w[N],m[N]; void solve() {int a,b,c;cin>>a>>b>>c;for(int i1; i<a; i) cin>>v[i]>>m[i]>>w[i];//酷似01背…

数仓虚拟化技术:PieCloudDB 通过中国信通院 2023 「可信数据库」性能评测的强力支撑...

“可信数据库”是国内首个数据库的评测体系&#xff0c;被业界广泛认可为产品能力重要的衡量标准之一。PieCloudDB 在该评测中展现出卓越的数据处理速度、稳定性和可扩展性&#xff0c;为用户提供了强大的数据分析和查询能力。 6 月 15 ~ 16 日&#xff0c;中国信通院 2023 上…

vue3笔记-脚手架篇

第一章 基础篇 第二章 脚手架篇 vue2与vue3的一些区别 响应式系统&#xff1a; Vue 2 使用 Object.defineProperty 进行响应式数据的劫持和监听&#xff0c;它对数据监听是一项项的进行监听&#xff0c;因此&#xff0c;当新增属性发生变化时&#xff0c;它无法监测到&…

0719_rasa网站的一些介绍

it’s not a bot, it’s your brand rasa is the leading open generative conversational ai platform for creating and managing ai assistants at scale. learn more talk with sales top enterprises trust rasa american express adobe dell accenture report ho…

使用Canal同步mysql数据到es

一、简介 Canal主要用途是基于 MySQL 数据库增量日志解析&#xff0c;提供增量数据订阅和消费。 当前的 canal 支持源端 MySQL 版本包括 5.1.x , 5.5.x , 5.6.x , 5.7.x , 8.0.x 二、工作原理 MySQL主备复制原理 MySQL master 将数据变更写入二进制日志( binary log, 其中记…